High-Level vs. RTL
Combinational Equivalence:
An Introduction

Alan J. Hu
University of British Columbia

Outline

Motivation, Problem Statement

Gate-Level Equivalence Verification
0 Symbolic Simulation
o Cutpoints

Symbolic Simulation of a High-Level Model
Early Cutpoint Insertion
Future Directions

Why verify?
Bugs are expensive.

Bugs are so expensive that:

o Verification is primary front-end productivity
bottleneck.

o Verification costs swamp design costs.

Why formally verify?

Simulation speed growing exponentially, with
Moore’s Law.

Design size also growing exponentially.

Therefore, possible behaviors growing
doubly exponentially!

Behavior coverage from simulation and
testing have become unacceptably low.

What’s formal verification?

Formal verification means proving a
property about a model of a design.

0 “proving” — as good as mathematical proof.
0 “property” — got to specify what is correct

0 “model” — the tool runs at some level (layout,
schematic, RTL, etc.

In the past 15-20 years, revolutionary new
ideas make formal verification practical in
many cases

Two Kinds of Verification

Property Checking (aka Design Verification)

o Formally specify desired properties (e.g., mutual
exclusion, no deadlock)

o Check that model satisfies property (model
checking)

Equivalence Checking (aka Implementation
Verification)

o Check whether two models are equivalent

o Biggest success of formal verification to date

Why equivalence checking?

Theoretically, two kinds of verification are the
same.

In practice, they are different:

o No separate specification needed

o Assumption of similarity between two designs

Why high-level vs. RTL?

High-Level
\
High-Level vs. RTL Cylj:eﬁfg\‘j;?te
Combinational J '
Equivalence Checking RTL

Formal Equivalence Checking ‘

Gates
Vs v

Layout

\ Fab

Problem Statement

Given

A high-level software model
o “Combinational” — output as function of inputs

0 “Non-synthesizable” — too complex for current
tools

A combinational hardware model

Do they have the same functionality?

‘ Equivalence Checking

High-Level
V

Cycle-Accurate
High-Level

High-Level vs. RTL
Combinational
Equivalence Checking

Formal Equivalence Checking

LVS

10

‘Combinational Equivalence
2_}) ot 2 L —) >
{1 =D

Combinational Equivalence
S b D
- e

Symbolically simulate both circuits
f=a®@((barc)ad) g=a® (ba(c Ad))
Compare results (BDDs, SAT, etc.)

Complexity blow up for industrial circuits.

12

Cutpoints

d d
b)~y b«
s —7 =B

Guess cutpoint and prove equivalence:
E.g., the wire x in each circuit

Prove (bAc)Aad)=(bA(c Ad))

Treat cutpoint as new primary input:

Prove f= a @ x equivalent to g=a @ x

Divide and conquer.

13

False Inequivalence

=

) >t
X

o oc

N
N
}

o oo

=

F}g
Sl x

Guess cutpoint and prove equivalence:

E.g., the wire x in each circuit

Treat cutpoint as new primary input:
f=b @ x versus g=Db A (Ix)

14

Combinational Equivalence:
Key ldeas

Symbolically simulate to compute
functionality.

Use an efficient representation for the
symbolic simulation, e.g., BDDs or circuit-like
structure for SAT.

Find equivalent points to use as cutpoints to
simplify the problem.

15

Software vs. Hardware

key
int f(int key, int data[/]) g0
{ dataf0] ———1=1]
int i, count = 0; daart] =2+,
R ol
for (i=0; i<7; i++) { P T o
If (key==data]i]) B :Zzzzg
count++; T 4]
} _ datal5] ———=11 L
return count; N T

16

Combinational Equivalence:
Key ldeas

Symbolically simulate to compute
functionality.

Use an efficient representation for the

symbolic simulation, e.g., BDDs or circuit-like
structure for SAT.

Find equivalent points to use as cutpoints to
simplify the problem.

17

Software vs. Hardware

int f(int key, int data[7]) key = orig_key
{ data = orig_data
int i, count = 0;
for (i=0; I<7; 1++) {
If (key==datall])
count++;

}

return count;

18

Software vs. Hardware

int f(int key, int data[7]) key = orig_key
{ data = orig_data
int i, count = 0; | =7

for (1=0; I<7; i++) {
If (key==datall])
count++;

}

return count;

19

Software vs. Hardware

int f(int key, int data[7])

{

int i, count = 0;
for (1=0; I<7; i++) {
If (key==datall])
count++;

}

return count;

key = orig_key
data = orig_data
_ o

count=0

20

Software vs. Hardware

int f(int key, int data[7])

{

int I, count = 0;
for (1=0; i<7; I++) {
If (key==datall])
count++;

}

return count;

key = orig_key
data = orig_data
1=0

count=0

21

Software vs. Hardware

int f(int key, int data[7]) key = orig_key
{ data = orig_data
int i, count = 0; =0
for (i=0; I<7; 1++) { count=0
If (key==datali])
count++; Assume:
! orig_key==orig_data|0]

return count;

22

Software vs. Hardware

int f(int key, int data[7]) key = orig_key
{ data = orig_data
int i, count = 0; =0
for (1=0; i<7; i1++) { count = 1
If (key==data]i])
count++; Assume:
! orig_key==orig_data|0]

return count;

23

Software vs. Hardware

int f(int key, int data[7]) key = orig_key
{ data = orig_data
int i, count = 0; | =1
for (i=0; i<7; i++) { count =2
If (key==data[i])
count++; Assume:
} orig_key==orig_data|0]

return count; orig_key==o0rig_data[1]

24

Software vs. Hardware

int f(int key, int data[7])

{

int i, count = 0;
for (i=0; i<7; i++) {
If (key==data[i])
count++;

}

return count;

Different results on
every path

Must track assumptions
on each path

Exponential number of
paths!

Merge paths with
conditional expressions?

25

Path Merging

int f(int key, int data[7])
{
int I, count = 0;
for (1=0; I<7; i++) {
if (key==data[i])
count++;

}

return count;

=0

count =
(orig_key==orig_data[0]
)?1:0

26

Path Merging

int f(int key, int data[7]) = 1
{ count =
int i, count = 0; (orig_key==orig_data[1])
2
for (i=0; I<7; 1++) { o ,
key== datal0
if (key==datal[i]) f_,(g;'g;’—: ey==orig_datal0])
count++; ((orig_key==orig_data[0])
! ?1:0)

return count;

27

Path Merging

int f(int key, int data[7])
{
int I, count = 0;
for (1=0; I<7; i++) {
if (key==data[i])
count++;

}

return count;

| =2
count =

(orig_key==orig_data[2]) ?
orig_key==orig_data[1]) ?
0

AN N

(ong key==o0rig_data

o~

(ong key==o0rig_data

\)v

(ong key==o0rig_data

(orlg_key==orig_data
)

N A S~

0
) : ((orig_key==orig_data[1])

0]

0]

(
)23:2

)?2:1

)?2:1

)?1:0

28

Path Merging

int f(int key, int data[7])
{
int I, count = 0;
for (1=0; I<7; i++) {
if (key==data[i])
count++;

}

return count;

=3

count = (orig_key==0rig_ data 3])
? ((orig_key==orig data[2])
orig_ ke =orig_data[1]) ?
(orig_key==orig data_O])?3:2 ;
(orig_key==orig_data[0])?
(
(

N\ —"

(orig_key==0rig_data[1])
orig_key==orig_data[0]

vv

(

(

(:

§

(ong key==orig_data[0])"
. ((orig_key==o0rig_data[2]) *

&orlg _key==orig_data[1]) * .

(

(

(

(

orig_key==0rig_data

\)O\)I—l\)\)

(

(orig_key==orig_data|0])"
(orig_key==orig_data
2or|g _key==orig_data]

orig_key==orig_data]

\)v

D

2
?
2
1
2
?
2
1

[Eleai=l=

29

Path Merging

int f(int key, int data[7])
{
int I, count = 0;
for (1=0; I<7; i++) {
if (key==data[i])
count++;

}

return count;

Exponential growth in
expression size!

30

Combinational Equivalence:
Key ldeas

Symbolically simulate to compute
functionality.

Use an efficient representation for the
symbolic simulation, e.g., BDDs or circuit-
like structure for SAT.

Find equivalent points to use as cutpoints to
simplify the problem.

31

Shared Graph Representation

Use a maximally shared combinational circuit
graph as representation of functionality.

32

\ Shared Graph Representation

0 key data array

\ |]

count

\ Shared Graph Representation

0

+1

1y

key

mux [+ =9

select
mux

?&W

data array

<

\

count

v

34

Shared Graph Representation

0

+1

1y

key

mux [=

+1

1y

mux [=

?&1}7

select
mux

data array

—

array
select
mux

35

Shared Graph Representation

Use a maximally shared combinational circuit
graph as representation of functionality.

Graph structure grows linearly (in size of
unrolled program).

Result is essentially a synthesized
combinational circuit.

Still has potential problems for very complex
software

36

Combinational Equivalence:
Key ldeas

Symbolically simulate to compute
functionality.

Use an efficient representation for the
symbolic simulation, e.g., BDDs or circuit-like
structure for SAT.

Find equivalent points to use as cutpoints
to simplify the problem.

37

Early Cutpoint Insertion

Find and insert cutpoint during symbolic
simulation of software, not after synthesizing
an equivalent circuit.

Reduces blow-up, allows using BDDs to
represent path conditions.

Therefore, can handle much more complex
branching and looping conditions.

38

Case Study: 1A-32 Instruction
Length Decoder

Challenge problem suggested by Robert
Jones of Intel Corporation.

|A-32 has very complex instruction encoding:
o Variable length instructions from 1 to 15+ bytes

o Prefixes, over-rides of field lengths, etc.
Instruction length decoder marks instruction
boundaries in an instruction buffer, in a single
cycle.

39

'1A32 Instruction Length
Decoder

Parcel Next Parcel

L !

Input:

parcel

nextparcel

Wrapin = [1,0,0,0,0,0,0,0]

Instruction Length Decoder

40

Output:

Begin =[1,0,1,0,0,1,0,0]
End = [0,1,0,0,1,0,0,0]
Wrapout = [0,1,0,0,0,0,0,0]

'1A32 Instruction Length
Decoder

Parcel Next Parcel

While(1){

length_decoder(); .
parcel = nextparcel,

wrapin = wrapout;
read nextparcel;

Software Model of ILD

while (wrap < PARCEL_SIZE) {

}

begin[wrap]=1; /* Start of instruction */

/* Set default sizes. */
operand_mode = INIT_OPERAND_MODE;
address._mode = INIT_ADDRESS MODE;

get_next_byte();

ret = handle_prefixes();

/* If there were any prefixes, get the next byte for opcode. */
if (ret) get_next_byte();

if (current_byte = ESCAPE) handle_one byte opcodes();
else {/* Escape to two-byte opcode */
get_next_byte(); /* Skip over the escape code. */
handle_two_byte opcodes();

}

42

Hardware Model of ILD

All decoding is in parallel

A priority-encoding network to decide which
blocks of ILD logic are the valid ones:
valid(P,,,) iff valid(P,) A m = n + length_from(n)

Optimized by using script.rugged (SIS)

43

Verification Challenges

Software

o Easy to describe the functionality
o Serial

o Exponential number of paths

o Very complex control flow

Hardware

o Complicated, RTL circuit
o Highly parallel (one cycle)

44

Effect of Early Cutpoints

Linear Building BDD

Early Cutpoints

EX20-8

Time(s)

Mem(MB)
61

Time(s)| Mem(MB)

EX20-16

1746

EX20-32

mem out

EX20-64
EX97-8

mem out
1.46 92

EX97-16

1187.72 1800

EX97-32

mem out

EX97-64
EX251-12

mem out
1843

EX251-16

mem out

EX251-32

mem out

EX251-64

mem out

Experimental Results
hw-CBMC vs. Early Cutpoints

hw-CBMC

Early Cutpoints

Time(s)

Mem(MB)

Time(s)

Mem(MB)

46

Future Directions

Heuristics for finding cutpoints

Program analysis and optimization
techniques to expose parallelism

Handling more complex control flow
Handling dynamic memory
False inequivalence handling

Integrating with other techniques to remove
cycle-accuracy assumption

47

