
A Parallel Steiner Tree Heuristic for Macro Cell Routing

Christian Fobel and Gary Gréwal

Deptartment of Computing and Information Science

University of Guelph

Guelph, Ontario, Canada

N1G 2W1

cfobel@uoguelph.ca, gwg@cis.uoguelph.ca

Abstract— Global routing of macro cells remains an impor-
tant but time-consuming step in the VLSI design cycle. Macro
cells are large, irregularly sized parameterized circuit modules
that typically contain large numbers of terminals that must
be interconnected. The interconnection pattern for each set of
terminals (net) that must be connected is a Steiner tree, and the
primary sub-problem in the global routing of macro cells is to
find a set of dissimilar, low-cost Steiner trees for each net that
must be routed. In this paper, a two-phase, parallel (multi-
processor) algorithm is proposed for quickly constructing a
diverse pool of high-quality Steiner trees for routing of multi-
terminal nets. In the first phase, a single Steiner tree is
constructed using a heuristic, called Shrubbery. Then, in the
second phase, a pool of dissimilar, high-quality trees are created
from the original tree, by running multiple instances of a
local search in parallel. Computational experiments performed
on over 800 commonly used benchmarks show that running
multiple instances of the local search in parallel results in
near-linear speed-up over the serial case. Most importantly, the
trees produced are both high-quality and dissimilar, allowing
for numerous routing possibilities for each net.

I. INTRODUCTION

Macro cells are large, irregularly sized parameterized

circuit modules that are typically generated by a silicon com-

piler as per a designers selected parameters. The macro-cell

design style allows for very compact and high-performance

designs. However, the chip-level routing process has a much

higher complexity than other methods [1]. The traditional

approach to routing divides the routing into two phases.

The first phase, called global routing, assign list of routing

regions to each net without specifying the actual geomet-

ric layout of the wires. The second phase, called detailed

routing, determines the actual geometric lay-out of each net

within the assigned regions.

Many global routing methods can be found in [2]. Usually

graph-based methods are used for global routing problems.

The routing model is based on a routing graph, which is

extracted from the given placement and the routing-region

definitions. In practice, channel graphs [3] have been found

to provide the most general and accurate model. Given a

layout or placement, the edges of the graph correspond

to future routing regions, while the vertices of the graph

correspond to the intersection of routing regions. In order to

ease the task of detailed routing, several optimality criteria

may be used by the global router, such as minimizing the

total wire length, minimizing the total area, minimizing local

densities, etc. Therefore, every edge in the graph is assigned

one or more cost values, typically representing the length

of the associated routing regions and/or an upper bound

on the number of connections that can pass through the

region. To compute a global route for a specific net, vertices

representing the terminals are added at appropriate locations.

Finding a global route then becomes equivalent to finding a

minimum-cost subtree in the routing graph that spans all

of the terminal vertices. For two-terminal nets, the problem

reduces to the shortest-path problem. However, for multi-

terminal nets, the problem has traditionally been viewed as

a minimum Steiner tree Problem in a Graph (SPG).

Given n points (terminals) on a graph, a Steiner tree con-

nects these points through some extra (Steiner) points such

that the total length (cost of edges) of the tree is minimized.

The global (macro-cell) routing problem [2] can be viewed

as a problem of finding a set of Steiner trees for each net in

the routing graph. More than one candidate Steiner tree is

required for each net, as the capacity of the edges in the graph

must not be violated. If the capacity constraints of some

edges cannot be satisfied, routes must be ripped up and then

rerouted using alternate Steiner trees compatible with the

Steiner trees used for connecting other nets. Unfortunately,

finding even a single high-quality Steiner tree for each net

can be time-consuming because the minimum SPG problem

is NP-hard [4]; therefore, all existing solution methodologies

are heuristics. The focus of this paper is on the macro-cell

routing problem [2]. The main aim of the paper is to develop

an efficient parallel algorithm to generate a set of Steiner

trees for each net.

The remainder of this paper is organized as follows.

Section II presents related work. Our parallel approach is

given in Section III. We introduce the graph terminology

that will be used throughout the remainder of the paper in

Section IV. Shrubbery, and Insert are described in Sections

V, and VI, respectively. In Section VII we present our results,

followed by our conclusions in Section VIII.

II. RELATED WORK

The primary subproblem in macro-cell routing is to find

a minimal cost Steiner tree for a net. The Steiner problem

in graphs can be formulated as an integer or a continuous

non-convex optimization problem. Many exact algorithms

for small size problems are based on these formulations [5].

27978-1-4244-2658-4/08/$25.00 ©2008 IEEE

Several heuristics are available for the approximate solution

of SPG; see Duin and Voss[6] for recent surveys. Construc-

tive methods that build feasible solutions from scratch have

been proposed by Takahashi and Matsuyama [7], Plesnik [8],

Minoux [9], and Rayward-Smith and Clare [10]. Node-based

[9], path-based [11] and spanning-tree based [5] improvement

heuristics have also been proposed for solving the SPG.

More recently, we find implementations of meta-heuristics

including simulated annealing [12], genetic algorithms [13]

[14], tabu search [15], and GRASP [16] [17]. For surveys

on heuristic techniques for solving the SPG see Voss [18],

Hwang, et. al [19], and Duin and Voss [6].

III. OUR APPROACH

Our goal is to develop an algorithm that is fast enough to

generate not one, but an entire pool of high-quality trees. Our

proecedure consists of two separate phases: a construction

phase, followed by an improvement/diversification phase (see

Fig. 1).

Optimized

Trees

Start with

empty pool

Run Shrubbery

to generate

Steiner tree

Run Insert with

unique path

growth ordering

Run Insert with

unique path

growth ordering

Run Insert with

unique path

growth ordering

... ...

... ...

......

Empty

Pool

Construction Phase

Improvement/Diversification Phase

Fig. 1: Approach taken to generate pool of Steiner trees.

The goal of the construction phase is to use our con-

structive heuristic, Shrubbery, to construct a single minimal

cost Steiner tree for each net. Unlike previous heuristics,

Shrubbery builds a Steiner tree much like shrubs grow in

a garden. Shrubbery begins the construction of a Steiner

tree by simultaneously growing separate shortest-path trees

rooted at every terminal vertex. Each tree is called a “shrub”.

These trees grow towards each other in a coordinated manner.

Whenever nearby trees touch each other for the first time,

they join the same “grove”. Their connecting paths are

merged into a “hedge” within the grove. A hedge is a tree (in

a graph) that connects all roots (terminals) belonging to the

same grove. Eventually all the shrubs become connected and

belong to a single grove. Each “dangling” branch is pruned,

and the remaining hedge is a Steiner tree.

Although conceptually simple, Shrubbery is able to find

high-quality solutions to very large problem instances in

small amounts of time. Most importantly, Shrubbery has

running time complexity of O(|E| log |V |), with a constant

no larger than 2.

In the diversification phase, local search is used to modify

the Steiner tree generated in the construction phase to obtain

numerous unique, high-quality trees. We have refined a local

search strategy, called Insert, that iteratively replaces an

existing (key) path in the tree with a new path of lesser cost.

The behaviour of the Insert algorithm is deterministic, based

on the order in which it evaluates the nodes in the graph.

Diverse solutions are generated by running Insert multiple

times with different node traversal orderings. Our results

show that Insert can further reduce the cost of the seed

Steiner tree, while introducing diversity among tree pool

members. We employed the most obvious form of parallelism

scheme by distributing the repetitions of Insert among the

processors (see shaded region in Fig. 1). In a homogenous,

parallel environment each processor performs a fixed number

of Insert executions equal to the number of trees required for

a net divided by the number of available processors. Once

all processors are finished their computations, the entire pool

of solutions are now available for routing the net.

IV. TERMINOLOGY

Throughout the remainder of this paper, we use the follow-

ing definitions and terminology when describing Shrubbery

and Insert. The following symbols index scalar objects or sets

of scalar objects: i and j are used to index vertices; a and b

are used to index root vertices of shrubs; thus shrub, grove,

or hedge identifiers. An edge (ei j) in a graph is identified by

the pair of vertices vi and v j it connects. The cost or weight

of an edge ei j in a graph is identified by wi j. We also make

use of the following definitions (see Fig. 2 for assistance):

Definition 1:

A shrub Sa consists a set of edges Se
a and a set

of vertices Sv
a where va is the only terminal in Sv

a,

the edges in Se
a form a tree rooted at va, meeting

all vertices of Sv
a, and all ei j ∈ Se

a have end vertices

vi,v j ∈ Sv
a. Once an edge or a vertex is included

in a shrub, its shrub membership does not change.

The function s(vi) = unde f ined, if vertex vi does

not belong to any shrub. Otherwise, s(vi) = a, the

root of the containing shrub.

Definition 2:

A path Pi j is a sequence of distinct edges connect-

ing vertices vi and v j. Two paths Pi j and Pk j with

no common vertices except for vertex vk can be

concatenated to form a single, longer path; that is,

Pik‖Pk j is the union of distinct edges and vertices

in Pik and Pk j. A path Pai represents the unique path

by which vertex vi was reached from root vertex va

during shrub growth. The function N(Pai) returns

a list of all vertices in the path Pai. The function

E(Pai) returns a list of all edges in the path Pai.

Definition 3:

A grove Ga is a union of shrubs ∪
b∈M

Sb where M is

an index set of member shrubs and a = min
k

{k ∈

M}. More specifically, Ge
a = ∪

b∈M
Se

b and ∪
b∈M

Sv
b.

Definition 4 (hedge):

28

Fig. 2: Illustration of shrub, grove, and hedge.

A hedge Hais the partial Steiner tree that connects

the terminals of Ga. Ha consists of two sets He
a ⊆

Ge
a and Hv

a ⊆ Gv
a.

Definition 5 (root distance):

Every vertex vk within a shrub Sa has a root-

distance da
i , which is the cost of the path by which

vertex vk was reached from root of Sa (vertex va),

during shrub growth; that is, da
k = ∑

ei j∈Pak

wi j, where

is the cost of edge.

Every vertex within a shrub except the root vertex has

a parent. Let’s suppose vertex vi is vertex v j’s parent, the

following relationship exists: da
j = da

i +wi j, where wi j is the

cost of edge ei j. To simplify the description in later sections,

if vertex v j is not in Sa, but it is adjacent to vertex v j which

is within Sa, vertex v j also has a root-distance to shrub Sa

through vertex vi : da
j = da

i +wi j.

V. SHRUBBERY

Shrubbery starts a Steiner tree construction by simul-

taneously growing individual shortest-path trees rooted at

every terminal vertex. We refer to these trees as “shrubs”.

Shrubs grow using a modified version of Dijkstras shortest-

path algorithm. Initially, each shrub consists of a single

terminal vertex, its root. Then, shrubs are extended by adding

one edge and vertex to a single shrub at each step of

the algorithm. Shrubbery searches for a global optimum by

coordinating growth among the shrubs. At every step, each

shrub has one nearest adjacent vertex not connected by a

path to this shrub and having the minimum-cost path to the

shrubs root. Shrub growth is coordinated by selecting the

shrub whose nearest vertex has the globally smallest path

length to its root. The winning shrub expands to include its

nearest vertex. That shrub will then determine its next nearest

vertex and becomes a candidate for the next round. (Ties can

be handled by any consistently applied rule.) When unrelated

shrubs meet during this process, they merge into a containing

“grove”, a tree of adjacent shrubs.

During the growth, edges connecting vertices that belong

to the same grove are ignored, so that shrubs in the same

grove do not meet again. Consequently, the meeting of shrubs

is the meeting of different groves containing them. When two

Fig. 3: Illustration of shrub growth.

shrubs meet, two groves also meet, and two things happen.

First, the two groves merge into one. Second, the paths from

the two shrub roots to the contact node become “hedges” that

connect existing hedges within the two participating groves.

Within each grove, all member shrubs are connected, and

different shrubs have at most one distinguished path (hedge)

between them. That path, the hedge, constitutes an internal

Steiner tree connecting all the terminals (the roots of shrubs)

within the grove. When all terminals eventually belong to a

single grove, the final hedge constitutes the desired Steiner

tree. An important feature of hedge growth is that part (or

all) of the paths from the respective terminals may already

be hedges. This means that a new shrub may attach itself

to an internal path of a Steiner tree and not directly to a

terminal.

A. An example

The entire process is illustrated in Fig. 3. The original

problem instance is shown in Fig. 3(a). The shaded vertices

(1, 5, and 11) are terminal vertices, and Shrubbery starts by

growing shrubs rooted at each of these three vertices.

29

Fig. 3(b) shows the growth of the shrubs at a maximum

distance of five from each terminal. (Numbers in parentheses

indicate the shortest distance of the vertex from the root of

the shrub.) Notice that at a distance of five, each shrub has

grown to include three vertices. Any edge connecting two

vertices belonging to the same grove is ignored (Fig. 3(c)).

At a distance of seven (Fig. 3(d)), only the shrub rooted at

vertex 5 is able to grow.

Fig. 3(e) shows what happens when two shrubs meet. At a

distance of eight, the shrub rooted at vertex 5 is able to reach

vertex 6, which is part of another shrub - and another grove.

The two shrubs become part of the same grove. Within the

grove, the connecting path (bold line) forms a single hedge.

This hedge is now guaranteed to be part of the “backbone”

of the final Steiner tree. However, it still has the potential to

expand and grow in parallel with the remaining shrub rooted

at vertex 11.

The final Steiner tree is eventually formed when the

remaining structures are allowed to expand to a distance of

nine (Fig. 3(f)). At this distance, several things occur. First,

shrubbery attempts to grow an edge from vertex 2 to vertex

3. However, this edge is discarded as vertex 2 and vertex

3 are now part of the same grove. This action prevents a

cycle from forming. Next, shrubbery grows an edge from

vertex 6 (which is part of the hedge) to vertex 8. Then the

shrub rooted at vertex 11 reaches vertex 8. The result is

that the hedge and shrub meet at vertex 8 and are “fused”

together to form a final hedge (bold line) and a single grove.

In general, when a hedge and shrub (or two hedges) are fused

together, only those vertices and edges that do not already

belong to any structure will be added as new hedge elements.

Each fusion will start from the encountering vertex and move

towards the terminal nodes of the structures involved along

the two shortest paths. The expansion in each direction will

stop at the first vertex contained in the hedge, or else at the

terminal vertices.

Returning to our example, we note that all terminal ver-

tices (1, 5, and 11) are now contained in one hedge, and all

shrub growth ceases. As a final step, all non-terminal vertices

not on a hedge will be pruned from the hedge, which leaves

a Steiner tree.

B. Shrubbery algorithm

The shrubbery algorithm is presented in Algorithm 1. The

algorithm begins with a search for the edge ei j whose weight,

wi j, extends the shrub Sa to which xi belongs by the smallest

distance from the root, ra (line 2). Once this edge has been

determined, the original shrub (Sa) expands to include both

the new edge and the vertex if the vertex that edge ei j meets

(x j) does not already belong to a shrub. Moreover, the unique

path from the root of the shrub (ra) to vertex x j is recorded

(line 4), and vertex x j is made an official member of the

shrub Sa (line 5). Observe (line 6) that the distance from

root ra to vertex v j is simply the total distance from the root

of the shrub to vertex xi (dai) plus the weight (wi j) of the

new edge.

Algorithm 1 Shrubbery algorithm.

1: repeat

2: Let ei j satisfy ∀ T , min
i, j

(dai +wi j : xi ∈ Sa,x j /∈ Sa)

3: if x j /∈ Sb, ∀ b in T add x j and ei j to Sa then

4: Pa j = Pai ‖ Pi j

5: S(x j) = a

6: da j = dai +wi j

7: else if x j ∈ Sb then

8: if Sa ∈ Ga and Sb ∈ Ga then

9: mark ei j ineligible (to prevent cycle)

10: else

11: Gn
a = Gn

a ∪Gn
v

12: Ge
a = Ge

a ∪Ge
v ∪{ei j}

13: Hn
a = Hn

a ∪Hn
b ∪N(Pai)∪N(Pb j)

14: He
a = He

a ∪He
b ∪E(Pai)∪E(Pb j)∪{ei j}

15: discard Gb and Hb

16: until Ga contains all m terminals

If, however, the met vertex x j is found to be part of

another shrub Sb (line 7), two possibilities exist. Either xi

and x j belong to shrubs in the same grove, or they belong

to shrubs in different groves. The former case implies that

both shrubs (Sa and Sb) are already connected by a hedge

and, therefore, the edge in question (ei j) is not eligible for

further consideration (lines 8 and 9). The latter case implies

that the edge (ei j) has caused two groves (Ga and Gb) to

meet for the first time. The effect is that both groves will

merge to form a single grove (lines 11 and 12), and their

respective hedges will be connected by a new hedge segment.

The new hedge will form to include the path containing

ei j, extended to existing hedges in each grove. The new

hedge will consist of the union of all the nodes (line 13)

and edges (line 14) involved. Once the new hedge (Ha) and

grove (Ga) are formed, the old hedge (Hb) and grove (Gb)

can be discarded (line 15), since their members will have

been absorbed into Ha and Ga.

In practice, steps 1 through 15 of the algorithm are

repeated until all m terminal vertices are contained in a single

grove (Ga). The hedge within this grove represents the final

Steiner tree.

C. Implementation and time complexity

To achieve an efficient implementation for Shrubbery, all

edges and vertices are stored in separate Fibonacci heaps.

We also make use of the union-find data structure when de-

termining whether a newly encountered vertex (during shrub

growth) belongs to a different grove or is simply (another)

part of the existing grove. In Algorithm 1, the operations

in lines 3-9 and 15 take O(1) time. Therefore, the time

complexity of the algorithm is dominated by the time spent

performing the operations in lines 1, 2, and 10-14. Since

the time for finding an element with the smallest key value

from a heap is O(logn), a single execution of line 2 takes

O(log |V |) time. Using union-find to perform the operations

in lines 11-14, the resulting operations each take O(log |V |)

30

time. The most expensive step in the algorithm is the first

(line 1), which requires at most |E| iterations. As each

iteration of the do-until loop takes O(log |V |) time, we can

see that Shrubbery has a time complexity of O(|E| log |V |).
This is the same worst-case run-time complexity as in SPH

[7], which is the lowest for the SPG.

VI. INSERT

When a Steiner tree is constructed using a heuristic

algorithm (like Shrubbery), there is no guarantee that the

total cost of the tree is minimal. Consequently, local search

can often be used to improve the quality of the tree. We

employ a local improvement algorithm called Insert. The

basic idea is to grow a new path from each vertex in the

current tree. Paths are grown in a fashion similar to that for

shrubs, with the closest vertex not already part of the existing

tree being added to the expanding path at each step. If the

new path meets the tree again, it will form a cycle. The

cost of the new path can then be compared with the cost of

the other path segments that constitute the remainder of the

cycle. If the new path is of lower cost than some existing

path segment, it can be inserted into the tree, replacing an

existing path segment with greater cost.

A key path has intermediate vertices that are Steiner

vertices with degree two, and the vertices at its ends are either

terminal vertices or key vertices. In general, it is possible

for a cycle to consist of many key paths (and one or two

segments of key paths), in which case the one that provides

the maximum improvement will be selected for replacement.

Similarly, it is possible for the local neighbourhood surround-

ing each vertex to contain multiple cycles. However, only the

cycle that provides the greatest cost improvement is selected.

The Insert algorithm employs a first-improving strategy in

which path replacements are made as soon as an improving

path is found. Growth of an individual path from a root

will stop when a cycle is formed or a limit is exceeded.

The limit is the total weight (wmax) of the key path having

maximum total weight in the current tree. At each step, the

neighbourhood search function computes the cost (w
′
) of the

expanding path from the newly added node to the root. If

w
′
≥ wmax, this new path could not possibly yield any cost

improvement, because its cost exceeds or equals that of the

maximum unit that could be replaced in the current tree.

In addition to improving a “seed” Steiner tree, Insert can

be used to generate numerous unique solutions by varying the

order in which paths are grown from vertices. By exploiting

this behaviour, Insert is able to generate a diverse set of

high-quality solutions, based on a single “seed” Steiner tree.

Since each repetition of Insert is independent, we propose

an implementation where several executions of Insert are

run in parallel on multiple homogenous processors. Using

this multi-processor implementation we achieve near-linear

speed-up over the serial execution of the same Insert runs,

as shown in Section VII.

TABLE I: Classes of problem instances from

SteinLib[20].

Class Series Description

Random b, c, d, e, mc,
p6z

Random graphs with random
weights

FST es*fst, tspfst Rectilinear graphs
VLSI dmxa, diw, gap,

lin, msm, taq
Grid graphs with holes

Incidence i080, i160,
i320, i640

Random graphs with incidence
weights

Euclidean x, p6e Graphs with Euclidean weights
Hard sp, puc Artificial, hard instances

VII. RESULTS

In this section, we report on results obtained by our

method with special emphasis placed on run-time, tree cost,

and diversity among pool members. In the experiments that

follow, diversity among pool members is assessed with the

following measure:

D =
∑

n−1
i=1 ∑

n
j=i+1 1− (com(Ei,E j)/max(Ei,E j))

(n(n−1))/2
(1)

where n is the number of trees in the pool, com(Ei,E j)
is the percentage of edges that two trees (i and j) share

in common, and max(Ei,E j) is the maximum number of

edges in either tree. Hence, pool diversity is simply the

average (expressed as a percentage) of the dissimilarities

of all possible pairs of trees in the pool. The higher the

value of D, the more diverse the trees in the pool. Our

method was tested on over 800 commonly used problem

instances already available at the SteinLib [20] repository.

One of the main advantages of using this test suite is that

it facilitates comparison with global optimum solutions (or

best known solutions). We wish to emphasize that none of

the graphs used in our experiments were reduced by means

of the reduction tests, as in [21]. Otherwise, the times given

in the experiments that follow would be further reduced.

To simplify the analysis, we organized the various problem

instances into the six classes listed in Table I. A complete

description of each class can be found in [20].

Both Shrubbery and Insert were implemented in C++

using HP-MPI and compiled under Linux with PathScale

EKOPathTMcompiler version 2.2.1. Run-times were obtained

on a cluster of systems connected through a Myrinet 2g (gm)

interconnect, each node having four 2.2 GHz Intel Opteron

processors and 8GB of RAM.

A. Parallel Run-time Performance

For each problem instance, Insert was run 32 times, each

time using a different order of path growth, resulting in up to

32 unique solutions. To evaluate the run-time performance

of our parallel implementation, the 32 runs of Insert were

run on a varying number of processors: 1, 2, 4, 8, and 16.

Table II reports the average run-times for each problem class

across 1 to 16 processors. Fig. 4 shows the run-times of all

31

TABLE II: Average Insert run-time (per tree) across

varying number of processors.

Set Name Run-time (s) on N Processors

1 2 4 8 16

Random 0.7058 0.3541 0.1626 0.0949 0.0577
Fst 1.4865 0.7628 0.4135 0.2026 0.1069
VLSI 0.2103 0.0925 0.0643 0.0336 0.0174
Incidence 7.5801 3.8263 2.3671 1.0996 0.8524
Euclidean 1.2347 0.6018 0.3040 0.2199 0.1164
Hard 0.2809 0.1369 0.0777 0.0449 0.0259

instances within each problem class averaged. Note that the

run-times are normalized by dividing by the serial (single-

processor) run-time for each problem class. For all problem

classes, a near-linear speed-up trend can be observed with

an increase in the number of processors.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e
(R

u
n
ti
m

e
/M

a
x
 R

u
n
ti
m

e
)

Number of Processors

Random

Fst

VLSI

Incidence

Euclidean

Hard

Fig. 4: (Normalized) Average Insert run-times across varying

number of processors.

B. Diversity and Quality of Parallel Solutions

In addition to run-time averages, solution costs were

recorded for the tree pools generated for each problem

instance. The average diversity metric of each problem

class was calculated according to (1). Table III shows the

relative error between the value of the solution found and the

optimal (or best known) solution from SteinLib[20], after the

construction phase and improvement/diversification phase.

Table III also shows the number of unique trees generated

by 32 distinct Insert path growth orderings, along with the

average solution set diversity.

As shown in Table III, an average diversity of at least

20% was achieved after the diversification phase for all tested

problem classes. Also, it can be seen that Insert is able to

significantly reduce the cost of the average solution for each

pool. For most problem classes, the average cost of pool

members is within less than 5% of the best known cost.

C. Run-time and Solution Quality Comparison with SPH [7]

To further evaluate the efficacy of Shrubbery (with and

without Insert), we compare the run-time and solution quality

obtained by running one serial instance of Shrubbery against

the results of our implementation of the Shortest Path

Heuristic (SPH), developed by Takahashi et. al. [7]. Here

TABLE III: Pool diversity with best-case, worst-case and aver-

age Steiner tree solution costs.

Shrubbery Insert

Set Name
aT Ca T N D Cb Cw Ca

Random 0.027 9.4% 0.706 18 26.2% 1.1% 4.3% 2.8%

Fst 0.009 4.2% 1.487 26 20.9% 0.5% 1.5% 1.0%

VLSI 0.023 6.0% 0.210 29 32.2% 0.7% 3.2% 1.9%

Incidence 0.087 45.5% 7.580 27 33.1% 8.9% 17.1% 12.9%

Euclidean 1.420 11.4% 1.235 31 29.3% 2.6% 6.8% 4.6%

Hard 0.029 38.1% 0.281 29 37.1% 11.8% 15.8% 13.8%

a Note: T is the average run-time (seconds) per generated tree; N is
number of unique trees generated by 32 distinctly ordered Insert runs;
Cb, Ca, and Cw are best, average and worst trees variance from optimal
cost, respectively; D is diversity among pool members.

only one Steiner tree is being produced by each algorithm.

Both the serial Shrubbery/Insert and the SPH algorithms

were implemented in C++ and compiled under Linux with

the GCC compiler version 2.96. Run-times were obtained

on a system with a 2.4 GHz Intel Pentium 4 processor and

512MB of RAM. Table IV shows the average run-time and

percentage variance from the optimal solution cost, across all

instances in each test data-set. Several VLSI representative

data-sets were chosen from SteinLib[20] for comparison.

As Table IV shows, on average for the selected bench-

marks, Shrubbery achieves solution quality within 5.99%

of the optimal cost, while SPH performs within 3.49%

of optimal. However, Shrubbery is about two orders of

magnitude faster. Moreover, when Insert is applied after

Shrubbery, the run-time still remains approximately an order

of magnitude faster than SPH, while Shrubbery with Insert

outperforms SPH by about 2% in terms of solution quality.

VIII. CONCLUSION

Global routing of macro cells remains an important, but

time-consuming, step in the VLSI design cycle. In this

paper, we have addressed this issue by presenting a new

muli-processor algorithm for quickly constructing a diverse

pool of Steiner trees suitable for routing multi-terminal nets.

The main idea behind the algorithm is its unique two-

phase approach to tree construction, with the second phase

exploiting parallelism to produce a pool of trees in roughly

the same time as generating a single tree.

The performance of the algorithm has been tested on over

800 graphs with up to 38418 vertices, 221445 edges, and

11849 terminals. The experimental results show that, on

average, the best tree found in a pool of up to size 32 is

within 3% of the global optimum for most problem classes,

while the average tree cost is found to be within 5% of

the optimum for most problem classes. Although the run-

times vary from series to series, they are uniformly low;

typically a fraction of a second per tree for Shrubbery, and

slightly longer for Insert. In particular, in Section VII-C,

a comparison is made between our serial Shrubbery/Insert

implementation and SPH [7] in terms of solution quality and

run-time. On average, Shrubbery with Insert achieves a cost

approximately 2% better than SPH, while running an order

of magnitude faster.

32

TABLE IV: Comparison of run-time and solution quality between Shrubbery and Shortest Path Heuristic (SPH) [7].

SPH Shrubbery Shrubbery+Insertion

Series Instances Avg. Time(s) Avg. Gap (%) Avg. Time(s) Avg. Gap (%) Avg. Time(s) Avg. Gap (%)

DIW 21 3.00 2.53 0.02 4.36 1.09 0.84
DMXA 14 0.20 4.14 0.01 7.26 0.06 2.03
GAP 13 0.59 4.42 0.01 5.75 0.43 1.42
MSM 30 0.38 2.66 0.01 5.49 0.17 1.37
TAQ 14 0.71 2.98 0.01 6.36 0.16 1.54
LIN 37 57.70 4.20 0.12 6.73 6.18 1.48

Average 10.43 3.49 0.03 5.99 1.35 1.45

Our parallel implementation of the diversification phase

shows near-linear speed-up in relation to the number of

processors. The communication overhead for splitting up the

parallel work is insignificant compared to the computational

time required for Insert. Thus, our parallel implementation

will scale well to many processors and large tree pool

sizes. Most importantly, while run-times are kept small,

the trees in the generated pool are highly dissimilar. The

average dissimilarity among pool members was found to be

approximately 30%, thus providing for a variety of possible

routing options.

REFERENCES

[1] L.-C. E. Liu and C. Sechen, “Multilayer chip-level global routing using
an efficient graph-based Steiner tree heuristic.” IEEE Trans. on CAD

of Integrated Circuits and Systems, vol. 18, no. 10, pp. 1442–1451,
1999.

[2] N. A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd

edition. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[3] C. Sechen, VLSI Placement and Global Routing Using Simulated

Annealing. Kluwer Academic Publishers, 1988.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability : A

Guide to the Theory of NP-Completeness (Series of Books in the

Mathematical Sciences). W. H. Freeman, January 1979.

[5] M. P. de Aragão and R. F. F. Werneck, “On the implementation of
MST-Based heuristics for the Steiner problem in graphs,” in ALENEX,
ser. Lecture Notes in Computer Science, D. M. Mount and C. Stein,
Eds., vol. 2409. Springer, 2002, pp. 1–15.

[6] C. Duin and S. Voß, “Efficient path and vertex exchange in Steiner
tree algorithms,” Networks, vol. 29, no. 2, pp. 89–105, 1997.

[7] H. Takahashi and A. Matsuyama, “An approximate solution for the
Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577,
1980.

[8] J. Plesnik, “A bound for the Steiner tree problem in graphs,” Mathe-

matica Slovaca, vol. 31, pp. 155–163, 1981.

[9] M. Minoux, “Efficient greedy heuristics for Steiner tree problems
using reoptimization and supermodularity,” INFOR, vol. 28, pp. 221–
223, 1990.

[10] V. Rayward-Smith and A. Clare, “On finding Steiner vertices,” Net-

works, vol. 16, pp. 283–294, 1986.
[11] M. S. M. Verhoeven and E. Aarts, Local Search for Steiner Trees in

Graphs, V. Rayward-Smith, I. Osmam, C. Reeves, and G. Smith, Eds.
Wiley, 1996.

[12] K. Dowsland, “Hill-climbing simulated annealing and the Steiner
problem in graphs,” Engineering Optimization, vol. 17, pp. 91–107,
1991.

[13] H. Esbensen, “Computing near-optimal solutions to the Steiner prob-
lem in a graph using a genetic algorithm,” Networks, vol. 26, pp.
173–185, 1995.

[14] A. Kapsalis, V. Rayward-Smith, and G. Smith, “Solving the graphical
Steiner tree problem using genetic algorithms,” Journal of Operational

Research Society, vol. 44, pp. 397–406, 1993.
[15] M. Bastos and C. Ribeiro, “Reactive tabu search with path-relinking

for the Steiner problem in graphs,” in Essays and Surveys in Meta-

heuristics, C. Ribeiro and P. Hansen, Eds. Kluwer Academic
Publishers, 2001, pp. 39–58.

[16] S. L. Martins, C. C. Ribeiro, and M. C. Souza, “A parallel GRASP for
the Steiner problem in graphs,” in Workshop on Parallel Algorithms

for Irregularly Structured Problems, 1998, pp. 285–297.
[17] S. Martins, P. Pardalos, M. Resende, and C. Ribeiro, “Greedy random-

ized adaptive search procedures for the Steiner problem in graphs,”
1999.

[18] S. Voß, “Steiner’s problem in graphs: Heuristic methods,” Discrete

Applied Mathematics, vol. 40, no. 1, pp. 45–72, 1992.
[19] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem

(Annals of Discrete Mathematics). North-Holland, 1992.
[20] T. Koch, A. Martin, and S. Voß, “SteinLib: An updated library on

Steiner tree problems in graphs,” Konrad-Zuse-Zentrum für Informa-
tionstechnik Berlin, Takustr. 7, Berlin, Tech. Rep. ZIB-Report 00-37,
2000.

[21] E. Uchoa, M. P. de Aragão, and C. C. Ribeiro, “Preprocessing Steiner
problems from VLSI layout,” Networks, vol. 40, no. 1, pp. 38–50,
2002.

33

