
Gate Planning During Placement for Gated Clock Network

Weixiang Shen, Yici Cai, Xianlong Hong

EDA Lab, Dept.of Computer Science and Technology
Tsinghua University, Beijing, 100084, China

cwx04@mails.tsinghua.edu.cn

Jiang Hu

Dept.of Electrical and Computer Engineering
Texas A&M University, College Station, TX 77843, USA

jianghu@ece.tamu.edu

Abstract— Clock gating is a popular technique for reduc-
ing power dissipation in clock network. Although there have
been numerous research efforts on clock gating, the previous
approaches still have a significant weakness. That is, they
usually construct a gated clock tree after cell placement, i.e.,
cell placement is performed without considering clock gating
and may generate a solution unfriendly to subsequent gated
clock tree construction. As a result, the control gates inserted
in the tree construction is very likely to cause cell overlap. Even
though the overlap can be eventually removed in placement
legalization, remarkable wirelength/power overhead is incurred.
In this paper, we propose a gate planning technique which
is integrated with a partition-based cell placer. During cell
placement, the planning judiciously inserts clock gates based
on power estimation. In addition, pseudo edges are inserted
between clock gates and registers in order to reduce clock
wirelength and enable long shut-off periods. At the end, when
a relatively detailed placement is obtained, a post-processing
is performed to degrade the inefficient clock gates to clock
buffers. We compared our approach with recent previous works
on ISCAS89 benchmark circuits. Our method reduces the clock
tree wirelength and power by 22.06% and 40.80%, respectively,
with a very limited increase on signal nets wirelength and power
compared with the conventional (register-oblivious) placement.
The results also indicate that our algorithm outperforms the
clock-gating-oblivious placement [9] on power reduction and
performance improvement.

I. INTRODUCTION

Clock gating has been widely applied as an effective

technique to reduce the dynamic power of clock network [1]-

[9]. It is based on the observation that some portions of the

circuit may be idle at a certain time. Then, the part of clock

network corresponding to the idle portions can be shut off

through logic masking such as AND gate. Evidently, shutting

off parts of the clock network can reduce the dynamic power

dissipation. The set of active/idle times for the circuits is

referred as activity pattern in [1][2], which is a string of

1s and 0s. Based on the definition of activity pattern, [2]

proposed an algorithm for constructing the topology of gated

clock tree to minimize the total power including the clock

network and gate logics. However, the routing overhead and

power dissipation of the control signals for the gates were

not modeled. In [3][4], Oh et al. implemented zero skew

gated clock routing that improved upon [2] by accurately

accounting for the power of the clock tree and the gate

control signals. In [5][6], Donno et al. proposed a clock

tree planning methodology that constructed gated clock tree

topology with consideration of both switching activities and

cell locations.

Although the previous approaches are effective, their

efficiency on power reduction is limited by a weakness.

That is, they construct gated clock tree after conventional

cell placement, which does not consider clock gating.

Consequently, their tree construction sometimes is based

on a placement unfriendly to clock gating and therefore

results in limited power reduction. There are a few cell

placement methods [10]-[12] considering clock network

design, but these methods do not consider clock gating.

Clock gating requests that registers with similar switching

activities are placed close to each other [8][9]. Obviously,

a clock-gating-oblivious placer may ignore this request and

place registers with similar activities far apart. For such

placement, it is difficult for clock gating to reduce power

efficiently. The method introduced in [8] can obtain the

optimal placement of registers by pulling and clustering the

registers with the similar activity patterns during placement.

But it introduced many gate logics after the gated clock tree

construction and needed resort to Engineering Change Order

(ECO) or incremental placement to remove the overlaps.

In order to solve this problem, [9] proposed a new design

flow, which contained two stages of placement. In the initial

placement, it clustered and pulled the registers, especially

for the registers with the similar activity patterns. Then zero

skew gated clock tree construction and optimization were

implemented to get the optimal gated clock network which

determined the exact positions of the inserted gate logics

and their interconnect information with the registers. After

that, an incremental placement was invoked to remove the

overlaps introduced by the gate logics while preserving the

optimal gated clock network constructed before.

II. MOTIVATION

In order to shut off the clock signal more cycles for the

gated clock tree, [8][9] took this concern to placement stage.

By clustering and pulling the registers, especially for the

registers with the similar activity pattern, they achieved more

optimal position of the registers and indeed decreased clock

tree wirelength and power. However, these methods only

considered the gated clock tree in advance, they did not do

gate planning in placement, and the exact gates’ positions

were obtained in clock tree construction after placement, so

it inevitably needed post placement or incremental placement

to deal with the inserted gate logics.

128978-1-4244-2658-4/08/$25.00 ©2008 IEEE

On the other hand, although [9] effectively decreased the

clock tree wirelength and power, the small overheads of the

total half perimeter wirelength (HPWL) and the power of

signal nets could not be neglected. Especially for the signal

nets power, even though it increased within 3% comparing

to [8], it still could not be ignored since the signal nets

power accounts for large weight in total power budget, so

the total power reduction obtained by [9] was still small.

In addition, the increase of HPWL makes the routing area

more congested. Moreover, in order to remove the overlaps

introduced by the gate logics after gated clock tree con-

struction and routing, it needs feed the gated clock network

information and the gate logics back to the previous design

and then implements incremental placement (as shown in

Fig.1). These two stages of placement take considerable run

time, which is more obvious for the circuit with large scale.

Activity and

transition analysis
Initial placement

Gated clock tree

construction and

routing

Revised netlist

including clock

network and gate logic

Incremental

placement

Gate-level Netlist

Fig. 1. Design flow of [9]

Furthermore, in the gated clock tree construction after

placement, assuming a gate is inserted before each register

(or the sink of the clock tree) at the beginning and then

followed by a heuristic gate moving [5][6][8][9] is somewhat

ad hoc, which will result in redundant gate logics and

not all of the resultant gates are in the optimal position.

There are two reasons behind. First, inserting a gate before

each register may not reduce the power, sometimes it even

increases it inversely if the register is active at most of

the cycles, then there is few chance to shut off the clock

signal. According to the power model, only when the power

introduced by the gate logic and its control signal is smaller

than the power saved by gating, it is worth while to insert a

gate. Second, the upper level nodes have less chance to shut

off the clock signal, as the activity of the node increases

monotonically as we go up the tree, so it becomes difficult

to move the gate towards the upper level.

So in this paper, we integrate gate planning with a

multilevel cut-based placer to decrease total power and the

run time. As the partition goes during the placement, we

dynamically insert and delete gate among the registers to

derive an optimal gated clock topology for each local clock

tree. After placement, at the process of zero skew clock

routing using deferred merge embedding (DME) algorithm

[13], we re-evaluate the effectiveness of the inserted gate

and delete the useless gates or treat them as buffers. The

experimental results on ISCAS89 benchmark circuits show

the effectiveness and efficiency of our algorithm. Compared

with the conventional design flow, which constructs gated

clock tree after general placement, our method decreases the

clock tree wirelength, clock tree power, gate number and

total power by 22.06%, 40.80%, 60.02% and 13.07% on

average, respectively. Compared our approach with a recent

previous work, which constructed gated clock tree after a

register-aware but clock-gating-oblivious placement [9], it

decreases the clock tree power, gate number, HPWL, total

power and total run time by 29.74%, 43.01%, 6.90%, 13.79%

and 51.43% with an increase of clock tree wirelength within

8.95% on average.
The rest of the paper is organized as follows: in Section

III we will introduce the placer and the power model

used in our work. In Section IV we briefly describe our

design flow. Section V presents the gate planning during

placement in detail. Zero skew clock tree construction and

gate removal will be described in Section VI. Section VII

gives the experimental results, and we conclude the paper

in Section VIII.

III. PRELIMINARIES

A. Multilevel Cut-Based Placement
The core placer we use is a multilevel cut-based placement

tool, which is available on [15]. The placer works as follows.

Initially, the placement region is represented as a block

(referred to as bin) and the circuit is presented as a hy-

pergraph. The placer recursively divides each bin, partitions

its associated hypergraph and assigns the subhypergraphs to

subbins, aiming at minimizing the total number (weight) of

the nets incident to nodes in multiple partitions.

B. Power Model

clock

enable

module

gC 0 i
c l

0 gc l

i
C

Fig. 2. Power model

For comparison, we use the same power model as [8][9] (it

is also used in [5][6]), which includes the power dissipated

by both the clock tree and the control signal, just as Fig.2

shows. Let c0 be the unit wire capacitance, li, lg be the

interconnection length of the clock tree and the control

signal, respectively. Ci and Cg denote the input capacitances

for the register and the gate logic. Power dissipation is then

modeled as:

[(c0li +Ci)p(i)+0.5∗ (c0lg +Cg)ptr] fV 2
dd (1)

Where p(i) represents the probability for the register to

be active and ptr is the probability of having a transition on

the control signal net.

129

IV. OVERVIEW OF OUR DESIGN FLOW

Our design flow implements gate planning based on a

multilevel cut-based placer, as shown in Fig.3. When the

physical adjacency information is briefly available after

several partitions, we firstly evaluate the total activity for

a cluster of registers in the same bin, and then estimate the

power of these registers with a gate or not. If the former

is the better, we will temporarily insert a gate among these

registers and push the gate to this bin’s cells link, then we

add some pseudo edges between these registers and the gate

to avoid placing this gate far away from these registers at

next partitions. Since these registers may be partitioned into

subbins at the next partition, while we do not hope the

registers place far away from each other, especially for the

registers with the similar activity patterns (The reason of it

could refer to [8] and [9]). So before the next partition, we

also add some pseudo edges between the registers in the same

bin, the weight of the pseudo edges are determined according

to the activity and transition analysis of the registers it

connects [9]. At the next partition, if the registers at last level

are partitioned into two subbins, we estimate the power by

adding gates among these two child registers or not, then we

choose the best case and dynamically insert and delete the

gates, the detail of it will be presented in Section V. During

the process of zero skew clock routing after placement, we

re-evaluate the effectiveness of the inserted gates and delete

the useless gates or treat some of them as buffers, Section

VI will explain it in detail.

Activity and

transition analysis
Gate planning during

placement

Zero skew clock

routing and post-

processing

Gate-level Netlist

Fig. 3. Our design flow

V. GATE PLANNING DURING PLACEMENT

As pointed out in [8][9][10], clustering registers or pulling

registers closely will deteriorate the traditional placement

objectives and incur large overheads of signal nets wirelength

and signal nets power, if these overheads are larger than

the benefit of clock tree, it is not worth doing this. In

order to reduce these overheads, our gate planning is after

several partitions that the coarse placement result and the

interconnect information are available. In addition, observing

the power model in Eqn.1, for a register (or registers), only

when the power saved by shutting off the clock signal is

larger than the power introduced by the gate logic and the

control signal, it is worth while to insert a gate, which

is different from inserting a gate before each register in

[5][6][8][9] at the beginning, and then followed by gate

moving and deleting. So after several partitions, we evaluate

the total activity by OR-ing the activity of the registers in

the same bin, if it is active at all the cycles, inserting a gate

is no doubt useless for reducing the power. Otherwise, we

temporarily insert a gate to control these registers and put

the gate into the bin’s cells link for next level’s partition

and placement. In fact, these registers form a local clock

tree and we add a gate before its root. At the next level’s

partition, if these registers are partitioned into two subbins,

then we generate two child nodes, each child with respect

to the registers in each subbin. Fig.4 shows an example, at a

partition level, reg1∼reg6 are in the same bin and it is useful

to add a gate among them to shut off the clock signal, at the

next level, bin1 is partitioned into two subbins bin1 1 and

bin1 2 with registers reg1, reg4, reg5 and reg2, reg3, reg6,

respectively, then the local clock tree is as the right part of

Fig.4 shows.

reg1

reg2reg3

reg4

reg5

reg6

reg1
reg2

reg3

reg4

reg5
reg6

1bin

1_1bin 1_ 2bin

{1, 2,3, 4,5,6}root reg

{1, 4,5}lChild reg {2,3,6}rChild reg

Fig. 4. An example of partition and its corresponding local clock tree

Here we should point out two important aspects:

1) As the partition continues in Capo [15], the cells in the

same bin are treated as assembling at the center of the bin,

there is no exact position for each cell. So it is difficult to

estimate the exact wirelength of the local clock tree, and

it will only be available until clock tree routing finishes.

However, the power estimation is inaccurate for the tree with

a gate or not if we neglect the wire capacitance, and in fact,

wire capacitance accounts for much larger weight than the

cell capacitance as the technology advances. To overcome the

gap between this stage and routing, in this paper, we employ

the metric introduced in [14] for wirelength estimation,

which demonstrated that the total wirelength of the resultant

zero skew clock tree could be estimated by
√

ND, where

N and D are, respectively, the number of registers and the

farthest distance between any pair of registers. Although this

estimation correlates well with actual wirelength of the clock

tree, it always overestimates and the farthest registers in the

bin may not distribute at the corner of the bin. So we use the

following equation to estimate the total capacitance of each

cluster P with N registers. Where ci is the load capacitance

of register i, c0 is the unit wire capacitance, and D is defined

as above.

C(P) =
N

∑
i=1

ci +0.7∗ c0

√
ND (2)

2) As the partition continues, the information of the ad-

130

jacency of the registers will become more detailed, then

it is more accurate to estimate the power for a cluster of

registers with or without a gate. So we dynamically add gate

before each child or delete the gate added at the parent. That

means, if the parent is added a gate at last level, and the

registers controlled by the gate are divided into two subbins,

we estimate the power under the following cases as shown

in Fig.5: i) preserve the gate added at parent (Fig.5(b)); ii)

preserve the gate at parent and add a gate at each child

(Fig.5(c)); iii) preserve the gate at parent and add a gate at

one child (Fig.5(e) or Fig.5(f)); iv) delete the gate at parent

and add a gate at each child (Fig.5(d)); v) delete the gate at

parent and add a gate at one child (Fig.5(g) or Fig.5(h)); vi)

delete the gate at parent and do not add a gate at any child

(Fig.5(a)). Then we choose the best case and update the cells

link of the corresponding bins for next level’s partition and

placement. In order to avoid placing the gate far away from

these registers, we add a pseudo edge between each register

and the gate, the weight of it should be relatively larger

than the common net weight. As pointed out in [8][9], in

order to divide the registers with the similar activity patterns

into the same bin at the next level’s partition, we also add

pseudo edges between the registers of the local clock tree,

the weights of them are determined by the partition level and

the similarity of the registers’ activity patterns as [8][9], the

more similar of the activity patterns, the larger weight of the

pseudo edge. Fig.6 shows an example, the width of the edge

means the weight of the pseudo edge we add, the string

of numbers beside the register denote its activity pattern.

Based on the rules above, we add a gate among reg1∼reg6

since we could shut off the clock signal 4 cycles by gating.

Before next partition, we add pseudo edges between the gate

and each register with a relatively larger weight, to avoid

placing the gate far away from these registers. The pseudo

edge added between two registers is based on the activity

pattern analysis, in this example, we assume that it is useful

if there are at least 5 same idle cycles between two registers

by gating technology.

a

a

b

b

v

v

a b

a b

v

v

a

v

ba b

v

a b

v

a b

v

()a ()b ()c ()d

()e ()f ()g ()h

Fig. 5. Different gated clock tree topologies

VI. GATED CLOCK TREE CONSTRUCTION

A. Gate Removal at Bottom Level

When the placement is finished, we get the detailed

positions of the registers and the gates, also including the

local clock tree topology. For clock tree construction and

routing, we need to get the exact positions of the internal

reg1

reg2

reg5

reg601000000

reg4reg3

01000011

01100000

00000011 00100010

01100011

Fig. 6. An example of adding the pseudo edges

nodes and then we could interconnect the gate with the

registers it controls. In order to minimize the clock skew,

we use the deferred merge embedding (DME) algorithm to

achieve zero skew clock routing as [9].

Since in Capo placer, some bin may contain more than one

cell when the partition procedure (the CapoPlacer function

in Capo [15]) terminates, the exact position of these cells is

determined by next legalization (such as greedy movement

and swapping, cell orientation optimization and row ironing).

While our gate planning is integrated with partition, so at the

bottom level of some local clock tree after gate planning,

there may be more than one register in the same bin, and we

will regard them have the same location, but in fact, their

positions are different after legalization. So at the bottom-

up node merging process of the DME algorithm, we must

determine the internal node if there are more than one

register at the bottom level of the local clock tree, and then

re-evaluate the effectiveness of the gate (if exists) among

them. If the gate cannot decrease the clock power, we delete

it. We explain it by Fig.7. Reg1 and reg2 belong to the

same bin when partition terminates, and we think adding

a gate between them could decrease the clock power in gate

planning. But the detailed placement of them are different

after legalization. So we firstly determine the internal node

of reg1 and reg2 satisfying zero skew and then evaluate the

total power with the gate or not using Eqn.1.

reg2

reg1

reg1

reg2

reg3

reg4

reg1~

reg4

Fig. 7. Routing example for the bottom level

B. Gate to Buffer Transformation for Some Gates

It was pointed out in [4] that inserting too many gates

may result in a large area and increase the complexity of the

control circuit and the routing of the enable signals, at last

it could even increase the total power, so [4] reduced the

number of gates based on three cases and included a rule for

enforcing a gate insertion when the subtree capacitance of the

node reaches 20 times of the input capacitance of the gate.

But in [4], these optimizations were taken after zero skew

clock routing, while the internal nodes were determined on

131

the assumption that a gate is inserted before each node, so

removing gate makes skew dissatisfied any more.

In our algorithm, after the gate planning during placement,

we have gotten the local clock tree topology, which means

whether adding a gate for the internal node or not is

determined. After the DME algorithm, we determine the

exact location of the internal node and then interconnect

it with the gate according to the tree topology. Since

adding a gate may not be effective after including the

detailed interconnect capacitance, and sometimes it may

even increase the total power. But if we delete these gates

at this stage, it will deteriorate the clock skew or need

re-construct the clock tree. In order to satisfy the clock skew

and decrease the clock tree power, we treat these gates as

common buffers and do not mask off the clock. Obviously,

the control signal will be removed if a gate is regarded as a

buffer. Using buffer and removing control signals contribute

to further reduction of the total capacitance and power.

VII. EXPERIMENTAL RESULTS

The proposed algorithm and the design flow have been

implemented with C++ based on Capo 9.3 [15], and the

experiments are performed on ISCAS89 benchmark circuits

(since they contain the registers information which is needed

in our experiment) with specified timing constraints and

activity profile [9]. Other parameters used in our experiment

are listed as follows: r0 = 0.207Ω/um, c0 = 0.015 f F/um, the

gate’s input capacitance Cg, output resistance rg and intrinsic

delay τg are 10.0 f F , 80Ω and 25 f s, respectively. Consider-

ing the high connection of the register with other cells, the

input capacitance of the register is assumed relatively large,

Creg = 100.0 f F . In order to show the effectiveness of our

algorithm, we compare it with: (a) conventional placement

(as the initial Capo) + gated clock tree construction in [9];

(b) the design flow introduced in [9]. The comparison results

are shown in Table I.

First, we compare the results of clock tree. Since (a) does

not especially care the registers during placement, so at last

the registers loosely distribute on the chip. While in our

gate planning during placement, we cluster the registers,

and especially pull the registers with the similar activity

pattern close to each other. That is why our algorithm reduces

the clock tree wirelength by more than 22%. [9] constructs

the clock tree after placement for all of the registers, that

means it chooses a pair of nodes to merge at every iteration

until there is only one node (the clock root) left. While

our algorithm has formed many local clock tree topologies

during gate planning, and in clock routing, we construct the

clock tree according to the topology, so clock wirelength

increases compared to [9], since our clock tree construction is

somewhat only local optimization to reduce total wirelength.

For clock tree power, we insert the gate logic only when it

really decreases the power for a cluster of registers, and as

the partition goes, we dynamically update (insert or delete

gate) the gated clock tree topology configured at last level.

At the post-processing after placement, we firstly delete the

harmful gates after including the interconnect capacitance.

Secondly, we treat some gates as general buffers and remove

their control signal after gated clock tree construction. So the

position of the gate logics gotten by our algorithm is more

optimal and effective than the gated clock tree construction

in [6] and [9]. That is why we achieve smaller clock tree

power using much fewer gate logics.

Second, we compare the results of signal nets. The main

difference between (a) and (b)/our method is that: the gated

clock tree of (a) is constructed after placement, so the gate

logics inserted during tree construction are not considered

during placement. In other words, the position of the gate

logics is ideal, in fact we can not place many of them in their

optimal placement since they overlap with the already placed

cells. (b) solves this problem by feeding the gate logics and

gated clock network back to the previous design after gated

clock tree construction, and then performs an incremental

placement to remove these overlaps. So HPWL and signal

nets power increase when comparing our algorithm and (b)

with (a). We believe it is fair to compare our algorithm

with (b) since both of them consider the gate logics in

placement. Since (b) inserts more gate logics than our

method, adding these gate logics to the previous design

will inevitably move other cells positions during incremental

placement, so it introduces large overhead of signal nets

wirelength and power. While our design flow integrates gate

insertion and previous placement in a seamless manner, we

dynamically insert gate for some cluster of registers after

several partitions, and then add it to the bin’s cells link for the

next level’s partition, so the impact on the previous placement

is minimal. As we expected, we reduce HPWL and signal

nets power by 6.90% and 0.26% compared with [9]. HPWL

reduction leaves more space for routing. Although the results

of (a) are derived without considering the overlap removal

of the gate logics with the other cells, it is still meaningful

to compare the total power (including the clock tree power

and signal nets power). Though our algorithm increases the

signal nets power against (a), the power saved on the clock

tree is much larger than the power increased on signal nets,

so it is worth implementing gate planning during placement.

While comparing our method with (b), we observe that it

still reduces the total power by more than 13%, the main

contributor of the power reduction is the clock tree power.

That proves the method of gated clock tree construction in

[6] and [9] will result in redundant gate logics, and at last

some gate logics even increase the power inversely.

For run time, (b) needs two stages of placement: initial

placement during which registers are clustered and pulled

closely according to their activity patterns; incremental

placement after adding the clock network and gate informa-

tion to the previous netlist. During incremental placement,

it still needs top-bottom level partitions to optimize HPWL.

It really reduces HPWL comparing to some ECO method,

but the increase of the run time cannot be ignored. Our

algorithm integrates gate planning and top-bottom partition

in a seamless manner, when the placement finishes, we also

get the clock tree topology and the position of the inserted

132

TABLE I

COMPARISON RESULTS OF OUR ALGORITHM AGAINST PREVIOUS WORK (WL=WIRELENGTH, PW=POWER, THE UNITS FOR WIRELENGTH AND POWER

ARE UM AND W, RESPECTIVELY. ‘+’ MEANS INCREASE AND ‘-’ MEANS DECREASE.)

Circuit Method Clock WL Clock PW #Gate Delay(ns) HPWL Signal PW Total PW Run Time(sec)
(a) 25278.6 2.74E-4 6 0.261 1.81E6 0.003205 0.003479 18.26
(b) 9168.63 1.94E-4 4 0.105 1.90E6 0.003296 0.003490 42.46

s1488 our 11161.9 2.18E-4 2 0.114 1.86E6 0.003210 0.003428 21.48
our Vs (a) -55.84% -20.44% -66.67% -56.32% +2.76% +0.16% -1.47% +17.63%
our Vs (b) +21.74% +12.37% -50.00% +8.57% -2.11% -2.61% -1.78% -49.41%

(a) 2379250 0.014732 218 102.1 2.16E7 0.019801 0.034533 438.32
(b) 1873020 0.012857 133 82.6 2.71E7 0.021783 0.034640 1055.27

s15850 our 2026050 0.007619 90 57.0 2.52E7 0.021770 0.029389 492.92
our Vs (a) -14.85% -48.28% -58.72% -44.17% +16.67% +9.94% -14.90% +12.46%
our Vs (b) +8.17% -40.74% -32.33% -30.99% -7.01% -0.06% -15.16% -53.29%

(a) 6518700 0.018858 327 823.5 4.12E7 0.017321 0.036179 974.01
(b) 5456660 0.017455 243 646.5 5.21E7 0.018977 0.036432 1914.44

s35932 our 5740320 0.010544 140 623.2 4.71E7 0.019207 0.029751 913.38
our Vs (a) -11.94% -44.09% -57.19% -24.32% +14.32% +10.89% -17.77% -6.22%
our Vs (b) +5.20% -39.59% -42.39% -3.60% -9.60% +1.21% -18.34% -52.29%

(a) 6687290 0.067533 315 749.5 4.74E7 0.071576 0.139109 1004.35
(b) 5449440 0.061749 229 627.2 5.90E7 0.078032 0.139781 2574.74

s38417 our 5663830 0.037342 128 683.3 5.57E7 0.079739 0.117081 1220.87
our Vs (a) -15.30% -44.71% -59.37% -8.83% +17.51% +11.40% -15.84% +21.56%
our Vs (b) +3.93% -39.53% -44.10% +8.21% -5.59% +2.19% -16.24% -52.58%

(a) 6025670 0.031999 289 781.0 5.81E7 0.040371 0.072370 1229.65
(b) 4994980 0.029136 225 638.3 7.26E7 0.045056 0.074192 2227.52

s38584 our 5280720 0.017132 121 436.3 6.52E7 0.044132 0.061264 1122.63
our Vs (a) -12.36% -46.46% -58.13% -44.14% +12.22% +9.32% -15.35% -8.70%
our Vs (b) +5.72% -41.20% -46.22% -31.65% -10.19% -2.05% -17.43% -49.60%

Average our Vs (a) -22.06% -40.80% -60.02% -35.56% +12.70% +8.34% -13.07% +7.35%
our Vs (b) +8.95% -29.74% -43.01% -9.75% -6.90% -0.26% -13.79% -51.43%

gates. So the reduction of the run time is up to 50% on

average comparing with (b). On the other hand, the increase

for the run time of our algorithm is only within 8% over (a),

which demonstrates the efficiency of our gate planning.

VIII. CONCLUSION

In this paper, we propose a new design flow for gated

clock tree planning and construction. In order to decrease

the impact on signal nets and the design closure of previous

methods, we firstly evaluate the effectiveness of gate inser-

tion for a cluster of registers, and then dynamically insert a

gate for them if it could reduce the power. We achieve gate

planning when placement finishes, and during clock routing,

we firstly remove the useless gate to save area and power.

After determining the exact locations of the internal nodes

and the detailed interconnect information, we regard some

gates as only common buffers and remove their connection

of the control signal, to avoid re-constructing the clock tree

and increasing the total power inversely. Experimental results

show the effectiveness and efficiency of our method.

IX. ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China (NSFC) 60776026.

REFERENCES

[1] Chunhong Chen, Changjun Kang, Majid Sarrafzadeh, “Activity-
sensitive clock tree construction for low power”, in Proc. ISLPED,
pp. 279-282, 2002.

[2] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, M. Sarrafzadeh,
“Activity-driven clock design”, IEEE Transactions on CAD/ICAS,
Vol. 20, No. 6, pp. 705-714, June 2001.

[3] Jaewon Oh and Massoud Pedram, “Power reduction in microprocessor
chips by gated clock routing”, in Proc. ASP-DAC, pp. 313-318, 1998.

[4] Jaewon Oh and Massoud Pedram, “Gated clock routing for low-power
microprocessor design”, IEEE Trans. on CAD/ICAS, Vol. 20, No. 6,
pp. 715-722, June 2001.

[5] Monica Donno, Alessandro Ivadldi, Luca Benini, Enrico Macii,
“Clock-tree power optimization based on RTL clock-gating”, in Proc.
Design Automation Conf., pp. 622-627, 2003.

[6] Monica Donno, Enrico Macii, Luca Mazzoni, “Power-aware clock tree
planning”, in Proc. ISPD, pp. 138-147, 2004.

[7] Qi Wang, Sumit Roy, “Power minimization by clock root gating”, in
Proc. ASP-DAC, pp. 249-254, 2003.

[8] Weixiang Shen, Yici Cai, Xianlong Hong, Jiang Hu, “Activity-aware
registers placement for low power gated clock tree construction”, in
Proc. ISVLSI, pp. 383-388, 2007.

[9] Weixiang Shen, Yici Cai, Xianlong Hong, Jiang Hu, “Activity and
register placement aware gated clock network design”, in Proc. ISPD,
pp. 182-189, 2008.

[10] Yongseok Cheon, Pei-Hsin Ho, Andrew B. Kahng, et al, “Power-Aware
Placement”, in Proc. Design Automation Conf., pp. 795-800, 2005.

[11] Yongqiang Lu, C.N. Sze, Xianlong Hong, et al, “Navigating regis-
ters in placement for clock network minimization”, in Proc. Desgin
Automation Conf., pp. 176-181, 2005.

[12] Yanfeng Wang, Qiang Zhou, Xianlong Hong, Yici Cai, “Clock-tree
aware placement based on dynamic clock-tree building”, in Proc.
ISCAS, pp. 2040-2043, 2007.

[13] Ting Hai Chao, Yu Chin Hsu, Jan Ming Ho, et al, “Zero skew routing
with minimum wirelength”, IEEE Transactions on Circuites & System
II-Analog & Digital Signal Process, 39(11): 799-814, 1992.

[14] M. Edahiro, “A clustering-based optimization algorithm in zero skew
routing”, in Proc. Design Automation Conf., pp. 612-616, 1993.

[15] http://vlsicad.eecs.umich.edu/BK/PDtools/.

133

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

