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   Abstract - In this paper, we analyze the impact of network
contention on the application mapping for tile-based Network-
on-Chip (NoC) architectures. Our main theoretical contribu-
tion consists of an integer linear programming (ILP) formula-
tion of the contention-aware application mapping problem
which aims at minimizing the inter-tile network contention. To
solve the scalability problem caused by ILP formulation, we
propose a linear programming (LP) approach followed by an
mapping heuristic. Taken together, they provide near-optimal
solutions while reducing the runtime significantly. Experimen-
tal results show that, compared to other existing mapping
approaches based on communication energy minimization, our
contention-aware mapping technique achieves a significant
decrease in packet latency (and implicitly, a throughput
increase) with a negligible communication energy overhead.

I. INTRODUCTION

Due to increasing systems complexity and design productiv-
ity gap, the design of future multiprocessor systems-on-chip
(MPSoCs) faces several challenges. From this perspective,
Networks-on-Chip (NoCs) are a promising interconnect solu-
tion for complex chips consisting of many heterogeneous intel-
lectual property (IP) cores. In NoC-based MPSoCs, the global
wires are replaced by a network of shared links and multiple
routers exchanging data packets simultaneously. Ideally, the
traffic congestion in such a network should be avoided in order
to maximize the system performance. In practice, however, it is
difficult to completely eliminate the network contention which
significantly degrades the system performance, particularly
latency and throughput.

Previous work attempts to minimize the communication
energy consumption [5]-[7][10]. However, the communication
energy consumption is a good indicator of latency only if there
is no congestion in the network. Indeed, in the absence of con-
gestion, packets are injected/transmitted through the network as
soon as they are generated and then latency can be estimated by
counting the number of hops from source to destination. How-
ever, unlike previous work, we first analyze the major factors
that produce network contention, and then propose a conten-
tion-aware mapping algorithm with the goal of minimizing the
end-to-end packet latency. While NoCs can be designed with
several choices in mind, in this paper, we limit our consider-
ations to 2D mesh networks and wormhole XY routing. How-
ever, we note that our idea is applicable to other network
topologies (e.g., ring, torus, 3D-grid) with deterministic routing
schemes.

The problem of mapping a set of given IP cores to the NoC
tiles is illustrated in Fig. 1. We assume that the largest applica-
tion has been divided into a graph of concurrent tasks and then
assigned and scheduled onto a set of available cores1 [1]. The
application graph is described by G = (C, E) as shown in
Fig. 1(a). Each core ci C represents a cluster of tasks, where
each edge ei,j E represents the communication between the
cores ci and cj. Note that the tasks belonging to the same core
are mapped onto the same tile of the NoC. Fig. 1(b) shows the
general design of a 2D tile-based NoC. Inside any tile, each
core is attached to a router via the network interface which
allows for exchanging packets with other cores. Each router is
connected to five ports: four neighboring ports (east, south,
west, and north), plus a local port connecting the core. The
communication between the routers is referred to as “inter-tile”
communication (e.g., communication through links li where
i = 1 ~ 6 in Fig. 1(b)), while the local communication between
the core and the router is referred to as “intra-tile” communica-
tion. For reasons that will become clear later, our work in this

1. Here, we assume that the application partitioning process is done at core-
level. By “core”, we mean any IP such as general-purpose processors or
digital signal processors (DSPs). In other words, the programmability and
other software aspects (e.g., task clustering, scheduling) for IP design are
beyond the scope of this work.
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Fig. 1. (a) Application characteristic G = (C, E) (b) target tile-based 3 × 3
NoC (c) source-based contention (d) destination-based contention (e)
path-based contention.
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paper focuses on developing a framework which is able to min-
imize the network contention that occurs during the inter-tile
communication among various cores.

We clarify the network contention due to the inter-tile data
communication into three types: source-based, destination-
based, and path-based contention. The source-based contention
(see Fig. 1(c)) occurs when two traffic flows originating from
the same source contend for the same links. The destination-
based contention (see Fig. 1(d)) occurs when two traffic flows
which have the same destination contend for the same links.
Finally, Fig. 1(e) shows the path-based contention when two
data flows which neither come from the same source, nor go
towards the same destination contend for the same links some-
where in the network.

In this paper, we first evaluate the impact of these three types
of contention on average packet latency; then present an integer
linear programming-based (ILP-based) contention-aware map-
ping technique for minimizing the network contention and
communication energy consumption. We show that by mitigat-
ing a major source of contention, the end-to-end average packet
latency can be significantly decreased.

The paper is organized as follows: Section II reviews the
related work. The notations of application characteristics and a
motivational example are described in Section III. Section IV
presents the contention-aware mapping problem formulation
while Section V gives the solutions via an ILP approach and LP
approximation. Experimental results are shown in Section VI,
while Section VII summarizes our main contribution and out-
lines some future work.

II. RELATED WORK AND NOVEL CONTRIBUTION

Bender proposes a mixed integer linear programming (MILP)
model for task mapping problem on heterogeneous multiproces-
sor systems [2], where all specified execution deadlines are met.
In terms of mapping IP cores onto a mesh-based NoC platform,
Hu et al. propose a branch and bound algorithm that minimizes
the communication energy consumption with the constraints of
performance handled via bandwidth reservation [5]. Murali et
al. focus on minimizing the communication delay by exploiting
the possibility of splitting traffic among multiple paths [3]. Lei
et al. present a two-step genetic algorithm for task graph map-
ping with the objective of minimizing the overall execution
time [9]. Ascia et al. apply the evolutionary computing tech-
niques to obtain the Pareto mappings that optimize performance
and power consumption [4]. Rhee et al. provide a MILP formu-
lation for mapping cores onto NoC while considering the choice
of core placements, switches for each core, and network inter-
faces for communication flows [6].  Hansson et al. present a
scheme which incorporates mapping, routing and slot allocation
such that the network size that needed to meet the application
constraints is minimized [15].

Compared to previous work, our focus in this paper is on the
network contention problem; this highly affects the latency,
throughput, and communication energy consumption. We
show that, by mitigating the network contention, the packet
latency can be significantly reduced; this means that the net-
work can support more traffic which directly translates into sig-

nificant throughput improvements. Furthermore, our mapping
solution can be used to improve the efficiency of congestion-
control techniques for best-effort communication [20][21]. Last
but not least, this idea can be applied to other NoC synthesis
problems, such as topology selection, or path selection [8][10]
and some mapping/scheduling heuristics on parallel systems
[18][19] to achieve further packet latency reduction and
throughput improvements.

III. PRELIMINARIES

A.  Application Characteristics
To better explain the application characteristics, we need to

first introduce the following definitions:
Definition 1: A Logical Application Communication Graph
(LACG) = (C, E) is a weighted directed graph (see Fig. 2(a)).
Each vertex ci C represents a core which will be allocated to
one specific tile (i.e., processing resource) later. Each directed
edge ei,j = (ci, cj) E represents the communication from core
ci to cj. The weight w(ei,j) or  stands for the communica-
tion volume (bits) from core ci to cj within each period, while
bw(ei,j) or  stands for the required bandwidth for the
communication from ci to cj.
Definition 2: A Physical Application Communication Graph
(PACG) = (R, P) is a directed graph (see Fig. 2(b)), where each
vertex r = r(ci) R represents a tile (resource) which gets
assigned a cluster of tasks, ci, and each directed edge pi,j repre-
sents the routing path from tile ri to tile rj. We denote L(pi,j) or
L(ri,rj) the set of links of the inter-tile communication that make
up the path pi,j from ri to rj where |L(pi,j)| is the size of that set,
i.e., the number of links for making up pi,j.
Definition 3: A mapping function map( ) maps the cores in the
LACG to the tiles in the NoC; under a given routing mecha-
nism, this results in the PACG .

Fig. 2 plots the LACG and the PACG for the application in
Fig. 1, respectively. As seen, the PACG shown in Fig. 2(b)
shows the mapping result (see Fig. 1(b)) of the LACG under the
deterministic XY routing: cores c1, c2, c3, and c4 are mapped
onto tiles r4, r5, r6, and r3, respectively, and L(p4,5) = {l1},
L(p4,6) = {l1, l3}, L(p5,3) = {l3, l6}, L(p3,6) = {l5}, and L(p5,6) =
{l3}. Note that source-based contention occurs in this case
since L(p4,5) L(p4,6) = {l1} , while the destination-based
contention occurs since L(p4,6) L(p5,6) = {l3} . And the
path-based contention occurs since L(p4,6) L(p5,3) = {l3} .

B.  Motivational Example
To illustrate the impact of the source-based, destination-

based, and path-based network contention on the packet
latency, we consider the following experiment, i.e., several

Fig. 2. Logical and physical application communication graph.
(a)                                                     (b)
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mapping configurations (see Fig. 3) in a 4 × 4 mesh NoC: with-
out/with only source-based contention (cases 1 vs. 2), without/
with only destination-based contention (cases 3 vs. 4), and
without/with only path-based contention (cases 5 vs. 6). We
apply the XY routing and wormhole switching for data trans-
mission with 5 flits per packet. The communication rate (or the
packet injection rate from the source core) of transmissions in
each configuration is set to be the same. For fixed injection
rates in each configuration, we run 100 different experiments
and calculate the corresponding average packet latency and
throughput; the latency is calculated from the time when pack-
ets are generated from sources to the time when the packets
reach the destination. The results are plotted in Fig. 3 with the
x-axis showing the total injection rate of all transmissions in
that configuration and the y-axis showing the average packet
latency at the corresponding injection rate.

As seen in Fig. 3(a), for source-based contention (i.e., cases 1
and 2), the throughput is the same. This makes sense since
every generated packet needs to pass through the link from the
source core to its router; therefore, the system performance is
basically limited by the injection rate of the source core.

For destination-based contention (i.e., cases 3 and 4 in
Fig. 3(b)), the system throughput has about 2% improvement.
We observe that the bottleneck of these two configurations (i.e.,
cases 3 and 4) is actually due to the link between the router and
its corresponding destination core for which all packets con-
tend. Obviously, such intra-tile contention can  be mitigated via
careful hardware/software codesign (i.e., clustering process),
but can not be solved via mapping.

As seen in Fig. 3(c), there is a dramatic throughput difference
when comparing cases 5 and 6 (without/with path-based conten-

tion, respectively) as 118% throughput improvement is observed
(i.e., the throughput improves from 0.16 to 0.35 without path-
based contention in the network). Moreover, we observe that the
frequency of occurrence of the path-based contention is much
higher compared to the source-based and destination-based con-
tention as the system size scales up. By doing several experi-
ments involving many runs, we observed that the ratio of path-
based to source-based contention and the ratio of path-based to
destination-based contention increase linearly with the network
size (i.e., for 4 × 4, 6 × 6, 8 × 8, and 10 × 10, the ratios are 1.2,
2.5, 4.0, 5.6, respectively). Therefore, in the remaining of this
paper, we focus on minimizing the path-based contention since
this has the most significant impact on the packet latency and
can be mitigated through the mapping process.

IV. CONTENTION-AWARE MAPPING

A.  Problem Formulation
Given the application characteristics and the NoC architec-

ture, our objective is to map the IP cores onto the NoC tiles
such that the sum of the weighted communication distance and
path-based network contention are minimized under a given
routing mechanism. Of note, minimizing the weighted commu-
nication distance directly contributes to minimizing the com-
munication energy consumption as well. More formally:

Given the LACG of the application, the routing mechanism,
and the NoC architecture

Find a mapping function map( ) from LACG = (C, E) to
PACG = (R, P) which minimizes:

min{  (1)

  +  } for i  k and j  l

such that:
    (2)

    (3)

(4)

       where  if  
and Bk is the capacity for link lk

Since the communication distance and path-based contention
count have different units, the normalization of these two met-
rics is approximated by assuming a worst-case scenario. More
precisely,  β is set to ( ) × ( ) for an
N × N NoC platform, where the second factor, , is
the longest distance in the network. γ is set to the average num-
ber of path-based contentions of reasonable random mapping
configurations. α is a weighting coefficient meant to balance
the communication distance and the contention count. More
precisely, we set α as the ratio of “the number of cores” to “the
number of tiles + 1” (i.e., α = |C|/(|R| + 1)). If the number of
cores is much smaller than the number of tiles (i.e., α is small),
in order to avoid a higher communication distance, the first
term in (1) has a higher weight. Equations (2) and (3) basically
mean that each core should be mapped to exactly one tile and
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no tile can host more than one core. Finally, equation (4) guar-
antees that the load of each link will not exceed its bandwidth.

V. ILP-BASED APPROACH

This section presents the ILP formulation of the contention-
aware mapping problem. To solve this problem for large sys-
tem sizes, we propose a LP approximation followed by an map-
ping heuristic as presented later in this section.

A.  Parameters and Variables
The given parameters are as follows:

•  stands for the Manhattan Distance from tile rs to rt.
• The NoC architecture consists of |K| uni-directional segment

links with IDs {l1, l2, ..., l|K|}.
• For each link lk, where k = 1~|K|, represents whether or

not this link lk is part of the routing path from tile rs to tile rt,
i.e., 

                                            .
Of note, the above parameters are known under a given NoC

architecture with a fixed routing mechanism.
The variables of interest are as follows:

•  shows the mapping result and can only take values in
{0, 1}. More precisely, this variable is set to 1, if the core ci is
mapped onto tile rs.

•  shows the communication path result and can only be
{0, 1}. This variable is set to 1, if the communication path is
made up from tiles rs to rt, where ci  and cj are mapped onto.

• shows the path-based contention and can
only be {0, 1}. This variable is set to 1, while the cores ci, cj,
cm, and cn are mapped onto tiles rs, rt, rp, and rq and at the
same time, the communication path from tile rs to tile rt shares
the link lk with the path from tile rp to tile rq.

B.  Objective Function
Our objective is to minimize the weighted communication

distance and the path-based network contentions as well, i.e.,

{  

} (5)

C.  Constraints
The following constraints are used:

• One-to-one core-to-tile mapping: Each tile cannot accept
more than one core (see (6)). Each core should be mapped
onto a specific tile (see (7)). Equation (8) makes sure that
variables  are set to be either 0 or 1.

(6)

(7)

(8)
• Communication path: Any two communicating cores that

belong to two different tiles make up a path. Therefore,

(9)

To transform (9) into an ILP formulation, we impose the fol-
lowing constraints:

(10)

(11)

• Bandwidth constraint on each link: For each k, all possible
paths through link lk cannot exceed its bandwidth Bk.

(12)

• Path-based network contention count: This type of contention
occurs when two paths with different sources or different des-
tinations contend for the same link. Therefore,

 if (13)

To transform (13) into an ILP formulation, we impose the fol-
lowing constraints:

(14)

(15)
Equations (14) and (15) determine whether or not the path-

based contention occurs; if so, this variable is set to be 1.

D.  LP Approximation and Proposed Mapping Heuristic
Here, we relax the ILP problem (all variables must be inte-

gers known as the NP-complete problem [11]) to a (polyno-
mial-time) linear programming (LP) problem and then use an
heuristic to approximate the real values to integers for the criti-
cal variables. As such, we can deal with the mapping problem
for larger NoC systems.
• LP approximation - Take out the integer constraints for vari-

ables , , .
• Mapping heuristic - Based on the results of important vari-

ables (i.e.,  and ) generated by LP approximation, the
steps of the heuristic are summarized in Fig. 4.
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Step 1: Start from the core ci with the largest  value in
LACG and map the core ci onto the tile rs. If more than one
core has the same  value, then select the core ci with the
largest (  + ) value.

Step 2: Select an unmapped core cj in LACG with the larg-
est communication to the mapped cores.

Step 3: Find a tile rt for core cj minimizing the communi-
cation through the MD metric; if there is more than one tile,
select the tile with largest value. If the value is the same,
select the tile with largest (  + ) value.

Step 4: Repeat Step 3 until all cores in the LACG get
assigned to a tile.
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Table 1: The accuracy and runtime comparisons between ILP method and LP approximation with mapping heuristic experimenting under different NoC sizes.

Table 1 compares the solution and runtime of the ILP
approach against the LP approximation followed by the map-
ping heuristic2. The results come from a series of task graphs
generated using the TGFF package [13] where the communica-
tion value between edges in each task graph varies between 5 to
20. To solve the ILP and LP problem in Section V, we utilize
the lp-solve optimizer [12].

We consider nine cases in Table 1: the second column shows
the size of the NoC, while the third and the fourth columns rep-
resent the number of cores and edges, respectively in each case.
The fifth through the eighth columns in Table 1 report the map-
ping results (see Equation (1)) and their runtime comparing the
ILP model against the LP approximation (i.e., the LP-based
method followed by the heuristic in Fig. 4). The last column
gives the accuracy comparison between the heuristic value and
the value of ILP approach obtained by lp-solve. Of note, for the
cases marked with ‘*’ (see “ILP solution” column), the solu-
tions represent the optimal solution evaluated by exhaustive
search. For cases marked with ‘#’ (see “CPU time (ILP)” col-
umn), we use a timeout of 5 hours and accept the best solution
found by then.

From Table 1, we can see that the LP approximation followed
by the heuristic is quite efficient because it takes less than 3
seconds to give a nearly optimal value (about 3.32% away from
the results of the ILP method, on average).

VI. EXPERIMENTAL RESULTS

A.  Experiments using Synthetic Applications
We first evaluate the contention impact on application map-

ping for a 4 × 4 NoC platform under two different scenarios:
energy-aware mapping [5] and our contention-aware mapping.
To do a fair comparison, both scenarios are formulated in ILP
format with the timeout set to 2 hours (for the energy-aware
mapping in ILP format, we set α to 0 and take off the con-
strains in Equations (13)-(15)). Several sets of synthetic appli-
cations are generated using the TGFF package [13]. The
number of cores used in this experiment ranges from 12 to 16,
while the number of edges are set from 15 to 50 (organized in 5

categories as shown in Table 2). For each category, we generate
10 random task graphs and the corresponding results (i.e., com-
munication energy consumption, system throughput) are mea-
sured by a C++ simulator using the bit energy model in [17]
and are compared to the results of energy-aware mapping
approach.

Table 2: Communication energy and throughput comparison between 
energy-aware in [5] and contention-aware mapping.

As it can be seen in Table 2, under the contention-aware map-
ping, the communication energy consumption is up to 11%3

larger compared to the energy-aware mapping solution; how-
ever, the system throughput can be improved by 19.22%, on
average. That is to say, the contention-aware mapping effec-
tively reduces the path-based contention with negligible energy
loss while the reduction of the path-based contention results in
great system throughput improvements.

B.  Experiments using Real Applications
To evaluate the potential of our contention-aware idea for

real-time examples, we apply it to several benchmarks, such as
examples with high degree of parallelism (Parallel-1 and Par-
allel-2) [14], LU Decomposition [14], and MPEG4 decoder [7].
In Table 3, the first three benchmarks are mapped onto a 3 × 3
NoC platform, while the last is onto a 4 × 4 NoC platform. The
first through the fifth columns in Table 3 show, respectively,
the name of the benchmark, the number of cores and edges in
the LACG, the communication energy loss and the throughput
savings of our contention-aware solution compared to the
energy-aware solution [5].

As seen in Table 3, our contention-aware solution can
achieve 17.4% throughput savings, on average, with the com-
munication energy loss within 9% compared to energy-aware
solution in [5].

case NoC size # of 
cores

# of 
edges

mapping solution via 
(ILP)

CPU time
(ILP)

mapping solution via 
(LP approximation) 

CPU time 
(LP approximation) accuracy

1 7 10 0.0625 * 2.4 mins 0.0625 0.24 + 0.42 secs 0%

2 3 × 3 8 12 0.1071 * 2.6 mins 0.1071 0.30 + 0.33 secs 0%

3 9 14 0.8714 * 3.41 mins 0.905 0.28 + 0.56 secs 3.86%

4 12 20 0.144 * 2 hours 15 mins 0.151 0.34 + 0.37 secs 4.86%

5 4 × 4 14 22 0.250 * 2 hours 40 mins 0.259 0.40 + 0.51 secs 3.47%

6 16 24 0.335 * 1 hour 48 mins 0.335 0.58 + 0.46 secs 0%

7 18 20 0.061 5 hours # 0.063 0.91 + 0.95 secs 3.28%

8 5 × 5 21 30 0.855 5 hours # 0.863 0.90 + 1.52 secs 0.93%

9 24 40 3.707 5 hours # 3.875 0.82 + 1.77 secs 4.5%

2. The mapping heuristic is implemented using the C programming lan-
guage on an Intel Pentium 4 CPU (2.6GHz with 768 MB memory).

# of edges 15 20 30 40 50

comm. energy overhead 1% 2% 7% 11% 8%

throughput improvement 18.5% 18.2% 24.1% 21.8% 13.5%

3. We note that this is only the communication energy part. If the communi-
cation energy consumption is around 20% of the total energy consumption
(as shown in [16]), we have only 2.2% energy loss.
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Table 3: Communication energy overhead and throughput improvement of 
our contention-aware solution compared to the energy-aware solution [5].

Fig. 5 plots the LACG of the Parallel-1 benchmark (see
Fig. 5(a)), the mapping results under two scenarios: energy-
aware mapping [5] using ILP approach and our contention-
aware mapping approach (see Fig. 5(b) and (c), respectively),
and the average packet latency comparison for different injec-
tion rates in these two scenarios (see Fig. 5(d)). The existing
path-based contentions are highlighted in the mapping results.
As seen the energy-aware mapping result in Fig. 5(b), there are
two pairs of path-based contention in the network, while no
path-based contention occurs when using the contention-aware
approach. We observe that for such path-based contention, the
average latency goes up dramatically after the packet injection
rate exceeds a critical point (i.e. the network gets into the con-
gestion mode, see Fig. 5(d)). Also, when contention-aware con-
straints are taken into consideration during the mapping
process, the throughput for Parallel-1 moves from 0.2173
(packet/cycle) to 0.254 which represents about 16.9% through-
put improvement.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the issue of core-tile map-
ping for NoC-based platforms while considering the network
contention minimization. We have reported our results obtained
from many experiments involving both synthetic and real
benchmarks. The results show significant reduction of packet
latency (and implicitly, throughput improvements) by reducing
the network contention.

Although in this paper we focus on 2-D mesh NoCs with XY
routing, our idea can be further adapted to other architectures
implementing under different network topologies with deter-
ministic routing schemes. Moreover, the idea of minimizing the
network contention is not limited to core-tile mapping as pre-

sented. Instead, it can be applied to other NoC synthesis prob-
lems and the mapping/scheduling heuristics on parallel systems
to achieve further system throughput improvements.
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benchmarks cores edges comm. energy 
overhead

throughput 
improvement

Parallel-1 9 13 0% 16.9%

Parallel-2 9 15 8.8% 20.4%

LU Decomposition 9 11 6.5% 14.1%

MPEG4 Decoder 12 26 3.6% 18.2%
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Fig. 5. (a) Parallel-1 benchmark (b)(c) mapping results of the energy-
aware approach [5] and our contention-aware method (d) average packet
latency and throughput comparison under these two mapping methods.
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