
  

  

Abstract— Many methods for analog circuit sizing are 
available as commercial, in-house and academic tools.  They are 
based on continuous optimization, e.g., of transistor geometries, 
although the subsequent layout step requires values on a pre-
defined grid. In addition, sizing of transistors for bipolar and 
RF circuits frequently necessitates the use of multiples of 
predefined values for the design parameters. This paper 
presents a novel method for solving this type of discrete 
optimization problem. An iterative approach is presented, 
which is based on pseudo-gradients and a randomized 
calculation of search regions and steps. Experimental 
comparisons with simulated annealing and a continuous sizing 
approach with subsequent discretization clearly show the  
effectivity and efficiency of the presented method.   

I. INTRODUCTION 

Typical analog systems contain hundreds of analog circuit 

blocks with up to about 100 transistors each [14]. Due to 

their high complexity, designing such systems still requires a 

lot of hand design effort. One important design step is sizing 

analog circuits, such that performance specifications and the 

yield requirements are fulfilled. To automate this step, multi-

objective optimization approaches have been developed and 

commercialized. The published approaches to analog sizing 

are based on optimization on a continuous-valued parameter 

domain [14][2][7][10][1]. 

In practice however, some design parameter domains are 

non-uniformly discretized. Typical examples can be given as 

follows: 

• In analog layout, the geometric sizes of subcircuit 

transistors must have rational proportions, to enable a 

manufacturing of transistors as folded transistors or 

comparable structures, which allow a reduction of 

mismatch and noise. Accordingly the geometric sizes of 

the transistors must be on a pre-defined grid. 

• Despite the existence of geometrically scalable models 

like the HICUM model [15], bipolar design is frequently 

done with non-scalable models. Circuit sizing then 

requires the selection of transistors from a library of basic 

transistors and the determination of the number of 

parallelized transistors, which can be represented by a 

integer multiplier.   

• In deep submicron design, transistors are used, whose 

widths are scaled in discrete steps, e.g., FinFETs [6].    

So analog circuit sizing intrinsically is a nonlinear 

optimization problem with non-uniformly discretized 

parameters. It seems that this important analog design 

problem has not been tackled in literature until now. So far, 

analog sizing is considered a continuous optimization 

problem. The real-valued solutions are simply rounded to the 

nearest available value, e.g., before entering the layout 

design [4]. It is obvious that this approach is arbitrary and 

produces non-optimal solutions. The results in Section IV.A 

demonstrate that the rounding can even turn into a violation 

of the previously satisfied specifications and constraints. 

In this paper, a novel approach is presented that treats 

analog circuit sizing as an optimization on non-uniformly 

discretized parameter domains. As the problem is discrete, it 

could be formulated as a nonlinear integer program (NLIP) 

for which a large number of approaches exist, mainly from 

the field of combinatorial optimization [11][8] and 

evolutionary algorithms (e.g., [9]). For instance, in analog 

synthesis by use of symbolic analyses a branch-and-bound 

method has been used in the past [12][13]. However, if a 

NLIP were used we would turn physical values into uniform 

integer values and lose the information about the distance 

between two parameter values in physical units. On the 

contrary, the presented approach utilizes these distances in 

pseudo-gradients. These pseudo-gradients are used to mirror 

the search-direction and step length calculation of continuous 

gradient-based optimization on a mixed deterministic 

randomized search algorithm. 

The paper is organized as follows. In Section II, the 

optimization problem is formulated. The iterative method for 

calculating a new parameter set is presented in Section III. In 

Section IV, experimental results are shown. Section V 

concludes the paper.  

II. PROBLEM FORMULATION 

A. Example 

The LNA (Low Noise Amplifier) given in Fig. 1 is a 

typical example for illustrating analog circuit sizing. Two 

specifications, the forward voltage gain 21S  and the 

bandwidth BW  of this LNA, are given: 

 15dBS21 ≥   and GHz5.1≥BW . 
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Without loss of generality, we will assume in the 

following that circuit sizing aims at fulfilling these 

specifications and that an sizing process stops at once when 

all specifications have been met. Nevertheless, the algorithm 

presented in this paper can be applied to other problem 

formulations. 

In order to fulfill the LNA’s specifications, the channel 

geometries of the transistors 321 M ,M ,M  are tuned. The 

resulting design parameters are the numbers of parallel 

transistors, 

{ }100,,2,1 , , 321 K∈mmm  

which refers to channel widths on a uniform grid, and the 

non- uniformly discretized lengths, 

{ }nm560 nm;350 nm;240 nm;180 nm;120,, 321 ∈lll  

which refers to different transistor models to be used for 

simulation. 

B.  Discrete parameter values  

Each design parameter id
~
 of the circuit can take one of 

idn  discrete real values from set iD
~
: 

{ }
idniiii ddDd ,1,

~
;;

~~~
K=∈  (1) 

For instance, the length of transistor 1M  of the LNA in 

Section II.A can be given as: 

{ }560nm350nm,240nm,180nm,120nm,:
~

11 ∈= ld  

Normalized values for each parameter can be obtained by: 
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For each parameter, a normalized discrete set iD  can be 

given, which can be ordered by the relation <: 

{ } 1,,
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niiiii ddddDDd
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For instance, the normalized set for 1l  can be given by: 

{ }0.1,52.0,27.0,14.0,0.01 ∈d  

For an optimization problem with dN  parameters, the 

normalized domain can be written as: 

i

N

l

N DD
d

d

X
1=

=  (4) 

dND∈d  is a point inside this basic set.  

C. Discrete analog sizing problem 

For each dND∈d , a set of fn  circuit performances 

( ) ( )dd fnff
~

,,
~
1 K  can be calculated by simulation. Circuit 

function is defined by a set of specifications of these 

performances. Without loss of generality, these bounds can 

be given as a set of Bn  normalized inequalities 

( ) Bkk ff ,≤d . An error ( )dkε  is defined, which describes the 

deviation of each performance from its specification. This 

error equals 0 if the specifications are fulfilled: 

( ) ( ) ( )


 >−=

                else                ; 0

 if; ,, BkkBkk
k

ffff dd
dε  (5) 

The sum over the squared errors is used as the scalarized 

objective function of circuit sizing:  

( ) ( )∑
=

=
Bn

k

k

1

2
dd εϕ  (6) 

According to the formulation of the error in (5), an over-

achievement of the specifications does not influence the 

value of the objective function ( )dϕ  and is consequently 

ignored during the optimization (Fig. 2). 

Using the definitions above, the task of sizing an analog 

circuit with non-uniformly discretized parameters can be 

formulated as: 

( ) ( ) 0dcd
d

≥
∈

 s.t.  min ϕ
dND

  (7) 

Where ( )dc  is a set of constraints which ensure the 

avoidance of pathological circuits [3].  
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Fig. 2. Illustration of the used objective function (6), (5) 
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Fig. 1. LNA (Low Noise Amplifier) 
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III. DISCRETE SIZING ALGORITHM 

A. Discrete pseudo-gradients 

In the presented method, gradients shall be considered.  

However, an actual gradient cannot be calculated if 

parameter values are discrete. Therefore, a new method for 

calculating discrete pseudo-gradient is introduced, which is 

based on the concept of next neighbors. The term next 

neighbor is used for a neighboring parameter point which 

differs from the current point d̂  in exactly one component 

(Fig. 3). 

To describe these points, the vector ie  is defined:  

 [ ]
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il
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eeee l
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Nli d  if;0
 if ;1

  ;,,,,: 1 KKe  (8) 

Furthermore, iaid ,  with index ia  denotes the current 

value of the ith component of d̂ : 

{ } inii,aiaii Dddddd
idii =∈= ,1,, ,,,,ˆ

KK  (9) 

Hence, the next neighbor )(ˆ +id  of d̂  in positive direction 

of component id  is defined as: 
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Analogously, the next neighbor )(ˆ −id  of d̂  in negative 

direction of component id  is defined as: 
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In case that iaid ,  is the largest or smallest value in the 

domain, respectively, the next neighbor of  d̂  concerning id  

is the current point itself. This definition avoids a case 

differentiation in the calculation of a pseudo-gradient at the 

bounds of the domain iD . Based on (10), (11), a definition 

of a discrete pseudo-gradient is introduced which 

corresponds to the central form of the finite-difference 

approximation: 
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This approach provides a good approximation of the 

gradient. It can be seen that the definition of the next 

neighbors (10) and (11) leads to the forward or backward 

difference quotient at the bounds of the domain iD . 

B.  Discrete feasible region  

In this section, the feasible region of discrete parameter 

values defined by the constraints in (7) will be approximated. 

The bounds of this simply connected region are 

approximated by linearization of the constraint functions 

using their pseudo-gradients. The pseudo-gradients are 

obtained by substituting ( )dϕ  in (12) with the considered 

constraint function ( )dmc . Using the resulting pseudo-

gradient mcg , each constraint is linearized: 

( ) ( ) ( )ddgdd ˆˆ −⋅+≈ T
cmm
m

cc  (13) 

For calculating the borders of the feasible region, the 

linear model of each constraint (13) is set to 0. An estimation 

of the value mcid ,  for which ( ) 0ˆ
, =⋅+ mciim dc ed  holds, can 

be formulated by: 

 
( )

( )dge

d

ˆ

ˆ
,

m

m

c
T
i

m
ci

c
d

⋅
−=  (14) 

For each parameter id , a distance Uid ,  from the current 

parameter point to the supremum and a distance Lid ,  to the 

infimum of the feasible region can be selected from all 

values mcid , . Considering cn  constraints, the selection 

criterion for these distances can be formulated: 
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Fig. 4. Illustration of feasible region (Section III.B) and search region 

(Section III.C) 
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Fig. 3. Current parameter point d̂  and its next neighbors 
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The resulting bounds are used to define the set of feasible 

parameter points dN
F  forming the discrete feasible region 

(Fig. 4). 
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=
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X
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(16) 

The indices iL  and iU  correspond to the indices of the 

corresponding values of id  in the domain iD . Note that 

( )<= ,ii FF  is an ordered set. For instance, if the domain is 

given as { }0.1,52.0,27.0,14.0,0.01 =D  and the feasible set 

is calculated as { }0.1,52.0,27.01 =F , the values of 1L  and 

1U  are 3 and 5 respectively. 

C. Discrete search region 

In the previous sections, discrete analogies to gradients 

and constraint regions were developed. In the following, a 

new iterative method for discrete optimization of analog 

circuits is presented. It consists of two iteratively repeated 

steps, search region calculation and calculation of a new 

point. According to the concept of search direction in 

continuous-value domains, the discrete search region is 

defined as a sub-region of the feasible region according to 

the direction of the steepest pseudo-descent g−  (Fig. 4). 

However, not every direction 0≠− ig  is chosen in every 

step. In fact, every direction ig−  is taken with a certain 

probability, which corresponds to the proportion of the 

component ig  to the length of the gradient. If a direction is 

chosen, the corresponding component of a vector of 

tendency t  – which is initialized by 0 – is set to 

( )( )digsgn- . The probability for choosing a direction for the 

search region is given by:   

( ) ( )( )( ) ( )
( )dg
d

d
ˆ

ˆ
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i

iii

g
gtPtP =−==  (17) 

The vector of tendency  t  is created via ( )itP  and dN  

uniformly distributed random numbers )1,0(~Uzi : 
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Of course, the search region spanned by t  is bounded by 

the discrete feasibility region (Section III.B). The new point 

newd  is created by scaling the components of t  with 

positive values. The domain of feasible scaling factors – 

called step sizes – for component it  is: 

( ){ }
{ }s
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nii

aiiiiiiaiiii

ss

dtdtdddsS

,1,

,,
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K=

⋅>⋅∧∈−== F
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Note that 1,is  is the smallest and snis ,  the largest possible 

step size, respectively, in the ordered set ( )<= ,: ii SS .  

It should be pointed out that 0t ≠  must be ensured. The 

described method for choosing t  is repeated until this 

condition is fulfilled. This can be a disadvantage, if the 

number of parameters is high and the absolute values of the 

components ig  are simultaneously nearly equal. Then, the 

probability for choosing any component is very small. 

However, a vector 0t ≠  has always been found after a few 

tries in the example results in Section IV. 

D. Calculating a new point 

The new point newd  is created by scaling the components 

of the tendency vector t  (18) with positive values. The step 

size is  is taken from the domain iS  (19) by a random based 

approach, which considers the pseudo-sensitivity ig  for 

each component it . We propose the following probability 

density function for choosing a step size is : 

( )


 ≤<−⋅+=

                  else ;                    0

 0 if ;exp
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,,,
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li

sss
sp

γβα
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The probability should be large for components it  that 

correspond to a large pseudo-sensitivity ig  (Fig. 5). This is 

achieved by defining iγ   as:  

i

i

g

1
=γ  (21) 

For calculating the values iα  and iβ  in (20), two 

requirements are used: 

1. The probability density for all step sizes is  greater than 

the maximum step size snis ,  has to be zero, i.e., 0)( =isp . 

At the border of the domain, snis , , 0)( ≠snsp  must hold. 

It is assumed that there is a larger step 0, >+ ini ss η  

which fulfills: 

( ) ( ) 0  and  0 ,

0

, =+¬=+ ∃
>>

ηη
ηη

s

i

s niini spsp  (22) 

To avoid a case differentiation at the bound of the 

domain iD , the value of iη  is approximated by the mean 

distance of two points in direction of component it :   

i

ni
i

S

s s,=η     (23) 

2. The sum over all probabilities )( isp  with snii ss ,0 ≤<  

has to be 1. 
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Fig. 5. Probability density function ( )isp  for different values of ig  

and { }0.1,52.0,27.0,14.0,0.0∈id  
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With (20) and requirement 1, iα  can be defined as: 
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Requirement 2 and (24) lead to: 
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The step size is  for component direction it  is defined by 

a uniformly distributed random number ( )1,0~UZ :   

( ) Zspss
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Note that the different sensitivities for different directions 

it  are considered by using exactly one random number Z per 

iteration.. 

Now the new parameter point newd  can be calculated: 

∑
=

⋅⋅+=
dN

i

iiinew st

1

ˆ edd  (27) 

The overall procedure for discrete analog sizing with the 

described method is sketched in Fig. 6. 

Note that the constraints may be violated at the new point. 

Hence, an adaptive constraint check must be done after 

calculating a new point. If a constraint has been violated, in 

the direction dd ˆ−new  the point closest to newd  that satisfies 

the constraints is chosen. Furthermore, to avoid convergence 

at local optimal points, which do not fulfill the 

specifications, and which lie at the bounds of the discrete 

feasible region, an adaptive methodology must be applied. 

IV. EXAMPLES 

A. Sizing of an LNA 

The LNA from Section II.A is optimized with the 

presented discrete sizing algorithm. The non-uniformly 

discretized lengths 321  and  , lll  – which correspond to 

different simulation models – and the uniformly discretized 

multipliers 21  ,mm  and 3m  of the transistors formed 6 

discretized optimization parameters. The discretized 

parameter domains from Section II.A yield a discrete 

optimization problem with cardinality 81025.1 ⋅ . The initial 

performance values, dB11.9S21 =  and GHz47.1=BW , 

violate the specifications in Section II.A.  

A Simulated-Annealing Algorithm (SA) [5] with a cooling 

rate of 005.0=r  and a start temperature of 0.10 =T  was 

applied to the LNA for comparison purposes. In the 

iterations of the SA, every discrete parameter value could 

have been tuned to the next higher or lower value.  

The number of iterations which were needed to find a 

point that fulfills the specifications is given in Fig. 7. 

It can be seen that the presented algorithm was faster than 

SA. Note that both random based algorithms exhibit a 

fluctuation in the simulation effort. The presented algorithm 

had a speed-up of 17 with respect to SA concerning the 

fastest optimization run, of 10 concerning the mean of all 

optimization runs, and of 6 concerning the slowest 

optimization run. Even the slowest run of the new algorithm 

was 2 times faster then the fastest SA run. Note that other 

temperatures and cooling rates have lead to even larger 

speed-ups for the new algorithm. 

B. Sizing of a BiCMOS OTA 

A BiCMOS OTA is given in Fig. 8. The discrete design 

parameter values for the considered problem are given in 

Table 1, the specifications are shown in Table 2. The 

parameters from Table 1 form a discrete optimization 

problem with cardinality 301080.2 ⋅ .   
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In this example, the presented algorithm (denoted with 

NEW in Table 3) was compared with a state-of-the art 

continuous optimization algorithm (denoted with CONT) 

and subsequent rounding to the next discrete point. The 

rounding was done either by taking the nearest discrete point 

(RNP) or by taking the nearest point in direction of steepest 

improvement (RSI). Table 3 summarizes the results.  

We can see that CONT with subsequent rounding failed 

because of a resulting violation in specifications and/or 

constraints. This makes clear that a continuous optimization 

with subsequent rounding can produce false results. On the 

other hand, the new method succeeds to provide a discretized 

solution that fulfils the specifications. 

We can also see from Table 3 that the new algorithm as a 

stand-alone tool was twice as fast as in connection with a 

preceding continuous optimization run.  

V. CONCLUSION 

An iterative random and pseudo-sensitivity method for 

analog circuit sizing with non-uniformly discretized 

parameters has been presented. In each iteration step, a 

discrete search region is computed by randomly selecting 

components of a pseudo-gradient. The probability of 

selecting a component is proportional to its pseudo-

sensitivity.    In this way, a sub-region of the feasible region 

is spanned. For each selected parameter direction, an 

individual step length is randomly selected. The probability 

density of the step length decreases exponentially, such that 

larger step lengths are more probable for parameter 

directions with larger pseudo-sensitivity.  

Even if further experiments and comparisons with state of 

the arte mixed integer nonlinear programming approaches 

are preferable, presented results show a mean speed-up of 10 

compared with a simulated annealing approach and illustrate 

the failure of the continuous sizing method with subsequent 

rounding to solve this generalized sizing problem.  Due to 

the good results of the presented method in exclusive 

discrete cases, the method should be extended for mixed 

continuous discrete problems next.  
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Table 3.  Comparison of the presented algorithm (NEW), with a state-

of-the-art continuous sizing algorithm (CONT) with subsequent 

rounding to the nearest point (RNP) or to the nearest point in direction 

of steepest improvement (RSI) 

Method Simulations Solution 

CONT +  RNP 1701 Failed: 1 spec violated 

CONT + RSI 1716 
Failed: 1 spec and 3 

constraints violated 

NEW 1048 o.k.: specs fulfilled 

CONT + NEW 2018 o.k.: specs fulfilled 

 

Table 1.  Parameters and basic sets for the optimization 

Parameter Basic set 

w1, w2, w3 wi ∈{3µm, 4µm , …, 250µm} 
l1 li ∈{460nm, 480nm, 10um} 

a3, a4, a5, a6, a7 ai ∈{0.5, 0.75, …, 50} 
m1, m2, m3, m4, m5, m6, m7 mi ∈{1, 2, …, 20} 
 

Table 2.  Specifications for the optimization 

Performance Specification Starting Value 

DCGain [dB] >40 17.4 

CMRR [dB] >80 81.0 

PSRR [dB] >80 54.4 

fT [MHz] >45 7.8 

PHM [°] >60 79.3 

SR+ [V/µs] >6.0 1.54 
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