
Exploiting Spare Resources of In-order SMT Processors Executing
Hard Real-time Threads

Jörg Mische, Sascha Uhrig, Florian Kluge, and Theo Ungerer
University of Augsburg, Germany

Members of the HiPEAC European Network of Excellence
{mische, uhrig, kluge, ungerer}@informatik.uni-augsburg.de

Abstract— We developed an SMT processor that allows a
static WCET analysis of several hard real-time threads and
uses the remaining resources for soft or non real-time threads.
The analysis is possible, because one Dominant Meta Thread
(DMT) is executed as if it were the unique thread on the
processor and thus single-threaded WCET techniques can be
applied. To provide more than one hard real-time thread the
execution time of the Dominant Meta Thread is distributed by
time sharing whereby the length of the time slices and periods
can be adjusted at runtime.

Our technique, called Dominant Time Sharing (DTS), can
be used to minimize the number of control units in embedded
hard real-time systems and hence reduces the overall energy
consumption and material demand.

In contrast to many other studies we are able to handle
multicycle memory latencies while preserving analyzability. The
proposed technique can easily be extended to access other
external resources like coprocessors or reconfigurable arrays.

I. INTRODUCTION

In recent years, lots of techniques to improve the perfor-
mance of general purpose processors were invented and now
belong to the standard architectures of high-end processors:
dynamic branch prediction, cache hierarchies, out-of-order
execution, simultaneous multithreading etc. These high-
performance techniques are based on speculative execution
or dynamic assignment of resources at runtime. They lower
the average execution time while increasing the worst case
execution time (WCET). In hard real-time systems deadlines
must be met even in the worst case, therefore only a lower
WCET is of interest, the average case is not important. Con-
sequently hardly any of these high-performance techniques
is used in current hard real-time systems.

Simultaneous multithreading (SMT) processors are com-
monly build by feeding a wide superscalar out-of-order
pipeline with instructions of several threads. Out-of-order
execution permits the threads to share processor resources,
resulting in collisions and interference between theoretically
independent threads. Therefore the execution time of a thread
depends on its co-schedule, the threads that are executed in
parallel. For example, concurrent memory accesses disturb
the timing behavior of a hard real-time thread. This makes
a WCET analysis nearly impossible.

The advantage of SMT processors is the high utilization
of processor resources, involving a high throughput. With
higher throughput less cycles are needed for a certain job
and, hence the clock rate can be reduced, which consequently

reduces energy consumption. Such an improved energy ef-
ficiency is especially important for embedded systems, the
main area of hard real-time applications.

To preserve this benefit while allowing hard real-time ap-
plications, we guarantee the unlimited usage of all resources
to one thread, the so-called Dominant Meta Thread (DMT).
Further threads can only use spare resources and possibly
have to drop out when requesting a resource for more than
one cycle.

By privileging the DMT, it behaves like a single thread that
is executed without concurrent threads in a single-threaded
way. In conjunction with some modifications of the pipeline
for in-order execution, the total isolation makes the DMT
deterministic and thus enables a static WCET analysis to
meet hard real-time requirements. Furthermore the privileged
execution guarantees the fastest possible execution time of a
single thread.

The additional, noncritical threads should use the re-
maining resources as intense as possible to achieve a high
throughput. They can be used to execute non real-time or
soft real-time tasks. By interfering threads with different
real-time requirements, the computing power (and energy
consumption) that the hard real-time thread demands for the
worst case, but in the average case does not utilize, can
efficiently be used.

Multiple hard real-time threads are not scheduled in the
same cycle, but in consecutive cycles, using time slicing to
partition the execution time of the DMT. This paper makes
the following contributions:

1) An SMT architecture that allows a static WCET anal-
ysis.

2) A scheduling algorithm that executes multiple hard
real-time threads concurrently on an SMT processor.

3) An issue policy that uses free resources for non critical
threads without interfering the hard real-time threads.

4) Solutions to handle multicycle memory accesses.

In the next section, we present an overview of related
work. The isolation of the DMT is presented in section III.
Section IV describes the time sharing of the hard real-time
threads. Its integration into the CarCore architecture used
for evaluation is given in section V. Section VI discusses
our evaluation results while VII concludes the paper.
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II. RELATED WORK

The research on real-time capable SMT processors firstly
focused on a foreground thread that is nearly not affected
by other background threads [1], [2]. Preserving its single-
thread performance guarantees predictability and makes the
foreground thread real-time capable. The first work on real-
time scheduling of multiple threads [3] only covers soft real-
time. Recently there is some effort to control the IPC of one
real-time thread [4]. This assured IPC can even be spread
over several threads [5]. These studies have in common,
that they cannot fulfill hard real-time requirements, i.e. they
cannot guarantee that a thread never misses a deadline. This
is due to the fact that they use out-of-order SMT processors,
where the dynamic resource sharing inside the core leads to
resource conflicts and interactions between the thread slots.
Hence only soft real-time is possible.

Barre et al. [6] avoid the interference by privileging one
hard real-time capable thread and partitioning the resources
of an out-of-order SMT pipeline equally to the thread slots.
Out-of-order execution marginally boosts one single thread,
while in-order superscalar pipelines increase total throughput
[7]. Thus the missing performance boost of a single thread is
only marginal in comparison to the reduced design complex-
ity [8]. Therefore we avoid any dynamic features by using
an in-order architecture, but we do not restrict the resource
coverage of one thread by partitioning.

The first hard real-time capable multithreaded designs
mainly used scalar architectures: The academic Komodo
processor [9] provides several hard real-time threads by
time sharing within a constant period of 100 cycles, while
the Ubicom IP3023 microprocessor [10] uses a fixed table
that assigns every cycle of a 64 cycle period to a specific
thread. But both approaches use very special instruction
sets (Java, respectively a small specialized instruction set
for networking) and assume scratchpad memories. Only
jamuth [11], a commercial derivate of the Komodo processor,
supports slower memories for soft real-time threads.

The Real-time Virtual Multiprocessor (RVMP) [12] allows
a static WCET analysis by partitioning threads in the time
and in the space dimension (parallel usage of resources).
Unfortunately its schedule is precalculated (i.e. static) and
the processor cannot deal with memory latencies.

Another approach, called Virtual Simple Architecture
(VISA) [13] guarantees the execution time of a simple
hypothetical processor, but executes the threads on a high-
performance, speculative processor. If the performance of the
speculative processor is too low (because of incorrect specu-
lations), the processor falls back to the simple architecture to
meet the deadline. The problem of this architecture is, that
between the detection of an upcoming deadline miss and the
final deadline there must be enough time to execute the rest
of the thread in the simple mode. Hence, if the deadline is of
wide scope, VISA can be used to further increase the scope,
but if there is none, it cannot improve utilization. By contrast,
our approach improves the non real-time performance even
with tight timing bounds.

III. DOMINANT META THREAD ISOLATION

Instead of basing our SMT processor on an out-of-order
pipeline, we use a superscalar in-order pipeline as starting
point. As program execution on superscalar in-order proces-
sors is deterministic, static WCET analysis and therefore
hard real-time applications are possible. Furthermore they
provide high theoretical performance, as more than one
instruction can be executed per cycle. But in practice, the
performance can only be used to a small degree, because
data dependencies and latencies extremely reduce the actual
Instructions Per Cycle (IPC) rate (Tab. I).

To improve the utilization of the processor resources,
while preserving the hard real-time capabilities, we provide
additional noncritical threads, that run in parallel to the
hard real-time capable DMT and are scheduled with fixed
priorities. The additional threads must not alter the DMT’s
run-time behavior under any circumstances, as this would
affect the WCET analysis, but unused resources should be
covered to a high percentage.

A. Multithreading

Advancing a single-threaded in-order processor to mul-
tithreading requires some architectural modifications: some
resources must be duplicated (program counter, instruction
windows, register set), early pipeline stages must deal with
multiple threads (fetch stage, issue stage) and pipeline stalls
must be avoided (interruptible microcode sequences, split
phase load) [14].

The DMT should be executed as if it is executed on a
single-threaded processor, absolutely isolated from the non-
critical threads, which requires suitable fetch and issue poli-
cies. In both stages the DMT must be absolutely preferred,
i.e. the DMT must cause the same memory fetch accesses
and the same assignment of instructions to functional units,
no matter if there are additional threads or not. By contrast
the back-end of an in-order pipeline is already partitioned
(instructions in different functional units do not interfere),
therefore no further pipeline modifications are necessary.

B. Memory Latency

The so far described architecture widely isolates the DMT,
as long as memory accesses take only one cycle or can be
pipelined. But in the embedded area, such memory is too
expensive (see section V-B) and thus blocking multiple cycle
latencies must be assumed. Hence, if both a noncritical and a
hard real-time thread issue a load instruction in consecutive
cycles, the memory controller is busy when the second
load from the hard real-time thread arrives and delays its
execution until the first noncritical memory access is finished.

This additional retardation only occurs if a noncritical
thread issues a memory instruction in a closely preceding
cycle. Consequently it is not deterministic, but for a WCET
analysis the worst case - always a maximum collision - must
be assumed. This can easily be handled by doubling the
memory latency in the analysis, but increases the WCET
compared to single-threaded execution.
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To minimize this effect, the issue stage of our architecture
announces a memory access of the DMT as early as possible
to the memory controller and directs it not to start any
memory operation until the dominant memory access arrives
at the memory controller. This reduces the additional latency
penalty by the number of pipeline stages between issue
stage and memory controller. If the number is bigger than
the memory latency the impact can be hidden completely,
otherwise an incrementation of the memory latency for
WCET analysis cannot be avoided, but the extent can be
reduced. We call this technique Dominant Memory Access
Announcing (DMAA).

IV. DOMINANT TIME SHARING

If multiple hard real-time threads are desired, they cannot
be executed together with the DMT, as the former could
use all resources concurrently and none are left for another
hard real-time thread. But the DMT can be broken into
multiple threads which are dominant alternately. Therefore
the total execution time is divided into small intervals of
time, called Rounds. Within every round, each hard real-
time thread is the dominant thread for a certain number
of cycles (its Quantum), for the rest of the round it is
suspended. Applying this technique guarantees every hard
real-time thread a certain fraction of the total computing
power.

To put it another way, the processor is virtualized into
multiple virtual processors with individual clock rates and
every hard real-time thread is executed as DMT on its
individual virtual processor. The virtual clock rate can be
adjusted by the quantum of each thread:

virtualclockratei =
quantumi

roundlength
· realclockrate (1)

As context switching is done in hardware with zero
overhead, schedulability is given if the sum of the virtual
clock rates is not greater than the real clock rate of the
system. High throughput is still guaranteed, as the spare
resources are not divided into virtual processors. Instead they
are distributed as a whole to the noncritical threads.

A. Slight Adaption of Quantum

If a hard real-time thread starts a multicycle memory
access in the last cycle of its time slice, the next hard real-
time thread cannot immediately start a memory access in
the next cycle, as the memory controller is busy. Thus, the
time slice of the first thread is effectively prolonged by
the duration of the memory access, while the time slice of
the second thread is shortened. Aggregation of this small
effect (notably with short rounds) can result in a big gap
between theoretical assured and really used execution time
culminating in a deadline miss.

To avoid this, the quantum of the thread and the round
are temporarily increased, if the last instruction within a
time slice is a memory operation. The quanta of the sub-
sequent threads in the round keep unchanged, except they
also execute a memory operation in the last cycles of their
particular time slice. To compensate the extension of the

Fig. 1. Example of a periodic task set

round, in the next round the quanta of the affected threads
are (temporarily) decreased by the access time. Accordingly
the length of the successive round is shortened by the
number of memory access cycles multiplied by the number
of temporarily prolonged threads.

If no further last-cycle memory accesses occur in the
second round, each thread got exactly two times its quantum
and both rounds together lasted for exactly double the time
of an unchanged round. But even when assuming that in
each round, every last instruction of a quantum is a memory
access, the maximum degradation of one thread does not
exceed the duration of one memory access multiplied by the
number of threads. During the complete lifetime of the task-
set an aggregation is impossible.

B. Connection to Traditional HRT Scheduling

Typically, a hard real-time system consists of a task-set of
a fixed number of periodic threads, each with a period and
a deadline. After each period a new instance of the thread is
released. If we assume that the deadline is equal to the period
(which is a common simplification), a thread must terminate
before the end of a period. A WCET analysis provides the
maximum time, the thread needs for execution.

To meet the deadlines in our model, it is sufficient to
calculate a theoretical clock rate that suffices to meet the
deadline:

virtualclockratei =
WCETi

periodi
· realclockrate (2)

With this relation and equation (1) a formula for the quantum
is easily derived:

quantumi =
WCETi

periodi
· roundlength (3)

As the quanta are integer values, the length of a round must
be big enough to ensure that all quanta have reasonable
values. On the other hand, one round should be as small
as possible to assure fair scheduling.

C. Example

We assume a task set of three threads A, B and C with
periods (and deadlines) of 100ms, 60ms and 40ms and
WCETs of 4 000 000, 3 000 000 and 400 000 cycles. Fig. 1a
shows the task set assuming a separate 50 MHz processor
for each thread. As thread B needs the complete execution
time, it is not possible to schedule all three threads together
on one processor at 50 MHz.
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Fig. 2. CarCore Processor

To determine the minimum cycle rate to schedule all
threads on one processor, we just calculate the virtual clock
rate Vi for each thread ( VA = 4000000

100ms = 40MHz, VB = 50MHz,
VC = 10MHz) and sum them up (100 MHz in this example).
Fig. 1b shows the execution on 3 separate processors at 100
MHz.

Therefore A gets 40%, B 50% and C 10% of one round.
As a memory access takes three cycles, the cycle quantum of
a thread can temporarily be reduced by three cycles. Hence,
the minimum cycle quantum has to be three cycles. In order
to guarantee still some execution cycles per round we choose
six cycles as absolute minimum quantum for the thread with
the least fraction of the round, thread C. Accordingly a round
is 60 cycles long and A gets 24 cycles and B 30 cycles. The
result is shown in Fig. 1c.

V. ARCHITECTURAL DETAILS

The above described scheduling technique was imple-
mented in the CarCore, a superscalar in-order processor
with load-store architecture that allows simultaneous multi-
threading. It supports the rich and intricate Infineon TriCore
instruction set [15]. We developed a cycle-accurate SystemC
model of the CarCore architecture and we are currently
working on a FPGA prototype.

A. General Architecture

There are two pipelines, one for integer arithmetics and
one for address calculation and memory access. Similar to
the original TriCore, each pipeline consists of five stages,
where the first two (Fetch and Real-time Issue) are shared
and the last three (Decode, Execute and Write Back) are
independent in each pipeline. The issue policy is also in-
herited from TriCore: the instructions are issued in-order
and two instructions from one thread can be issued in
parallel, if an address instruction directly follows an integer
instruction. Otherwise our SMT extension fills the pipeline
with instructions from two distinct threads.

As the TriCore instruction set provides 16-bit and 32-bit
instructions, the fetch stage can fetch 2 to 4 instructions per
cycle by its 64-bit port to instruction memory. Each thread
slot has its own Instruction Window, where the instructions

are buffered between fetch and real-time issue. The real-time
issue stage predecodes the instructions and assigns them to
the appropriate pipeline, depending on the priority of the
thread slot.

There is no branch prediction, because a dynamic branch
prediction complicates WCET analysis and even a static one
(like in TriCore) wastes cycles in the case of a misprediction
that without prediction can be used for other threads.

B. Memory Model

To keep the pipeline utilized, 2 instruction or 64 bits must
be fetched per cycles, therefore the instruction memory is
64KB software-managed scratchpad with 1 cycle latency.
Slower memory would stall the pipeline and negate the
efforts to efficiently share resources. But scratchpad memory
is expensive and power consuming, therefore we chose
32MB SD-RAM for data memory (3 cycles latency for a
32 bit random access). These assumptions are comparable
to commercially available TriCore boards and will be imple-
mented on the FPGA prototype of the CarCore.

C. Thread Scheduling

The scheduling is split into two parts: Within the pipeline
(namely the fetch and the issue stage) the scheduling is
done by a straightforward fixed priority scheme to minimize
the critical path, while the more difficult calculation of the
priorities for each thread slot is done in a separate hardware
module called Priority Controller that feeds fetch and issue
stage with these priorities.

Each thread is assigned to a separate thread slot, but not
all thread slots are active at the same time. The priority
controller assigns the same highest priority to every hard
real-time thread, but only one is active at a certain cycle, the
other hard real-time threads are suspended. The noncritical
threads are steadily active, but they have lower priorities.

To achieve the time sharing, each hard real-time thread has
a register for its quantum. At the beginning of a round an
internal counter is set to the quantum of the first hard real-
time thread and this thread is activated while the other hard
real-time threads are suspended. At each cycle the counter is
decreased by one and when it reaches zero, the first thread is
suspended while the second one is activated and the counter
is set to its quantum. This continues until the last hard real-
time thread was active for the number of cycles according to
its quantum and the round is complete. Immediately the next
round begins with activating the first hard real-time thread.

TABLE I
BENCHMARK CHARACTERISTICS (∗EEMBC, †MÄLARDALEN)

Name Description IPC int adr mem

a a2time∗ Angle to Time Conversion 0.483 24 24 29
c canrdr∗ Remote CAN Request 0.387 7 30 43
i aifirf∗ Finite Impulse Response 0.439 8 35 39
r rspeed∗ Road Speed Calculation 0.459 8 37 37
x crc† Cyclic Redundancy Check 0.591 42 16 7
f fft1† Fast Fourier Transform 0.472 20 26 31
m mm† Matrix Multiplication 0.577 15 42 41
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Fig. 3. Relative DMT performance (%) depending on the number of
preceding instructions that are considered for announcing
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Fig. 4. Overall performance (%) depending on the number of preceding
instructions that are considered for announcing

VI. EVALUATION

Benchmarks from the EEMBC automotive benchmark
suite [16] and the Mälardalen WCET group [17] were
compiled with the HighTec GNU C/C++-Compiler [18] and
executed on a cycle-accurate SystemC model of the CarCore
processor with 8 thread slots. For every benchmark the
single threaded IPC and the percentage distribution of integer
instructions (int), address instructions (adr) and memory
latencies (mem) is given in Tab. I.

Each letter of the task-set names corresponds to a bench-
mark (Tab. I), the position matches the thread slot and the
minus separates hard real-time from noncritical threads, e.g.
mr-iiiiii stands for 2 real-time threads with the benchmarks
mm and rspeed and 6 noncritical threads executing aifirf.

A. Dominant Memory Access Announcing (DMAA)

Because of the 3 cycle memory latency, memory access of
a noncritical thread (NA) can block the memory controller
and therefore delay the DMT when a DMT memory access
(DA) is issued in one of the following two cycles. But if the
memory controller knows about an upcoming DA two cycles
earlier it can deny NAs in these two cycles and idle until the
DA arrives, whereby NAs are completely hidden from the
DMT and it is executed as if there were no other threads. In
the CarCore architecture this is possible, as the issue stage
can already recognize memory instructions and a memory
instruction is not passed to the memory controller until
the execute stage (located two stages later in the pipeline)
calculated the address.
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Fig. 5. Relative performance (%) of the first noncritical thread depending
on the announce policy
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Fig. 6. Relative performance (%) of the second noncritical thread depending
on the announce policy

Fig. 3 shows the performance variation of task-sets with
one DMT and seven noncritical thread against the number
of preceding instructions that are considered for announcing.
The performance of the different task-sets is measured in
instructions per cycle (IPC) and presented relatively to their
performance when announcing two instructions ahead (which
for the DMT is the same as in single threaded mode).
1 means that a NA is only canceled if it is the directly
preceding instruction of a DA and 0 stands for no announcing
at all.

As expected, the performance of the DMT is lower, when
there is less or no announcing, because the execution time
increases. Surprisingly the choice of the noncritical threads
has only marginal effect on this degradation. More important
is the frequency of memory accesses of the DMT itself, but
the relation is not linear (r/rspeed has more memory accesses
than m/mm and f/fft1, but less degradation).

By contrast, the noncritical threads (Fig. 5 shows the
thread the highest noncritical priority, Fig. 6 the second
highest) benefit on less announcing, as less memory accesses
are delayed. Again, the variation depends more on the
memory characteristic of the thread itself than on its co-
scheduled threads.

Less announcing implies less retarded memory accesses
and therefore a higher overall throughput, as Fig. 4 indicates.
To sum up, there is a trade-off between DMT performance
and overall throughput that can be used to adapt the schedul-
ing to the demanded performance.
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B. Utilization

Fig. 7,8,9 show the performance of different task-sets.
Within one task-set, the time is shared in equal portions to
every hard real-time thread, if there are 2 each gets 50% of
time, 33.3% if they are 3, etc. The length of a round is 120
cycles. The performance of a thread is measured in IPCs and
normalized to its single threaded IPC.

The evaluation shows, that the hard real-time threads reach
exactly the expected performance and the performance of
the noncritical threads depends only loosely on the task-set.
While the first noncritical thread achieves more than 50% of
its single threaded performance, the relative performance of
the further noncritical threads declines exponentially.

By permuting the priorities of the noncritical threads in a
round robin fashion, the execution time could be distributed
equally between the noncritical threads, but the overall
performance is not affected and therefore is not shown in
a separate figure.
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VII. CONCLUSION

In this paper we present an SMT processor that is able
to execute multiple hard real-time threads concurrently to
multiple noncritical threads. The hard real-time threads are
scheduled by time sharing and merged to one Dominant
Meta Thread (DMT) that is executed as if there were no
other threads, allowing a static WCET analysis. Noncritical
threads are scheduled with fixed priorities concurrently to the
DMT, but with lower priority to guarantee that they cannot
delay the hard real-time threads. As the evaluation shows, the
isolation works perfectly while three additional noncritical
threads achieve about 50%, 35% and 20% of their single
threaded performance, doubling the overall throughput.
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