
Quantitative Global Dataflow Analysis on Virtual Instruction Set
Simulators for Hardware/Software Co-Design

Carsten Gremzow
Faculty of Computer Science and Electrical Engineering

Berlin University of Technology
gosper@cs.tu-berlin.de

Abstract— One of the main challenges in system design
whether for high performance computing or in embedded
systems is to partition software for target architectures like
multi-core, heterogeneous, or even hardware/software co-design
systems. Several compiler techniques handle partitioning and
related problems by using static analysis and therefor have no
means to capture the global data flow in quantity and its dynam-
ics which is essential for extracting tasks or exploiting coarse
grained parallelism. We present a novel solution for capturing
and analyzing an application’s quantitative data flow in this
paper. The core part is the LLILA (Low Level Intermediate
Language Analyzer) tool set, which automatically generates and
augments self-profiling instruction set simulators from assembly
level descriptions for a virtual machine. During run-time of
the augmented program several properties (frequency, quantity
and locality reflecting inter-procedural communication) of data
exchange are captured at instruction level and as a consequence
in the highest possible degree of accuracy.

I. INTRODUCTION

The necessity to spread applications among distributed,
heterogeneous resources such as standard processors in con-
junction with programmable hardware is growing steadily.
This common trend can be attributed to a change in the main
stream computing paradigm towards multi-core systems as
well as to the fact that there’s a growing need for certain parts
of a software system to be executed on dedicated, customized
hardware. Not only does the user of standard desktop systems
currently benefit from applications executed on distributed,
heterogeneous resources where e.g. multimedia applications
can be accelerated using Graphics Processing Units (GPUs)
but also the domain of embedded computing where systems
usually consist of a number of components including appli-
cation specific processors (ASPs) which at the present need
to be design manually. To achieve optimal partitioning of an
individual application onto the target hardware automatically,
it is mandatory do have in depth knowledge of coarse grained
parallelisms at the system level. The smallest common de-
nominator in hardware / software Co-design environments
is the use of standard programming languages such as C or
C++. Compile- and link time optimization techniques known
from compiler engineering can be used as a preparational
means e.g. to reduce design space complexity, but they turn
out to be inadequate to a get a full understanding of the
complete data flow in quantity between the separate elements
of a complex program system which is essential for system
partitioning. The latter is especially true for the case of fully

automatic partitioning without the specific use of additional
libraries for describing coarse grained parallelisms such as
MPI, OpenMP or SystemC. In the following, a framework
for in depth extraction and analysis of global data flow will
presented. Part of the acquired global data flow information
includes the quantity of data exchanged between program
parts at the inter-procedural level as well typical memory
access patterns and dominant path of program execution.

A. Related Work

A common approach to analyze static and dynamic prop-
erties of a program system or algorithm is simulating its
implementation on a specific instruction set architecture.
There is a broad spectrum of ISA simulation techniques
ranging from the extremely flexible but slow interpretive
approach to fast, efficient compiling simulators. A prominent
member of the category mentioned first is SimpleScalar
[3]. Increased simulation performance can be expected from
Shade [4], Embra [7] and FastSim [6] employing dynamic
binary translation as well as event buffering techniques.
The majority of system design frameworks in the hardware
software Co-design community such as FACILE [6], Sim-
nML [8], ISDL [9], MIMOLA [10], LISA [11][12][13] and
EXPRESSION [14] are based on these simulators to allow
fast, quantitative evaluation of particular architecture in a
Co-design scenario. The key aspect shared by all of the
aforementioned tools is the a priori assumption that the pro-
gram code under investigation shows static runtime behavior
only. Almost all of the present concepts for dividing complex
systems into a combination of hardware and software aspects
perform partitioning either at or even before compile time
of the application. Traditional use of dedicated Co-design
languages such as SystemC [2], HandleC, SiliconC, SA-C
[15] or StreamC leave the task of application partitioning
either partially or completely up to the designer. Other
approaches allow execution on application specific hardware
for certain parts of the software and vice versa. This can be
accomplished at binary level [1] e.g. by extracting compu-
tationally expensive kernels and moving them to application
specific Co-processors. Methods for auto parallelization have
emerged from the field of compiler engineering quite some
time ago [16] and provide techniques to automatically iden-
tify and handle synchronization dependencies in complex
software systems [17].

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 377

Fig. 1. Schematic outline of the LLILA simulation, profiling and synthesis flow. The three right grey areas denote our actual tool flow boundary whereas
program compilation is performed using the LLVM gcc tool chain on the left.

The remainder of this paper is structured as follows: Sec-
tion two presents a framework for generating self-profiling
instruction set simulators automatically from arbitrary appli-
cation code compiled into byte-code for a virtual machine.
The related subsections will focus on techniques of code
instrumentation for the target simulator in such a fashion that
the global data flow can be recorded. Section three presents
quantitative results from experiments with data flow intensive
applications. The paper will conclude with final remarks and
an outlook on future work.

II. SIMULATION OF VIRTUAL INSTRUCTION SET
ARCHITECTURES

Our ASP/ASIP synthesis and runtime analysis environ-
ment Synphony is centered around the LLVM (Low Level
Virtual Machine) [18] which is a compiler framework de-
signed to support program analysis and transformation for
arbitrary programs. The LLVM defines a common, low-
level code representation in Static Single Assignment (SSA)
form with a simple, language-independent type-system that
exposes the primitives commonly used to implement high-
level language features. In our work the LLVM has been
given preference over other virtual machines due to its sim-
plicity, the notion of SSA representation and the possibility
to compile and analyze complex software systems through
its seamless integration into the GNU gcc tool chain.

A. System Outline

Our overall simulation and synthesis flow depicted in
Figure 1 consists of a number of stages which will be
discussed in the following. The application’s source under
investigation is compiled into the LLVM’s bytecode rep-
resentation using llvm-gcc. Additional libraries in question
need also be compiled into LLVM code for proper static
binding. As a result the compilation process generates a
single assembly suitable for execution using LLVM’s runtime

environment which was designed to provide either Just-In-
Time translation to the host’s native binary format or plain
interpretive execution. Note that byte code references to the
standard C library and systems calls need to intercepted
by the execution environment and forwarded to the host’s
native environment. After parsing an LLVM byte code static
program analysis starts with extracting type declarations and
globally defined memory and function objects which are held
for later reference.

B. High-Level Reconstruction

From the instruction stream of each individual function,
the basic block structure and corresponding control flow
graph is reconstructed by correlation of basic block addresses
with conditional and unconditional jump instructions. To re-
construct the data flow graph on a per basic block basis, each
instruction’s data dependencies are computed and inbound
flow is connected to source instructions generating it. Source
and destination flow of an instruction can be identified due
to LLVM’s static single assignment notation. SSA notation
normally assigns unique identifiers for left hand side data
so tracking inter-instruction data flow should boil down to
tracking identifiers. Unfortunately this is not always the case
with LLVM: Variable identifiers must not be unique and
are frequently reused with different type signatures. Therefor
LLILA also checks the type signature of each instruction and
performs variable renaming to uniquify identifiers whenever
necessary. High-Level programming languages as well the
LLVM assembly language representation for virtual ma-
chines are not suitable for expressing parallelisms. Detection
and exploitation of operator parallelisms on a basic block
level can be accomplished by analysis of the above men-
tioned data flow graphs. In order to gather the data flow on a
procedural level and to extend the detection and exploitation
of operator parallelisms and movability beyond the scope of a
single basic block, LLILA folds the above control and data

378

flow graphs into a singular flat graph representation. This
step is essential for further analysis and it supports increased
throughput during ASP/ASIP synthesis.

C. Call Sequence Graphs

In order to track complete runtime behavior across the
procedural data flow level, additional static data needs to be
retrieved from the LLVM byte code representation. Tradi-
tional inter-procedural dependencies are usually captured in
the static call graph which denotes a function’s procedural
dependencies in a directed acyclic graph which can easily be
extracted from the instruction flow by recording subprogram
call instructions. For the purpose of partitioning a software
system into a distributed system, a call graph is insufficient
for it only states a set of sub functions called by a parent.
In order to discover the actual flow of data in between
function calls, we also need to include the timely sequence
in which subroutine calls can be issued during program
execution. For this purpose the LLILA systems constructs
a Call Sequence Graph (CSG), which represents a reduced
version of a function’s control flow graph only denoting all
possible sequences of subprogram calls a singular function
can issue. During compiled program simulation CSG edges
will be annotated with the actual amounts of data transfered
between function caller and callee.

D. Quantitative Dataflow Tracking

Extracting an application’s typical communication be-
havior involves two aspects of relevance for constructing
a parallelized version both for distributed and multicore
architectures:

• The Interprocedural Data Flow Graph (IDFG) links data
sources (production) and data sinks (consumption) of
computations over execution time;

• The amounts of data transfered along individual Inter-
procedural Data Flow Graph Edges denote the Quanti-
tative Flow (QF) over execution time.

Static interprocedural dataflow analysis is challenging and
in the presence of function pointers and dynamically created
objects often impossible. Data exchange via global objects
is fairly easy to track both in quality and quantity during
simulation simply by associating identifiers with sources
and sinks over time. Tracking data passed via function
parameters turns out to be more complicated: Information
passed on via the stack during function calls will eventually
experience renaming and can refer to different data objects
of different origin over time. In order to correlate sources and
corresponding sinks communicated via function parameters
correctly at all times, indirect dataflow via the stack must
be analyzed at runtime first in order to uncover the actual
interprocedural data flow. In the following sections, we
will discuss how a combined static and dynamic analysis
approach in the LLILA framework is employed to solve the
above outlined profiling tasks.

1) Reverse Dataflow Analysis: The LLVM architecture
defines a simple 3-address load/store machine with an infinite
number of registers. The latter meaning that there are no
register resources in a technical sense - only differently
scoped variables. The machine’s only means of moving data
between variables are the load and store instructions. Since
the focus of this work is on capturing the global dataflow
in quality and quantity, observation and correlation of issued
store and load instruction pairs for any given variable over
simulation time should yield the desired graph. To further
clarify the process, we will examine the following piece of
hypothetical C code in detail:

void scale (int *buf, int len, int fac) {
for (int i = 0; i < len; i++)

buf[i] *= fac;
}

The function scale multiplies any arbitrarily sized array of
integers pointed to by the argument buf with the factor fac.
Thus, a significant amount of interprocedural data flows into
and out of the function via the specified pointer buf. Yet,
this simple example shows, that with static a priori code
analysis exact quantitative dataflow figures are impossible to
obtain. Also, if buf refers to an object created at runtime
e.g with malloc determining the origins or more specific the
owner of the object turns out to be equally as difficult. If
we wish to determine the exact interprocedural flow for the
above example, we need to identify all relevant load and
store for proper instrumentation. The LLVM assembly code
of the loop’s body is the following:

no_exit:
%tmp.4 = load int* %i
%tmp.5 = gep int* %buf, int 0, int %tmp.4
%tmp.6 = load int* %i
%tmp.7 = gep int* %buf, int 0, int %tmp.6
%tmp.8 = load int* %tmp.7
%tmp.9 = load int* %fac_addr
%tmp.10 = mul int %tmp.8, %tmp.9
store int %tmp.10, int* %tmp.5
%tmp.11 = load int* %i
%inc = add int %tmp.11, 1
store int %inc, int* %i
br label %loopentry

One can see that relating read and write accesses to buf on
the source code level with the corresponding load instruction
on the assembly level is obfuscated due to the pointer
arithmetic instruction gep (get element pointer) inserted by
the compiler. Looking at load and store instructions during
loop execution does not reveal any direct relation to the vari-
able buf. Instead, load and store is performed on temporary
variables resulting from the address computation process. To
uncover the actual global variable or function argument in
question reverse data flow analysis is performed on the flat
control / data flow graph. The latter was gathered earlier
during static program analysis.

The loop’s control and data flow graph is depicted in
Figure 2. While bold edges denote actual data flow the
dotted edges represent index data used to compute effective
addresses during gep instructions. The load instruction on

379

entry

no_exit

loop_entry

0

1

2

arg

arg

arg

"buf"

"int"

"fac"

st %buf

alloca %buf_adr

LD %buf

GEP

LD %i

LD %tmp.7

MUL

ST %tmp.5

LD %fac_addr

LD %i

ADD

ST %i

Fig. 2. Control and data flow graph reconstructed from the loop’s
instruction stream. Bold edges in the no exit block denote the effective data
flow along the variables buf adr and the loop index i. Reverse inter block
data flow analysis reveals a relation trace to the function’s first argument buf
for the load and store instructions on variable %tmp.5 during loop execution.

tmp.7 features a data dependency all the way to the gep
instruction computing the initial pointer of buf. Therefore it
will be marked as a read reference to buf as part of the
runtime profiling process. Following the same procedure,
the store instruction of %tmp.10 at address %tmp.5 can be
identified as a write access on buf.

2) Communication Analysis during Simulation: The pre-
vious section introduced a technique how to statically iden-
tify load and store instructions of relevance to the interproce-
dural data flow analysis tasks and how to extract the effective
variables names associated with them. Next the mechanism
for collecting the actual interprocedural data exchange in
quantity and the respective sources and sinks of computation
will be discusses. The following hypothetical piece of C code
shall serve as a simple example:

void normalize (int *buf, int len, int to);
int sum (int *buf, int len);
void scale (int *buf, int len, int fac);

The top level function normalize takes an integer array of
arbitrary length an will normalize its values to the specified
normal value to. It will call the remaining two functions
scale as outlined above as well sum with obvious semantics.
For the purpose of this example we’ll assume that data

passed to these functions is stored in an array named buffer
created on the stack by the function main. Even though static
interprocedural dataflow analysis would suffice to reveal a
dependency between buffer and function argument buf of
sum and scale in this example, the dynamic dataflow trace
analysis implemented in the LLILA framework will now be
presented.

main

scale

read

buffer

normalizebuffer

5)

write
0

1

stack

stack

"v9"

"l2"

4) normalize(buffer,len)

LD %buf sum

0

1

2

arg

arg

arg

"v0"

"l5"

"l7"

scale(buf,len,fac)

0

1

2

arg

arg

arg

"buf"

"int"

"fac"

buffer

1)

LD %tmp.5

6) 3)

2)

Fig. 3. Correlating store and load instruction pairs dynamically via call
graph annotation during runtime. Program execution at call graph node scale
requests the location and last write access to the object passed via function
parameter buf. The call frames created at runtime lead back to the local
variable buffer which is owned by call node main and was last written by
the call graph node write.

Figure 3 depicts the call graph for the above example
with additional data structures created during simulation.
We assume that program execution has reached the function
scale (bold call graph node) called from main via normalize
after a prior call to read which has filled the integer array
buffer local to function main. The previous write access to
buffer by call graph node read has been stored in main as
a last writer edge. Prior to main handing over the thread of
execution to normalize LLILA’s code instrumentation created
a call frame providing the following information on the
current function parameters for the callee: a) the argument’s
position, b) the argument’s identifier in the caller’s name
space, c) if the parameter could be traced back to another
object either in the same basic block scope, function local
scope, function argument scope or in the global scope and
e) if a trace exists, the objects identifier at the end of the
trace. As Figure 3 suggests, a similar frame was created
when normalize called scale. The information passed on
from caller to callee is the essence of the reverse data flow
analysis discussed earlier on.

380

We now assume that during the simulated execution of
scale a load instruction marked as relevant to global data flow
analysis is issued. The simulation and profiling environment
computes the interprocedural data flow in the following
manner (the steps are referenced in Figure 3):

1) Static analysis of the load instruction instrumented the
operation as an effective read access to the function’s
first argument buf.

2) The simulator consults the top call frame created by
normalize on the call stack and tries to resolve the
argument identifier buf. The call frame indicates that
the object is locally known as the argument buf at
position zero and represents an incomplete trace.

3) The stack frame created by main indicates that the
argument buf can be traced back to the locally scoped
object buffer. Hence, main is the owner of the object
pointed to by buf in function scale. The trace is now
complete and call node scale will be marked as a
consumer to buffer.

4) The call node for main is requested to resolve the call
node with write access to buffer the last time.

5) Call node read has been recorded to modify buffer
the last time and denotes the source of the next
interprocedural data flow edge via buffer.

6) We have identified an effective interprocedural data
flow edge from call node read to call node scale via
buffer located at main.

In case of a store instruction dynamic backtracking would
operate in a similar fashion: Once the origin of an object
passed through one or more function calls has been identi-
fied, the owning call node would be instructed to redirect the
“last writer” edge to the call node issuing the back trace.

If the process of locating and updating sources and sinks
of computation on buffer is continued throughout simulated
program execution for the above example, runtime analysis
will yield the interprocedural data flow graph depicted in
Figure 4. One can see that for the effective communication
the actual location or owner of the storage associated with
buffer is actually irrelevant. Although buffer is located at call
node main no data is ever pass through this function.

main

normalize

scale

sum

read

writebuffer

buffer
buffer

bufferbuffer

Fig. 4. Effective global data flow graph constructed by combining static
reverse data flow analysis and runtime source and sink identification. In this
particular example a strictly directed flow from the primary source read can
be observed via sum and scale towards the sink write.

E. Simulator Generation

We have mentioned earlier on, that our primary focus in
instruction set architecture simulation is detailed profiling of
runtime behavior with a minimum effort of moving an appli-
cation into the simulation and profiling environment. Also,
we need to achieve moderate to high executing performance
since an application may need to run on large amounts of
“test vector” data before the acquired profiling data can be
augmented to represent typical program behavior in a statis-
tical sense. As a consequence, the LLILA tool will generate
an ANSI C Program from the instruction sequence earlier
on and will insert additional profiling code in the sense of
augmentation or instrumentation described in section two.
Hence, it can be said that LLILA generates a self profiling
ISA simulator from LLVM byte code. The main obstacles in
the translational process from LLVM instruction level to a C
program have already be indicated earlier on: For producing
correct, compilable programs identifier name de-mangling
needs to be performed and function calls to external entities
be identified. Note that LLILA treats external function calls
in the simplest of fashion by simply inlining them into the
generated C program. The task of resolving them is left up
to the C compiler.

III. EXPERIMENTAL RESULTS

The LLILA project is at an intermediate state of realiza-
tion: Byte code and assembly analysis as well as compiled
instruction set simulator generation cover the full semantic
scope of the LLVM framework. In order to evaluate our ap-
proach of using virtual machine architectures for ASP/ASIP
synthesis and quantitative global data flow analysis for
code partitioning, several “real world” applications from
the domain of digital video signal processing have been
investigated. Our main test-case is currently the MPEG2
video decode and encode reference implementation officially
released by the MPEG Software Simulation Group [5].
Program analysis, compiled ISA simulator generation and
simulator execution with all profiling options turned on were
performed on an 8 core 3 GHz Intel Xeon System with 32
Gigabytes of main memory under Ubuntu Linux 7.10.

Figure 5 features the call sequence FSM of the MPEG2
decoder’s main decoding loop with all its immediate callees.
It was annotated with runtime call frequency data from
decoding exactly one frame from the test data stream. Figure
6 shows a typical execution sequence of subroutine calls
issued by the decoder with a total length of over 644858
calls for decoding a single picture. The graph represents the
shortest possible encoding of the call sequence and exposes
a maximum level of three nested loops. The bold directed
edge in Figure 5 denote consecutive read after read accesses
and read after write accesses to data object number 182 (an
MPEG layer data descriptor structure) which is passed from
the main function onto the main decoding loop all the way
to the function writing out the decoded picture. This is only
an example of tracking one single variable instance across
multiple functions by profiling load and store operations on
call by reference or global objects. For the purpose of data

381

Fig. 5. Automata of the MPEG2 decoder’s main decoding loop Decode-
Picture which intially calls FlushBuffer.

Fig. 6. One of four detected path patterns through the CSG with a total
length of 644858 function calls.

flow guided partitioning of course all exchanged data - both
global as well as all shared objects across the procedural level
- will need to be considered for plotting a singular singular
path of flow through the whole software system.

1) Memory Access Pattern Detection: During program
execution, load and store operations to global data objects
were captured inbetween function calls and analyzed for

typical access patterns. These were recorded separately for
read and write operations on individually memory addresses
and differentiated by access frequency. In order to facilitate

Fig. 7. Total number of read, write and write-before-read patterns recorded
during the decoding of 48 frames in 4 GOPs. The x-axis denotes the
executing time on a function call event scale whereas the y-axis the
total number of identified access patterns. Vertical separators denote the
completion of a single frame indicated.

later analysis of the lifespan of an individual computation of
a given global variable, write-before-read event patterns were
also extracted for all memory locations. The combination of
read, write and write-before-read pattern makes up a single
access pattern and is used to annotate the above mentioned
path patterns through the CSG. As can be seen in Figure
7, the number of access patterns quickly converges towards
an upper bound, where first patterns can be attributed to the
initialization phase of the decoder (Huffman tables of the run
length decoder, iDCT coefficients etc.). The steep increase
in patterns between the first and second GOP (Group of
Pictures) reflects the properties of the MPEG datastream: The
first GOP consists of I (Inter) and P (Predicted) frames only,
whereas the second also features B (Backward Predicted)
frames forcing the decoder to access more reference data to
decode an individual frame.

2) Quantitative Global Flow: Combining call sequence
graph paths patterns and memory access patterns, one is able
to compute the total number of data transfers along each
path of program execution. This has been done for the path
pattern depicted in figure 2 and is shown in Figure 8 as an
integral plot of both read and write transfers. Even though
a total of 14.5 MBytes are transfered to and from memory
for a single picture to decode on average, the average global
flow between function calls is quite low with only 8 bytes.
However, one can clearly make out the boundaries of a
stereotypical subsequence of calls which is repeated exactly
382 times. In the extracted subsequence path pattern number
117 the decoder processes motion estimation vectors (the
8 byte transfer average figure) from the variable length
decoder. The latter makes a number of calls to the bitstream
stream buffer function FlushBuffer which results in peak

382

Fig. 8. Partial quantitative global dataflow along one call sequence graph
pattern of the main decoder. The graph represents the total dataflow between
function call 64800 and 65400. Highlighted is the stereotypical subsequence
117.

transfers from file to memory. In order to get a notion of how
the call graph members communicate via global data objects,
the communication graph has been outlined in Figure 9 with
the total number of bytes transfered between functions and
global data objects for decoding a single picture. It shows

Fig. 9. Communication Graph of the MPEG decoder. Ellipse nodes
represent members of the function call graph whereas square nodes represent
global data objects

that very few functions are actually involved in the bulk
decoding process: The majority of data is transfered through
the FlushBuffer function (callnode 29) of the runlength
decoder followed by the floor library function (callnode 57)
as part of the iDCT algorithm. Interesting is also global
data object V35 which is only read but never written. At
a closer look, the source code reveals that V35 provides the
coefficient set feeding the iDCT.

IV. CONCLUSION AND OUTLOOK

Simulation of virtual instruction set architectures is a
powerful tool for extensive runtime program analysis without
the overhead of full scale virtualization. Experiments indicate
that combining code instrumentation of virtual instructions
with additional simulator infrastructure for tracking inter-
procedural data exchange provides a feasible environment
in which both classic execution traces as well as quantitative
global data-flow analysis can be conducted. Data gathered
simulation experiments of this work feature all of the relevant
data in order to automatically partition a strictly sequentially
formulated application into a coarse grained parallel, dis-
tributed one based on its communication behavior. However
this insight comes at a cost: First of all, code instrumentation
and load and store instruction tracking as indicated above
causes a great amount of overhead in the simulator. When

compared to a none profiling simulator the overall execution
time increases by a factor of roughly 500 (the additional
memory overhead is negligible) due to the large number
of updates of simulator internal data structures. Also, the
amount of profiling data for call sequence graph and global
communications graph analysis are overwhelming. One hour
of MPEG2 video decoding and profiling “costs” roughly
2 weeks of computation time with almost 2 terabytes of
compressed data gathered from instruction instrumentation.

At the present simulation and analysis of profiling data is
performed in a single-threaded simulator instance which ac-
counts for most of the runtime budget. Current work focuses
on a multi-threaded version of the simulation environment
which dedicates a single thread to the application execution
where as the gathered profiling data is spread evenly among
the remaining processor cores resources. With respect to the
task of actually partitioning an application for a multi-core
or distributed, embedded environment, work is on the way
to break up the code into a multiple thread description for
posix pthreads as well as SystemC.

REFERENCES

[1] G. Stitt, F. Vahid, A Decompilations Approach to Partitioning Software
for Microprocessor/FPGA Platforms, Proceedings of the Design, Au-
tomation and Test in Europe Conference, 2005

[2] T. Grotker, System Design with SystemC, Kluwer Academic Publishers,
2002.

[3] Simplescalar Home www.simplescalar.com.
[4] B. Cmelik et al., Shade: A Fast Instruction-Set Simulator for Execu-

tion Profiling, ACM SIGMETRICS Performance Evaluation Review,
Volume 22(1), pp.128-137, May 1994

[5] MPEG Software Simulation Group, MPEG-2 Encoder / Decoder,
Version 1.2, http://www.mpeg.org/MSSG, 1996

[6] E. Schnarr et al., FACILE: A Language and Compiler for High-
Performance Processor Simulators, PLDI, 1998

[7] E. Witchel et al., Embra: Fast and Flexible Machine Simulation,
MMCS, 1996

[8] M. Hartoog et al., Generation of Software Tool Sets fir Application
Specific Processor Descriptions for Hardware/Software Codesign, Pro-
ceedings of DAC, 1997

[9] G. Hadjiyiannis et al., ISDL: An Instruction et Description Language
for Retargetability, Proceedings of DAC, 1997

[10] P. Marwedel. The mimola design system: Tools for the design of digital
processors, DAC ’84: Proceedings of the 21st conference on Design
automation, 1984

[11] A. Nohl et al., A Universal Technique for fast and Flexible Instruction-
Set Architecture Simulation, Proceedings of DAC, 2002

[12] S. Pees et al., Retargeting of Compiled Simulators for Digital Signal
Processing using a Machine Description Language, Proceedings of
DATE, 2000

[13] G. Braun et al., Using Static Scheduling Techniques for the Re
targeting of High Speed, Compiled Simulators for Embedded Processors
from Abstract Machine Description, Proceedings from ISIS, 2001

[14] P. Mishra et al., Functional Abstraction driven Design Space Explo-
ration of Heterogeneous Programmable Architectures, Proceedings of
ISSS, 2001

[15] W. Boehm et al., Mapping a Single Assignment Programming Lan-
guage to Reconfigurable Systems, The Journal of Super computing,
Volume 21, pp.117-130, 2002

[16] D. J. V. Evans, A. M. Goscinski Automatic Identification of Parallel
Units and Synchronization Points in Programs, International Journal of
Computer Systems Science and Engineering, 1997

[17] A. Goscinski et al., Towards a Global Computer: Improving the
Overall Distributed System Performance an the Computational Services
Provided to Users by Employing Global Scheduling and Parallel
Execution, ARC Large Grant Application, Deakin Univeristy, 1994

[18] C. Lattner et al., LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation, Proceedings of CGO, 2004

383

