
  

  

Abstract—The advent of multi-core processors and the 

emergence of new parallel applications that take advantage of 

such processors pose difficult challenges to designers. With 

relatively constant die sizes, limited on chip cache, and scarce 

pin bandwidth, more cores on chip reduces the amount of 

available cache and bus bandwidth per core, therefore 

exacerbating the memory wall problem [24].  How can a 

designer build a processor that provides a core with good 

single-thread performance in the presence of long latency cache 

misses, while enabling as many of these cores to be placed on 

the same die for high throughput. 

Conventional latency tolerant architectures that use out-of-

order superscalar execution have become too complex and 

power hungry for the multi-core era. Instead, we present a 

simple, non-blocking architecture that achieves memory latency 

tolerance without requiring complex out-of-order execution 

hardware or large, cycle-critical and power hungry structures, 

such as dynamic schedulers, fully associative load and store 

queues, and reorder buffers. The non-blocking property of this 

architecture provides tolerance to hundreds of cycles of cache 

miss latency on a simple in-order issue core, thus allowing many 

more such cores to be integrated on the same die than is possible 

with conventional out-of-order superscalar architecture.  

I. INTRODUCTION 

Increased integration on a single chip has led to the 

current generation of multi-core processors having a few 

cores per chip. Future improvement in process technology 

will eventually allow packing many more cores on the same 

die than is possible today [12]. This creates a difficult 

dilemma for processor designers: how to balance single-

thread performance of a single core with system throughput 

critical for parallel applications that will emerge to exploit 

the many-core processors of the future. Due to the growing 

gap between processor cycle time and memory access 

latency on one hand, and between execution throughput of 

many integrated cores and memory access bandwidth of a 

single chip on the other hand, processor core pipelines will 

increasingly stall waiting for data in the event of cache 

misses to memory. Limited on chip cache area, reduced 

cache capacity per core, and the increase in application 

cache foot prints as applications scale up with the number of 

cores, will only make cache miss stalls more problematic. 

Continual Flow Pipelines (CFP) [22] has been proposed as 

a processor core architecture that can sustain a very large 

number of in-flight instructions without requiring cycle-

critical hardware structures of an out-of-order superscalar to 

scale up.  By allowing a processor to continue processing 

instructions even in the presence of long latency cache 

misses to memory, CFP achieves memory latency tolerance 

of very large instruction window processors without actually 

building very large instruction buffers and register files. 

CFP treats miss independent and miss dependent 

instructions differently. Independent instructions are 

executed and retired quickly while miss-dependent 

instructions are moved out of the pipeline into a Slice Data 

Buffer (SDB) where they wait until the miss data request to 

memory is processed. When the miss data is loaded into the 

on-chip cache, the miss-dependent program slice re-issues 

again for execution from the slice data buffer. The miss-

dependent slice carries its ready input data with it in the SDB 

and forms a complete self contained program slice. The 

results of the dependent slice and the previously executed 

miss-independent instructions are automatically integrated, 

when the miss-dependent slice re-issues, via incremental 

updates of the register rename map table with the slice live-

out register mappings. CFP rolls back execution to register 

checkpoints taken at low-confidence branches [1] to recover 

from slice exceptions and mispredicted branches. 

Although the CFP architecture in [22] provides memory 

latency tolerance without increasing the circuit complexity 

and the size of cycle-critical hardware structures, it achieves 

its goals at the expense of significant additional hardware. 

The architecture requires new logic for processing and re-

issuing the miss dependent slice. In addition to the Slice Data 

Buffer, CFP requires new “Slice Rename Filter” and “Slice 

Remapping” units [22]. This additional logic on top of the 

significant complexity of the out-of-order execution pipeline 

consumes large silicon area. The cost may be acceptable for 

single-thread performance, but comes at the expense of the 

number of cores and the total multi-core execution 

throughput. 

We propose in this paper a non-blocking in-order 

Continual Flow pipeline that provides latency tolerance to 

hundreds of cycles of memory access time, but avoids the 

logic complexity and the hardware cost of the original CFP 

proposal. We believe that our simple core design is more 

suitable for future multi-core chips with 10s or 100s of 

integrated cores targeting very high throughput applications. 

A. Paper Contributions 

This paper makes the following contributions: 

• It proposes and evaluates simple in-order continual 

A Simple Latency Tolerant Processor 

Satyanarayana Nekkalapu, Haitham Akkary
1
, Komal Jothi, Renjith Retnamma, Xiaoyu Song 

1
Electrical and Computer Engineering                 Electrical and Computer Engineering 

American University of Beirut                                  Portland State University 
1
hakkary@acm.org, {cha_nu, komalj, renjith, song}@ece.pdx.edu  

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 384



  

flow pipeline architecture. The non-blocking 

property of in-order CFP provides memory 

latency tolerance while keeping the core 

complexity low, thus providing an attractive low 

power, small core architecture for   future many-

core processors. 

• The simplicity of the in-order pipeline reduces the 

penalty of CFP miss-dependent slice re-issue. 

This property widens the applicability of the 

latency tolerant CFP technique to medium 

latency events such as lower level cache misses 

that hit in the on-chip higher level caches. 

• The paper describes a fast result integration 

algorithm performed using masked flash copy 

performed locally within the register file. This 

algorithm further reduces the penalty of CFP 

dependent slice execution. 

Section II describes our in-order CFP architecture. Section 

III outlines the simulation methodology and machine 

configuration. Section IV presents a performance analysis of 

the architecture. Section V discusses related work and we 

conclude the paper in section VI. 

II. IN-ORDER CONTINUAL FLOW ARCHITECTURE 

The processor core handles instructions dependent on a 

miss differently from miss independent instructions. On a 

load cache miss, a first register checkpoint is taken. The load 

and its dependent instructions drain out of the pipeline and 

are stored in a Slice Data Buffer, freeing the pipeline for 

miss independent instructions to execute. The miss 

dependent slice instructions are stored with their input 

register values, in program order, in the SDB outside the 

pipeline. Because these slice instructions do not tie the 

pipeline staging latches, the processor achieves a continual 

flow property and can look far ahead for useful miss-

independent instructions to execute while the data miss is 

outstanding. 

When the miss data returns, a second register checkpoint 

is taken and execution switches to the slice buffer 

instructions. When all the slice buffer instructions execute, 

their results are merged with the independent instruction 

results from the second checkpoint. The two checkpoints are 

discarded and execution resumes normally without having to 

go back to execute independent instructions again. Fig. 1 

shows a block diagram of our in-order CFP 

microarchitecture. 

We now describe various details of this microarchitecture. 

A. Independent Instruction Execution and Dependent Slice 

Construction 

We call execution in this phase CFP execution. This phase 

starts when a cache miss occurs and the first register 

checkpoint is taken. Miss-dependent instructions in this 

execution phase are identified by propagating poison bits 

from producer to consumer instructions. We extend each 

register with one poison bit. On a load cache miss, a pseudo 

writeback occurs that sets the destination register poison bit 

and marks the destination register as ready. Instructions that 

read poisoned registers are miss-dependent instructions. 

When they issue, they read their source registers including 

the poison bits. At writeback, they set the poison and the 

ready bits of their destination register, and write their 

opcodes and source registers in the SDB. Instructions 

without poisoned sources execute normally and clear their 

destination register poison bits at writeback. They do not go 

into the SDB.  

If multiple cache misses occur during slice construction, 

the destination register of a new miss is poisoned as well, 

and the instructions from all slices are written into the SDB 

in program order and not data flow order. Instructions from 

different slices therefore are often stored in an interleaved 

manner. 

CFP execution phase ends when the data for the first miss 

in the SDB returns. 

B. Dependent Slice Execution 

This phase starts when the data for the first miss in the 

SDB returns and the second checkpoint taken. We call 

execution in this phase SDB execution. When this phase 

starts, fetch and execution switch to the slice data buffer. 

Instructions in the SDB may have input operands stored with 

them from the time these values were produced during CFP 

execution phase. The slice buffer instructions also have input 

operands that were poisoned. The poisoned input operands 

are outputs of other instructions in the slice data buffer and 

are computed during the slice execution and propagated 

normally through the register file or its bypass network. 

When SDB execution encounters a cache miss, the 

execution stalls until the miss is processed. Although the 

CFP proposal in [22] allows switching back to CFP 

execution in the event of a miss during SDB execution, we 

choose in our implementation the simplicity of stalling SDB 

execution until the miss data returns instead of switching 

back to CFP execution. By ensuring that once the SDB 

execution starts it is completed for all the instructions in the 

buffer, we simplify register file checkpoints and result 

integration of CFP and SDB execution with little 

performance loss.  

To understand the performance impact of our decision to 

simplify handling SDB misses, consider the case when there 

are multiple misses in the SDB. These misses are usually 

independent. When the first miss returns and SDB execution 

starts, a subsequent miss would have been issued to memory 

during CFP execution and would either be in processing, or 

have already been completed (since latency to DRAM varies 

depending on whether an address hits or misses an open 

DRAM page). CFP helps performance in this case by issuing 

the independent requests to memory concurrently, therefore 

increasing memory level parallelism.  

Another case is when the address of a second miss is 

dependent on a previous miss. In this case, the second miss 

385



  

will be poisoned and the request to DRAM cannot be issued 

until SDB execution. This serialization of dependent cache 

misses does not hurt overall performance in a significant way 

since this case is less common. 

The SDB execution phase ends when all instructions in the 

SDB are fetched and issued for execution. 

C. Checkpoints 

We use a flash copy of the register file for checkpointing. 

In one cycle all register values are shifted into a backup latch 

within the register cell. Fig. 2 shows a register file cell with 

two checkpoints and flash copy support. When 

CHKPT_CLK is asserted, a backup copy of the bit is shifted 

into a local edge-triggered latch. The register file bit value 

can be restored from a checkpoint by asserting RSTR_CLK. 

D. Independent and Dependent Slice Result Integration 

Result integration is a special checkpoint copy-and-restore 

sequence. At the end of CFP execution phase, a second 

checkpoint of the register file is taken including the poison 

bits. The register file is then used for SDB execution. In the 

absence of miss dependent slice exceptions and branch 

mispredictions, a restore cycle is performed at the end of 

SDB execution from the second checkpoint. However, not 

all registers are restored. As shown in Fig. 2, only the non-

poisoned registers are restored by using the poison bits to 

gate the clock of the restore operation. 

E. Handling Slice Exceptions and Mispredicted Branches 

Exceptions and branch mispredictions encountered during 

CFP execution are handled normally. On the other hand, 

miss-dependent exceptions and mispredicted branches are 

detected when miss-dependent instructions execute from the 

SDB. For recovery, execution is rolled back to the first 

checkpoint taken at the load cache miss instruction. This 

rollback and re-execution from the checkpoint does not 

increase power or reduce CFP performance significantly 

since exceptions are rare and the majority of mispredicted 

branches in the shadow of a cache miss are miss-independent 

(see [22] and Table 3) and are therefore handled during CFP 

execution normally without rollback to the checkpoint. 

F. Memory Ordering 

To maintain proper memory ordering of loads and stores 

from the CFP and the SDB execution phases, we use a Store 

Redo Log (SRL) technique [11]. During CFP execution, 

stores are written speculatively into the first level cache and 

CFP loads can read data from these stores by accessing the 

cache. The stores are also written in the SRL buffer (see Fig. 

1). When execution switches to SDB, the speculative stores 

in the cache are cleared, and then redone (and committed) in 

program order with the SDB stores. We use memory 

dependence prediction [16] to predict loads that depend on 

SDB stores and we poison these loads during CFP execution. 

In case the memory dependence predictor misses a load to 

store dependency, we roll back execution to the first 

checkpoint taken at the load miss. For this we use, as in [11], 

a set associative load address buffer to snoop committed 

internal processor stores. We also use this buffer to snoop 

stores from other threads and processors for memory 

consistency. 

Since our pipeline is in-order, we maintain correct 

memory ordering without the complexity of a 1
st
 level fully 

associative store queue or the need for forwarding from the 

SRL buffer as required in original CFP. This reduces the 

memory ordering and the SRL hardware significantly and 

adds another advantage to our in-order CFP implementation. 

III. SIMULATION METHODOLOGY 

To evaluate our in-order CFP microarchitecture proposal, 

we use PTLsim simulation infrastructure [25]. PTLSIM 

simulates x86 code after converting complex instructions 

into RISC-like micro-ops (uops), a technique used in Intel 

processors [18]. Due to the lack of representative many-core 

benchmarks and because we are mainly interested in this 

work in evaluating the latency tolerance and performance of 

in-order CFP in the presence of frequent cache misses, we 

use  a  representative  subset of  Spec2000 benchmarks and a 

I 

C 

A 

C 

H 

E 

D 

E 

C 

O 

D 

E 

I 

S 

S 

U 

E 

 
 

R

F 

 

 

 

EX 

UNITS 

 

L1 

 

D 

A 

T 

A 

 

C 

A 

C 

H 

E 

 LD 

ADR 

BUF 

S

R

L 

SDB 

Fig. 1. Block Diagram of In-Order CFP Architecture 

 

WR_CLK 

 

RD_CLK 

CHKPT_CLK 

 

    CHKPT_CLK 

 

1xWR_PORT 2xRD_PORT 

 

 D           Q 

 

 

 CLK 

 

 D           Q 

 

 

 CLK 

 

 D           Q 

 

 

 CLK 

      P# .RSTR_CLK 

 

Fig. 2. Register File Cell with Checkpoint Store 

 

386



  

Table 1. Baseline Machine Configuration 

Pipeline 8 stage, 1-wide,  in-order 

L1 Data cache  16KB , 4-way, 2 cycles, 64-byte line 

L1 Ins. cache  16 KB, 4-way, 2 cycles, 64-byte line 

L2 cache   64 KB,4-way, 12 cycles, 64-byte line 

L3 cache   256KB, 8-way, 50 cycles, 64-byte line 

L3 to memory  latency  350 cycles 

Branch predictor   Combined bimodal and gshare 

64K each Meta, bimodal, gshare 

 4K BTB 

hypothetical machine configuration we project from next 

generation Intel Multicore architecture (Nehalem) [10]. 

Since our simulator models a single core processor and 

assuming the on-chip cache is shared equally among cores in 

our hypothetical multicore processor, we use the Nehalem 

configuration to estimate the cache size that would be 

available for each core if all the Nehalem out-of-order cores 

were replaced by in-order CFP cores. We conservatively 

assume that it is possible to replace the 4-wide out-of-order 

Nehalem core with four single-issue in-order CFP cores  and 

derive the cache sizes shown in the baseline machine 

configuration in Table 1. All simulations were done using 

this machine configuration for 80 million instructions from 

each benchmark after skipping the initialization phase. 

The benefits of in-order CFP comes from the application 

dataflow characteristics and the pipeline organization. 

Although we have used x86 code in our study, we expect 

similar results from in-order CFP on the same benchmarks if 

run on a processor that uses different ISA, such as RISC. 

IV. RESULTS AND ANALYSIS 

Section A discusses in-order CFP performance when 

applied to L2 and L3 misses. Section B analyzes 

performance results. Section C discusses various execution 

statistics. 

A. In-Order CFP Performance 

Fig. 3 shows percent speedup of in-order CFP over the 

baseline machine configuration when applied to L2 and L3 

cache misses. Speedup over baseline varies from 3% on Gzip 

to 62% on Mgrid when CFP execution is applied to L3 cache 

misses. CFP execution when applied to L2 cache misses as 

well improves performance further with speedups varying 

from 8% on Crafty to 85% on Mgrid. Performance 

difference between benchmarks is a result of variations in 

cache miss rates. The benchmarks in the graph (and other 

Spec2000 benchmarks not shown) display consistent 

performance gains with CFP benefiting benchmarks with 

high cache miss rates more. 

Notice the effectiveness of in-order CFP architecture in 

handling, not only off chip latencies on L3 misses, but also  

on chip latencies for loads that miss the L2 cache but hit the 

on chip L3 cache, as indicated by the significant 

improvement in performance when CFP execution is applied 

to L2 cache misses. This result is particularly interesting to 

future many-core processor designers as on chip latencies 

increase with further chip integration. 

0

10

20

30

40

50

60

70

80

90

100

%
 S

p
ee

d
 u

p
 o

v
e
r 

in
o
rd

er

L3 CFP

L2 CFP 

 
Fig. 3. L2 and L3 In-Order CFP Performance 

 

Finally, we point out that even with the performance 

benefits of in-order CFP, conventional out-of-order 

superscalar execution performs better than our simple in-

order CFP architecture. However, such performance comes 

at a significant cost in power and area. The objective of our 

study is to present a low power, latency-tolerant core 

architecture as another option for future many-core 

processors running highly parallel applications. Our 

objective is not to propose a higher performance substitute 

for conventional out-of-order superscalar cores which are 

still, and may always be, the best high-performance 

architecture for conventional hard to parallelize single-thread 

applications. 

B. Performance Analysis 

Fig. 4 shows the instruction-window size distribution for 

in-order CFP when applied to L3 cache misses. In-order CFP 

is able to achieve look-ahead execution of hundreds of 

micro-ops for a significant fraction of the execution time. For 

example on Mgrid, the look-ahead CFP execution distance is 

more than 128 micro-ops for 30% of the execution time. 

This is very good look-ahead execution distance for a simple 

in-order pipeline. 

 

 

0

10

20

30

40

50

60

70

80

>32 >64 >128 >256 >512 >768

%
 o

f 
ex

ec
u

ti
o
n

 t
im

e(
cy

cl
es

)

Instruction Window Size

Gzip

Crafty

Perlbmk

Parser

Gap

Wupwise

Mgrid

Equake

Fma3d

 
Fig. 4. Look-Ahead Execution Distance 

 

387



  

Table 2. Percent of Look-Ahead Execution Independent of L3 Miss. 
G

zi
p

 

C
ra

ft
y

 

P
er

lb
m

k
 

P
ar

se
r 

G
ap

 

W
u

p
w

is
e 

M
g

ri
d

 

E
q

u
ak

e 

F
m

a3
d

 

 

54% 

 

76% 

 

63% 

 

53% 

 

96% 

 

51% 

 

77% 

 

58% 

 

70% 

 

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

%
 e

x
ec

u
ti

o
n

 t
im

e 
(c

y
cl

es
)

Number of outstanding misses

Gzip

Crafty

Perlbmk

Parser

Gap 

Wupwise

Mgrid

Equake

Fma3d

 
Fig. 5. Memory Level Parallelism with In-Order CFP. 

 

There are two factors that contribute to the in-order CFP 

performance gains 1) its tolerance to long memory latencies 

and 2) its ability to overlap the processing of multiple cache 

misses thus exposing memory level parallelism. The 

architecture ability to tolerate long memory latencies can be 

measured by the fraction of look-ahead execution after a 

miss that is independent of the miss data. Table 2 shows a 

significant percentage of the look-ahead execution to be 

independent of the miss data, thus keeping the processor 

busy while a miss is processed. This is consistent with 

observations made by others in [13]. 

Fig. 5 shows the outstanding L3 cache miss distribution. 

As can be seen from the graphs, in-order CFP increases the 

memory level parallelism significantly over the baseline 

machine which has memory level parallelism of one. Since in 

the baseline in-order machine the pipeline stalls on a miss, at 

most one miss can be processed at a time. Compare this with 

Mgrid running on in-order CFP. From Fig. 5, during 18% of 

the total execution time of Mgrid, there are 3 outstanding 

miss requests to memory processed simultaneously. 

C. Various Execution Statistics 

We present various execution statistics in Table 3. Most 

interesting are the cache miss rates in columns 6 and 7, 

which correlate very well to the observed performance. Also 

interesting is column 2 which reports the average occupancy 

of the SDB when in use. The SDB can be implemented as a 

single ported FIFO structure using SRAM and should not 

significantly increase the in-order CFP core size. 

 Column 3 has the percent of total micro-ops that enter the 

SDB. These micro-ops flow through the pipeline twice (CFP 

and SDB execution phases) but represent a small fraction of 

the total micro-ops, thus limiting the power wasted by SDB 

execution. 

 

Table 3. In-Order CFP Execution Statistics 

Bench 

mark 

Avg. SDB 

occupancy 

SDB 

to 

total 

inst 

% 

Branch 

misp 

per 

1000 

uops 

SDB 

Branch 

misp 

per 

1000 

uops 

Number  of 

cache  

misses per 

1000 uops 

 

L2 

 

L3 

Gzip 60 0.90 6.15 2.51 3.7 0.41 

Crafty 36 0.71 4.31 1.54 1.6 0.37 

Perlbmk 39 1.87 2.22 0.49 1.0 0.70 

Parser 50 7.49 7.79 4.10 6.6 3.90 

Gap 10 0.32 5.71 0.13 0.5 0.07 

Wupwise 60 3.60 0.49 0.19 4.4 4.30 

Mgrid 22 9.61 0.93 0.56 5.9 5.84 

Equake 34 6.21 3.4 0.53 3.4 2.31 

Fma3d 66 8.61 0.28 0.24 3.0 2.82 

  

Columns 4 and 5 show the branch misprediction rates. It is 

good for in-order CFP execution that the SDB branch 

misprediction rates are small compared to overall branch 

misprediction rates. This is because SDB branch 

mispredictions are costly as they are detected late after a 

cache miss is serviced and require rolling back execution to 

the load miss checkpoint. 

V. RELATED WORK 

Proposals for latency tolerant microarchitectures include 

the Waiting Instruction Buffer [14], Virtual ROBs [8], 

Cherry [15], Checkpoint Processing and Recovery [1], Kilo 

Instruction Window Processors [7], Continual Flow 

Pipelines [22] and Out of Order Commit Processors [6]. All 

these proposals are based on out of order core 

microarchitecture and are more suitable for maximizing 

performance of conventional single-thread applications 

running on multicore processors with few cores. In-order 

CFP is more appropriate with its simple small core design 

for future many core architectures running very high 

throughput parallel applications. 

Runahead execution has been proposed as a method to 

increase memory level parallelism on in-order processors [9] 

without having to build complex out-of-order execution 

pipeline, and on out-of-order cores [17] without having to 

build large reorder buffers. In runahead execution, the 

processor state is checkpointed at a long latency miss 

operation. Execution continues speculatively past the miss 

and prefetches data. When the miss data returns, runahead 

execution terminates, the execution pipeline is flushed, the 

checkpoint is restored, and execution restarts from the load 

miss instruction. Except for the prefetching effect of 

runahead, all work performed during runahead is discarded. 

In-order CFP does not discard execution. Instead, it 

seamlessly integrates CFP and SDB execution. Therefore, in-

order CFP provides latency tolerance to memory for better 

energy-efficient performance and is more suitable for future 

power limited many-core processors. 

Thread-based pre-execution methods have been proposed 

where either additional code [4][20] or a small subset of the 

program (e.g., a backward slice of a cache miss) [19][26] is 

388



  

pre-executed on idle threads of a processor prior to 

encountering the miss. The idea is to proactively execute a 

slice leading to the miss to prefetch the miss data ahead of 

time. Unlike thread-based pre-execution, in-order CFP 

execution continues on the same blocked thread and does not 

require or waste another thread. 

Flea-Flicker [2][3] microarchitecture has been proposed 

where-in a program executes on two in-order back-end 

pipelines coupled by a queue. An  advance pipeline executes 

independent instructions without stalling on long latency 

cache misses while deferring dependent instructions. A 

backup pipeline executes instructions deferred in the 

advance pipeline and merge with results from the advance 

pipeline stored in a queue. A similar microarchitecture was 

also proposed for a minimal speculative multithreading 

architecture in [21]. A key difference between flea-flicker 

and in-order CFP is the result integration method and the 

coupling queue. Flea-flicker stores all instructions and 

results from the advance pipeline in the queue and merge 

results sequentially during backup pipeline execution. In 

contrast, in-order CFP stores only the dependent instructions 

in a smaller SDB queue with their inputs and automatically 

merges results using a fast one-cycle operation. 

Sun Microsystems implemented for high throughput 

computing a chip multithreading processor with scout 

threads [5]. On a cache miss, a checkpoint is taken and a 

scout thread performs run-ahead execution. A very recent 

paper from Sun [23] adds that the architecture defers 

dependent instructions into a buffer and executes the 

deferred instructions from the checkpoint after the miss data 

returns, merging the results into the scout thread future file. 

This scout thread architecture seems to have many 

similarities with in-order CFP, but [23] presents very little 

detail of the multithreading and checkpoint hardware, the 

register file or the merge into the future file method for us to 

fully compare with our in-order CFP proposal. 

VI. CONCLUSION 

We have shown that it is possible to design a simple, small 

core that provides tolerance to cache miss latencies of 

hundreds of cycles. This core is very promising as a building 

block for future many-core processors with their limited 

cache capacity and pin bandwidth per core. Our simulations 

show up to 85% performance gain on programs that 

frequently miss the cache. 

Even though we have used single-thread benchmarks to 

test the latency tolerance of our design and its performance 

benefits, we believe that our results will hold or may even be 

better for highly parallel applications running on future 

many-core processors. We expect future parallel applications 

to exert tremendous pressure on the cache and bus 

bandwidth. Latency tolerance at low chip area and power 

cost can help mitigate this pressure. 

REFERENCES 

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing 

and Recovery: Towards Scalable Large Instruction Window 

Processors. MICRO-36, December 2003. 

[2] R. D. Barnes, E. M. Nystrom, J. W. Sios, S. J. Patel, N. Navarro, and 

W. W. Hwu. Beating In-Order Stalls with “Flea Flicker” Two-Pass 

Pipelining. MICRO-36, December 2003. 

[3] R. D. Barnes, S. Ryoo, W. W. Hwu. “Flea Flicker” Multi-Pass 

Pipelining: An Alternative to the High power Out-of-Order Offence.  

MICRO-38, November 2005. 

[4] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultaneous 

Subordinate Multithreading (SSMT). ISCA-26, May 1999. 

[5] S. Chaudhry, P. Caprioli, S. Yip, M. Tremblay. “High-performance 

Throughput Computing.” IEEE Micro, vol. 25, no. 3, pp. 32-45, May 

2005. 

[6] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order Commit 

Processors. HPCA-10, February 2004. 

[7] A. Cristal, O. J. Santana, F. Gazorla, M. Galluzzi, T. Ramirez, M. 

Pericas, and M. Valero. Kilo-Instruction Processors: Overcoming the 

Memory Wall. In IEEE MICRO, vol. 25, no. 3, May/June 2005. 

[8] A. Cristal, M. Valero, J. Llosa, and A. Gonzalez. Large Virtual ROBs 

by Processor Checkpointing. Tech. Report, UPC-DAC-2002-39, 

Department of Computer Science, Barcelona, Spain, July 2002. 

[9] J. Dundas and T. Mudge. Improving data cache performance by 

preexecuting instructions under a cache miss. In Proceedings of the 

International Conference on Supercomputing, June 1997. 

[10] First the Tick, Now the Tock: Next Generation Intel Microarchitecture 

(Nehalem). Intel Corporation White Paper. 

http://www.intel.com/pressroom/archive/reference/whitepaper_nehale

m.pdf 

[11] A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan and K. Lai. 

Scalable Load and Store Processing in Latency Tolerant Processors. 

ISCA-32, June 2005.  

[12] J. Held, J. Bautista, and S. Koehl. From a Few Cores to Many: A 

Tera-Scale Computing Research Review.  Intel Research White Paper. 

http://download.intel.com/research/platform/terascale/terascale_overvi

ew_paper.pdf.  

[13] T. Karkhanis and J. E. Smith. A Day in the Life of a Data Cache 

Miss. In Workshop on  Memory Performance Issues, June 2002. 

[14] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. 

A large, fast instruction window for tolerating cache misses. ISCA-29, 

May 2002. 

[15] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. 

Cherry: Checkpointed Early Resource Recycling in Out-of-order 

Microprocessors. MICRO-35, November 2002. 

[16] A.Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic 

Speculation and Synchronization of Data Dependences. ISCA-24, 

June 1997. 

[17] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead 

Execution: An Alternative to Very Large Instruction Windows for 

Out-of-Order Processors. HPCA-9, February 2003. 

[18] D. B. Papworth. Tuning the Pentium Pro Microarchitecture. In IEEE 

MICRO, vol. 16, no. 2, April 1996. 

[19] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-Threading. 

HPCA-7, January 2001. 

[20] Y. Song and M. Dubois, Assisted Execution. University of Southern 

California, Technical Report #CENG 98-25, Department of EE-

Systems, October 1998. 

[21] S. T. Srinivasan, H. Akkary, T. Holman, and K. Lai. A Minimal Dual-

Core Speculative Multithreading Architecture. In Proceedings of the 

22nd IEEE International Conference on Computer Design, October 

2004. 

[22] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. 

Continual Flow Pipelines. ISCA-11, October 2004. 

[23] M. Tremblay and S. Chaudhry. A Third-Generation 65nm 16-Core 

32-Thread Plus 32-Scout-Thread CMT SPARC Processor. In 

Proceedings of IEEE International Solid-State Circuits Conference, 

February 2008. 

[24] W. Wulf and S. McKee. Hitting the Memory Wall: Implications of the 

Obvious. ACM SIGArch Computer Architecture News, 23(1):20-24, 

March 1995. 

[25] X86 Cycle Accurate Processor Simulation Design Infrastructure. 

http://www.ptlsim.org/ 

[26] C. B. Zilles and G. S. Sohi. Execution-based prediction using 

speculative slices. ISCA-28, June 2001. 

389




