
Removing Hazards in Multi-Level Logic Optimization for Generalized
Fundamental-Mode Asynchronous Circuits

Feng Shi
Skyworks Solutions, Inc.

feng.shi@skyworksinc.com

Abstract— Unlike traditional synthesis methods for
fundamental-mode asynchronous circuits which require
dedicated hazard-free algorithms, a multi-level logic
optimization algorithm is developed to take advantage
of the powerful and mature synchronous synthesis algorithms
and technology libraries. The proposed algorithm is based
on a hazard analysis method, which not only detects any
hazard in an arbitrary circuit structure, but also identifies
the cause of the hazard. Then, a hazard removal process
is performed on the circuit synthesized using synchronous
algorithms to generate a hazard-free circuit. The proposed
synthesis algorithm achieves high efficiency by exploiting
synchronous optimization algorithms and technology libraries,
as demonstrated through the experimental results.

I. INTRODUCTION

Research interest in asynchronous circuits has revitalized
because of a number of advantages that they promise over
their synchronous counterparts, such as low power, no clock
skew, robustness to environmental variations, good mod-
ularity, and low electromagnetic interference. Hazard-free
logic synthesis algorithms are of great importance to design
of asynchronous circuits. Unlike their synchronous coun-
terpart, asynchronous circuits require hazard-free logic in
order to operate correctly. Synchronous circuits are protected
from such errors, since all the glitches generated before
the circuit stabilizes are masked by clock signals, and do
not propagate through latches or flip-flips. However, these
unwanted glitches increase the energy consumption of the
circuit. Therefore, hazard-free logic may also be utilized by
synchronous circuits to reduce their power consumption.

Among the set of logic synthesis techniques, this paper fo-
cuses on multi-level logic optimization and technology map-
ping for asynchronous circuits. Traditional logic synthesis
methods for synchronous circuits do not guarantee the free-
dom of hazard conditions, hence, cannot be directly utilized
to synthesize asynchronous circuits. Design of fundamental-
mode asynchronous circuits, such as burst-mode machines,
usually requires dedicated design flows [1]. For instance,
hazard-non-increasing transformations [2], [3] are utilized in
optimization and technology mapping for multi-level burst-
mode machines. However, these design tools are still in infant
stage in comparison with powerful and numerous EDA tools
for synchronous circuits, which is one of the reasons for
the limited adoption of the asynchronous design style by the
industry.

In this paper, we propose a multi-level logic optimiza-
tion and technology mapping method for fundamental-mode
asynchronous circuits. Our method builds upon commer-
cially available logic simulation and synthesis tools for
synchronous circuits, with minimum add-on to guarantee
the hazard freedom. The rest of this paper is organized as
follows. In Section II, we introduce the basic aspects of asyn-
chronous technology. In Section III, we review previously
proposed logic synthesis methods for fundamental-mode
asynchronous circuits. In Section IV, we present a hazard
detection method which does not use complicated multi-
valued logic. In Section V, we describe a hazard-free logic
optimization algorithm which eliminates the hazards in a
circuit synthesized by traditional EDA tools for synchronous
circuits. In Section VI, we demonstrate the efficiency of the
proposed multi-level logic optimization method through the
experimental results on a set of example circuits.

II. BACKGROUND

The fundamental-mode circuit style is one of the popular
asynchronous design styles. In this section, we introduce
basic definitions and properties of asynchronous circuits
and combinational hazards, particularly concentrating on the
fundamental-mode circuit style.

A. Classes of Asynchronous Circuits

Asynchronous circuits are divided into two main cate-
gories according to their design style, namely Huffman and
Muller circuits. Muller circuits [4] are designed mainly based
on signal transition graphs (or Petri Nets) as the specification
form. Under the unbounded gate delay model, these circuits
are guaranteed to work regardless of gate delays, assuming
that wire delays are negligible. Muller circuit design requires
explicit knowledge of the behavior protocol allowed by the
environment. However, no restrictions are imposed on the
order or speed that inputs, outputs, and state signals change,
except that they must comply to this protocol. Muller circuits
correspond to Speed-Independent circuits.

Huffman circuits [4] are designed using a traditional asyn-
chronous state machine approach. Correctness of Huffman
circuits relies on the assumption of “fundamental operation
mode”, which requires that outputs and state variables sta-
bilize before either new inputs or changed feedback state
variables arrive. Thus, delay elements may be required along
the feedback paths to prevent state changes from occurring

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 640

Fig. 1. Block Diagram of A Burst-Mode Machine

too rapidly. Other than that, Huffman circuits are guaranteed
to work regardless of gate and wire delays. Contemporary
Huffman circuits, such as burst-mode machines [5], [6],
allow both single-input changes (SICs) and multiple-input
change (MICs). A burst of input changes can occur in any
order, and the state variables and output signals remain until
all input changes complete. Huffman circuits allowing MICs
are also named generalized fundamental-mode circuits. Fig-
ure 1 illustrates the block diagram of a burst-mode machine,
which is one popular style of the generalized fundamental-
mode circuits.

B. Hazards

Hazard analysis is critical in design of asynchronous
circuits. A hazard, in the most general sense, is an unwanted
glitch on the output of a gate in a circuit. The presence
of hazards may cause an asynchronous circuit to operate
incorrectly. A hazard may exist in either the combinational
or the sequential portion of a circuit. We only consider com-
binational hazards in this paper, since sequential hazards are
handled in other synthesis steps such as state minimization
and encoding. There are two basic classes of combinational
hazards: function and logic hazards. Function hazards are
a property of the logic function, whereas logic hazards are
purely a property of the implementation.

Alternatively, combinational hazards can be classified into
static and dynamic hazards. Given that a transition is being
made on logic f between two points a and b in the
input space {0, 1}n, static hazards apply to cases where
f(a) = f(b), and dynamic hazards apply to cases where
f(a) 6= f(b). Single-input changes may cause both classes
of hazards if no constraint is put on the structure of the
circuit, and multiple-input changes are more likely to do so.
We consider both SICs and MICs in this paper, and a SIC
can usually be treated as a special case of MIC.

Figure 2 illustrates an example of the static hazards caused
by a SIC transition. Fig. 2 (a) shows the truth table that the
circuit in Fig. 2 (b) is implementing, with initial and final
input states of the given transition circled. Although it is free
of function hazards according to the truth table, the circuit
may output a static hazard rather than a constant one as spec-
ified. Moreover, the example in Figure 3 demonstrates how a
MIC transition generates a dynamic hazard. As illustrated in
Fig. 3 (a), the ideal circuit should output a falling transition
when the inputs switch from (A,B, C, D) = (0, 1, 1, 1) to
(1, 1, 1, 0). However, the circuit implemented in Fig. 3 (b)

may generate a static hazard on node n10, which then causes
a dynamic hazard on the circuit output.

III. PREVIOUS WORK

This paper concentrates on multi-level logic optimiza-
tion and technology mapping techniques for generalized
fundamental-mode circuits. Many researchers have stud-
ied the problem of synthesis and technology mapping for
fundamental-mode circuits. Exact hazard-free two-level logic
minimization algorithms have been developed [7], [8]. Fur-
thermore, heuristic hazard-free two-level minimization al-
gorithms have also been developed [9], [10]. Several ap-
proaches on synthesizing multi-level hazard-free circuits
have also been proposed. One approach starts with hazard-
free two-level circuits, and applies hazard-non-increasing
transformations to obtain multi-level hazard-free circuits
[11], [2]. Another approach synthesizes hazard-free multi-
level circuits directly, using binary decision diagrams [12].
Moreover, a number of hazard-free technology mapping al-
gorithms have been developed. Siegel et al [13] proposed an
algorithm for generalized fundamental-mode asynchronous
circuits by modifying an existing synchronous technology
mapper. Beerel et al [14] developed technology mapping
techiniques that optimize for average case delay of asyn-
chronous burst-mode control circuits. However, all of the
above approaches need to use dedicated hazard-free algo-
rithms for asynchronous circuits, which limits the adoption
of asynchronous design style by the industry.

IV. MULTI-LEVEL HAZARD ANALYSIS

The proposed hazard-free multi-level logic optimization
and technology mapping algorithm is based on hazard anal-
ysis for fundamental-mode asynchronous circuits. We only
need to analyze hazards in combinational logic, since the
logic optimization algorithm only transforms the combi-
national portions of the design, while sequential portions
remain untouched. The proposed analysis method directly
identifies hazards in multi-level circuits without using com-
plicated multi-valued algebras for asynchronous circuits.
Moreover, both static and dynamic hazards, or SIC and MIC
hazards, are detected using a uniformed procedure. Several
terms need to be defined before the proposed method is
formally presented.

A. Linearly Separable Logic Gates

A gate is an atomic component of a circuit in the proposed
hazard analysis algorithm. A gate is assumed to have no logic
hazard, but it can have arbitrary output delay. A gate in the
technology library can usually be regarded as an atomic gate,
unless it contains logic hazards, and must be replaced with
an equivalent subcircuit composed with atomic gates during
the hazard analysis. Among various gate functions, Boolean
linearly separable functions are of particular interest, since
they are amicable to hazard analysis. Given a Boolean
function f(x1, . . . , xn) : Bn → {0, 1}, the set of points in
Bn that map to 0 is denoted as X0, and the set of those map
to 1 as X1. The Boolean function f is linearly separable if

641

g1

g2

g3

1

1

A
B

A
C

A
BC 0 1

00

01

11

10

0 0

0

0

1

1

1

1

(a) Truth Table (b) Original Circuit

g1

g2

g3

1

1

A
B

A
C

g41
C

1
B

g5

1

1

1

(c) Hazard-Free Circuit

n1

n2

n3

n4

n5

n6

n7

n8

n9

n1

n2

n3

n4

n5

n6

n7

Fig. 2. Identifying and Removing a Static Hazard Generated by a SIC Transition

there exists a hyperplane Π in Rn that strictly separates X0

from X1, and Π ∪ {0, 1}n = φ.
Given a logic gate, the control value refers to a certain

combination of values assigned on a subset of its inputs,
which fully determine the gate output, i.e. the values on the
rest of the inputs have no influence on the output value.
For instance, a zero on any input of an AND gate set the
gate output to zero, regardless of the values on the other
inputs. Therefore, zero is the control value of an AND gate.
Similarly, one is the control value of an OR gate. The defini-
tion of the control value can be generalized for an arbitrary
gate. Assume that combinational gate g has n inputs and
one output y, and it implements Boolean function fg . If the
input vector is a = (a1, a2, . . . , an) ∈ {0, 1}n, then output
y = fg(a). Give an input i,i = 1, 2, . . . , n, the vector of the
rest inputs is defined as a(i) = (a1, . . . , ai−1, ai+1, . . . , an),
and the concatenate operation ◦ is defined as a(i) ◦ b =
(a1, . . . , ai−1, b, ai+1, . . . , an), where b ∈ {0, 1}. Generally,
vector a(i) ∈ {0, 1}n−1 is the control value for input i of
gate g if and only if fg(a(i) ◦ 0) = fg(a(i) ◦ 1). The set of
all such control values is defined as C

(i)
g , or the control set

for input i of gate g. For each input of a given gate, we can
derive its control set according to the above definition.

A signal transition on an input of a gate implementing a
linearly separable function may only change the gate output
in one direction, regardless of the values on the other inputs,
as long as they remain stable. For instance, a rising transition
on one input of a NAND gate never causes a rising transition
on the output, no matter the other input is set to 0 or 1.
Formally, we have the following theorem.

Theorem 4.1: If a gate g implements a linearly separable
Boolean function f : Bn → {0, 1}, and i is one of its inputs,
then ∀a(i)

1 ,a(i)
2 6∈ C

(i)
g , f(a(i)

1 ◦0) = f(a(i)
2 ◦0), and f(a(i)

1 ◦
1) = f(a(i)

2 ◦ 1).
Proof: Since f(x1, . . . , xn) is linearly separable, input

set X0 is separated from X1 by a hyperplane Π, assumed
to satisfy equation c · x = c1x1 + . . . + cnxn = d, where
c1, . . . , cn, d ∈ R. Because a(i)

1 6∈ C
(i)
g , f(a(i)

1 ◦0) 6= f(a(i)
1 ◦

1). First consider the case (a(i)
1 ◦ 0) · x = c1a1 + . . . +

ci−1ai−1 + ci+1ai+1 + . . . + cnan > b, and (a(i)
1 ◦ 1) · x =

c1a1 + . . . + ci−1ai−1 + ci + ci+1ai+1 + . . . + cnan < b.
Subtract the first inequality from the second one, we get
ci < 0. Since a(i)

2 is also not in C
(i)
g , if (a(i)

2 ◦ 0) · x < b

and (a(i)
2 ◦ 1) · x > b, similarly we can get ci > 0, which

contradicts the previous result. Therefore, it must be true

that (a(i)
2 ◦ 0) · x > b and (a(i)

2 ◦ 1) · x < b, thus f(a(i)
1 ◦

0) = f(a(i)
2 ◦ 0) and f(a(i)

1 ◦ 1) = f(a(i)
2 ◦ 1). Similarly,

we can prove that the above conclusion holds for the case
(a(i)

1 ◦ 0) · x < b and (a(i)
1 ◦ 1) · x > b.

B. Hazard Identification

We use the polarity, a Boolean value, to denote different
types of transitions. A signal transition can be represented by
a 2-tuple of Boolean values. For instance, a rising transition,
i.e. switching from 0 to 1, is denoted as (0, 1), while a
falling transition as (1, 0). The transition polarity is formally
defined as follows.

Definition 4.2: The transition polarity is a function p :
{(0, 1), (1, 0)} → {0, 1}, which satisfies p(0, 1) = 1, and
p(1, 0) = 0.
Specifically, the polarity of a rising transition is one, and
that of a falling transition is zero. Note that the polarity is
only defined for transitions, i.e. it is not defined for either
(1, 1) or (0, 0).

Given an input i of an arbitrary gate, if the other inputs
are not set to any of the control values, a transition on
input i must generate another transition on the output of
the gate. Moreover, if the gate function is linearly separable,
the polarity of the output transition is determined by the
input transition, regardless of the values on the other inputs,
as long as they are not in the control set. Therefore, for
each input of a linearly separable logic gate, we use the gate
polarity to indicate if the gate changes the polarity of the
input transition.

Definition 4.3: For a given input i, the polarity of a
logic gate g which implements a linearly separable Boolean
function fg is r

(i)
g = fg(a(i) ◦ 1), where a(i) 6∈ C

(i)
g .

For instance, the polarity of OR gate g3 in Fig. 2 (b)
regarding input n5 is r

(n5)
g3 = 0 ∨ 1 = 1 according to

Definition 4.3, which means that the input signal is not
inverted by the OR gate. Note that the gate polarity is not
defined for a non-linearly separable logic gate, where the
polarity of the output transition depends on both the changing
input and the other inputs.

In addition, if both the polarity of the input transition and
the gate polarity are known, we can reason about the polarity
of the output transition. For example, if the polarity of the
transition on input n3 in Fig. 3 (b) is 0, and the polarity of
AND gate g2 regarding input n3 is 1, the polarity of output
transition must be 0, given that the other input n4 is not

642

g3

g4

g5

1

A
D

B
D

(a) Truth Table (b) Original Circuit (c) Hazard-Free Circuit

g2

g1
C
D

A
B

0

1

0

g3

g4

g5

1

A
D

B
D

g2

g1
C
D

A
B

0

1

0

g6
B

1

1
C

0

0AB

CD 00 01

00

01

11

10

1 1

0

1

1

0

1

1

11 10

1 1

1 0

1 0

0 0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n9

n10

n11

n12

n13

n1

n2

n3

n4

n5

n6

n7

n8

n14

n15

n16

Fig. 3. Identifying and Removing a Dynamic Hazard Generated by a MIC Transition

set to 0, the control value. Formally, we have the following
corollary.

Corollary 4.4: If the polarity of the transition on input
i of a linearly separable logic gate g is ρi, and the other
inputs are set to a(i) 6∈ C

(i)
g , then the polarity of the output

transition is ρo = r
(i)
g � ρi, where r

(i)
g is the gate polarity

regarding input i, and � denotes the exclusive-nor operation
on Boolean algebra.

The proposed hazard analysis algorithm is based on the
above definitions and theorems. Either the stimulus to a logic
gate is a single-input change, or a multiple-input change, it
can be denoted by two input vectors, i.e. a,b ∈ Bn,a 6= b,
where a and b denote the initial and final values of the
inputs, respectively. It denotes a SIC if the Hamming distance
between a and b equals 1, and a MIC if larger than 1.
Moreover, the input pair a and b uniquely define a transition
space. A transition space, T [a,b], is the smallest Boolean
subspace which contains a and b. Under the given input
transition, whether a gate may generate a hazard on the
output can be determined using the following theorem.

Theorem 4.5: A logic gate g implementing a linearly
separable Boolean function f generates a hazard on its output
under input change from a to b if and only if there exists
a transition t(i) on input i, and T [a(i),b(i)] 6⊆ C

(i)
g , such

that p(t(i)) � r
(i)
g 6= f(b), where r

(i)
g is the gate polarity

regarding input i, and a(i),b(i) are the vectors applied on
the inputs other than i.

Proof: Since T [a(i),b(i)] 6⊆ C
(i)
g , there must exist

c(i) ∈ T [a(i),b(i)] and c(i) 6∈ C
(i)
g . As described in Section

II-A, a fundamental-mode circuit has arbitrary gate and wire
delay. Therefore, there must exist a combination of input
delays that set the inputs other than i to x(i) = c(i) for a
certain time during which transition t(i) occurs on input i.
As a result, the gate output changes to p(t(i))�r

(i)
g 6= f(b),

according to Corollary 4.4. However, the output must change
to f(b) finally. Therefore, there exists a hazard at the gate
output.

Now consider the case p(t(i))�r
(i)
g = f(b), for any input

i which is applied with transition t(i), and T [a(i),b(i)] 6⊆
C

(i)
g . Assume that t(i) = (v1, v2), and x(i) = c(i) when t(i)

occurs. if the gate output has changed to f(b), it must be
true that c(i) ∈ C

(i)
g , otherwise f(c(i) ◦ v1) 6= f(c(i) ◦ v2) =

p(t(i))� r
(i)
g = f(b), which contradicts the assumption that

the output has been f(b) already. Therefore, t(i) does not
affect the gate output. So t(i) can only cause the output to
switch to f(b) when it is still f(a). Therefore, no hazard
can be generated if p(t(i))� r

(i)
g = f(b).

Note that no constraint is placed on the Hamming distance
between input vector a and b, therefore, Theorem 4.5 may
be used to detect both SIC and MIC hazards. In addition, it
detects both static and dynamic hazards. Moreover, Theorem
4.5 detects not only logic hazards, but also function hazards.

We demonstrate how to detect hazards using Theorem 4.5
through several examples. First, consider gate g3 in Fig. 2
(b), where input vector (n5, n6) switch from (1, 0) to (0, 1).
For transition t(n5) on input n5, a(n5) = (an6) = (0) and
b(n5) = (bn6) = (1), therefore, T [a(n5),b(n5)] = {1, 0} 6⊆
C

(n5)
g3 = {1}. Moreover, p(t(n5)) � r

(n5)
g3 = 0 � 1 = 0 6=

fg3(0, 1) = 1. Therefore, gate g3 generates a hazard. The
result is consistent with the fact that a two-input OR gate
generates a glitch when a rising input transition arrives after
a falling input transition, as illustrated in Fig. 2 (b). Another
example is gate g2 in Fig. 3 (b), where input (n3, n4)
switch from (1, 0) to (0, 1). For transition t(n4) on input
n4, a(n4) = (an3) = (0) and b(n4) = (bn3) = (1). As a
result, T [a(n4),b(n4)] = {1, 0} 6⊆ C

(n4)
g2 = {0}. Moreover,

p(t(n4)) � r
(n4)
g2 = 1 � 1 = 1 6= fg2(0, 1) = 0. Therefore, a

hazard is detected on output n10 of gate g2. Again, the result
complies with the fact that a two-input AND gate generates
a glitch when a falling input transition arrives after a rising
input transition.

V. HAZARD-FREE LOGIC OPTIMIZATION

The theorems in the previous section can be utilized not
only to detect hazards in a fundamental-mode asynchronous
circuit, but also to build hazard-free logic synthesis algo-
rithms. In the following, we present the hazard removal
algorithm.

Theorem 4.5 not only detects a hazard in the circuit,
but also identifies the cause of the hazard. The transition
t(i) satisfying Theorem 4.5 is named a hazardous transition,
which in fact causes the hazard. Therefore, the hazard can
be easily removed by blocking it.

Theorem 5.1: Under input transition a = (a1,. . . ,an),b =
(b1, . . . , bn), a hazard generated by a linearly separable
logic gate may be removed, if any input i with a haz-
ardous transition is gated by inserting logic, transforming the

643

implemented Boolean function f(x1, . . . , xi, . . . , xn) into
f(x1, . . . , xi−1, xi ∧ cA,B, xi+1, . . . , xn) when ai = 0, or
f(x1, . . . , xi−1, xi∨cA,B, xi+1, . . . , xn) when ai = 1, where
A and B are the corresponding initial and final input states
of the circuit which contains the gate, respectively, and cube
cA,B = 1 if and only if the circuit input (X1, . . . , Xm) ∈
T [A,B].

The transformation specified in Theorem 5.1 does not alter
the Boolean function at the start and end points of each input
transition. When the circuit input X 6∈ T [A,B], cA,B = 0,
therefore, the new function reduces to the original function
f . Otherwise, when X = (X1, . . . , Xm) ∈ T [A,B], the
new gate function is f ′ = f(x1, . . . , xi−1, ai, xi+1, . . . , xn).
First, it is obvious that f ′(a) = f(a). In addition, it must
be true that b(i) ∈ C

(i)
g , otherwise, f(b) = r

(i)
g � p(ai, bi),

which contradicts with the fact that transition (ai, bi) is a
hazardous transition as defined in Theorem 4.5. Therefore,
f(b(i) ◦ ai) = f(b), i.e. f ′(b) = f(b). Thus, if any
hazardous transition under input transition A,B is removed
using the method in Theorem 5.1 for any gate which affects
the circuit outputs, the circuit is hazard-free for the given
transition, while the circuit function is preserved, as long as
transition spaces intersect with each other only at start/end
points. However, the inserted gating logic may introduce
hazards under other input transitions. As a result, it must
be analyzed for hazards under other input transitions.

The hazard removal method of Theorem 5.1 can be
demonstrated using previous examples. First consider the
circuit in Fig. 2 (b). As analyzed in Section IV-B, the circuit
has a static hazard on output n7 , given the input transition
from A = (A,B, C) = (0, 1, 1) to B = (1, 1, 1), where
A,B, and C are the primary inputs. According to Theorem
4.5, the transition on input n5 is the hazardous transition
which causes the hazard. In order to remove the hazard, we
use Theorem 5.1 to block it. Since in the initial state n5

is at 1, we insert the gating logic g = n5 ∨ cA,B, where
cA,B = B ∧ C. Therefore, the gating logic is implemented
as illustrated in Fig.2 (c), where the inserted gates are shown
in dash lines. In the modified circuit, the transition on n5

is blocked and does not reach gate g3. As a result, the
hazard is removed, and the circuit is hazard-free for the given
transition. Note that g3 and g5 can be further merged into
a three-input OR gate to reduce the total area. The same
method can also be used to remove dynamic hazards. In the
example circuit of Fig. 3 (b), there is a dynamic hazard at
output n13 when the inputs switch from A = (A,B, C, D) =
(0, 1, 1, 1) to B = (1, 1, 1, 0), as discussed in Section IV-
B. Since the rising transition on input n4 of gate g2 is
the hazardous transition, we may block it to remove the
hazard. According to Theorem 5.1, we insert gating logic
g = n4 ∧ cA,B, where cA,B = B ∧ C. The inserted logic is
also illustrated using dash lines in Fig. 3 (c). As a result, the
hazardous transition is blocked by gate g2, and the primary
output n13 is hazard free. Note that the gating logic may be
further simplified, depending on the particular function of
the circuit. In this example, the gating logic can simply be

g = n4 ∧ B instead of n4 ∧ B ∧ C, without changing the
function of the circuit. Therefore, incremental optimization is
often performed on the hazard-free circuits obtained through
Theorem 5.1 to achieve better results.

The proposed hazard removal algorithm may be uti-
lized to build a synthesis algorithm for fundamental-mode
asynchronous circuits based on synchronous synthesis al-
gorithms. First, given the specification of a fundamental-
mode asynchronous circuit, hazard-free state minimization
and encoding is performed using asynchronous algorithms
such as CHASM [15], and the specification for the combi-
national portion is generated. Then, synchronous EDA tools
may be used to synthesize a circuit based on the specified
combinational function, but the generated circuit may contain
logic hazards. After that, the above hazard analysis and
removal algorithm is used to eliminate the logic hazards for
any input transition, which finally generates a hazard-free
asynchronous circuit. The proposed synthesis method utilizes
the hazard analysis and removal algorithm as an incremental
step to the synchronous synthesis flow, hence is able to
take advantage of the powerful and mature optimization
algorithms and technology libraries for synchronous circuits.
Therefore, as demonstrated in Section VI, it is very efficient
in spite of not being a global optimization algorithm.

VI. EXPERIMENTAL RESULTS

The proposed algorithm is implemented in Tcl, since it is
concise and easy to interface with synchronous EDA tools.
We experimented the algorithm with a set of example burst-
mode machines. First, we used MINIMALIST [1] to encode
the states and generate the truth table of the combination
portion of each design in PLA format, according to the
burst-mode specification of the circuit. Meanwhile, all the
input transitions were stored for hazard analysis in the next
step. Then the PLA file for the combinational portion was
fed into commercial synchronous synthesis tools to generate
an optimized multi-level circuit. After that, hazards were
analyzed and removed from the circuit, as described in
Section V. Finally, the result circuit including the inserted
gating logic was verified to be free of hazards. During the
synthesis, the circuit was mapped to a 120nm synchronous
standard cell library. Note that in the experiments we only
used library cells implementing linearly separable Boolean
functions, i.e. XOR, XNOR, and MUX gates were excluded
from technology mapping. In addition, the used library
cells were assumed to be free of logic hazards. We also
synthesized these burst-mode machines with MINIMALIST
and MLO, a multi-level hazard-free logic optimization tool,
to compare with the circuits generated by the proposed
method. During logic optimization using MLO, the maximal
number of input pins for each gate was set to 4, the same as
the library cells we used. For both methods, we optimized
for minimal area.

The experimental results for each example circuit are listed
in Table I. The name of each circuit is listed in the first
column, followed by the number of inputs, outputs, and
state bits of the circuit in the second, third, and fourth

644

MINIMALIST & MLO Synchronous Proposed Method
Circuit No. of No. of No. of No. of Area No. of Area No. of Area Reduction
Name Inputs Outputs State bits Gates Gates Gates Rate (%)

concur-mixer 3 3 3 19 164.5 11 101.6 11 101.6 38.2
pe-send-ifc 5 3 4 54 529 29 280.6 32 312.1 41.0

martin-q-element 2 2 1 6 52.2 4 38.7 4 38.7 25.9
rf-control 6 5 3 29 258.9 23 193.5 23 193.5 25.3

dme-e 3 3 2 14 121.0 9 79.8 9 79.8 34.0
opt-token-distributor 4 4 5 23 196.0 16 147.6 16 147.6 24.7

tangram-mixer 3 3 1 8 70.2 3 33.9 3 33.9 51.7
it-control 5 7 5 40 401.6 27 256.4 32 302.4 24.7
dram-ctrl 8 6 1 35 333.8 23 196.0 31 275.8 17.4

hp-ir 3 2 1 5 55.6 4 36.3 4 36.3 34.7
Average 31.8

TABLE I
AREA OF SYNTHESIZED CIRCUITS

columns, respectively. The number of gates and the total
area of each circuit synthesized by MINIMALIST and MLO
are reported in the fifth and sixth columns, respectively.
The results related to the proposed method are listed from
the seventh column to the eleventh column. The seventh
and eighth columns show the number of gates and area
of each circuit which was synthesized using synchronous
tools and may contain logic hazards. As we expected, these
area numbers are considerably smaller than those generated
by MINIMALIST and MLO. Then, the hazard analysis and
removal algorithm was performed to eliminate hazards from
these synchronous versions by inserting gating logic, and
the number of gates and area of each result circuit are listed
in the ninth and tenth columns, respectively. For a number
of small circuits such as concur-mixer, their synchronous
versions are coincidentally hazard-free, so no hazard removal
logic is necessary. Note that decreasing the number of gates
may also help remove hazards, since a smaller number of
gates in the circuit often means less risk of having hazards,
and in the extreme case where the circuit is implemented
with one single gate, there is for sure no logic hazard. For
larger circuits such as pe-send-ifc, logic hazards are detected
and removed by inserting gating logic. However, the area
of each result circuit is still smaller than that generated
by MINIMALIST and MLO, which only use a limited set
of hazard-free optimization techniques and standard library
cells. The eleventh column lists the area reduction rate
achieved by the proposed method for each circuit comparing
to MINIMALIST and MLO, and the average reduction rate
is 31.8%.

VII. CONCLUSION

A multi-level logic optimization algorithm for generalized
fundamental-mode asynchronous circuits has been devel-
oped, which first optimizes the circuits ignoring the existence
of hazards, and thereafter removes the logic hazards in
an incremental step to generate hazard-free circuits. The
key component of the algorithm is a hazard analysis and
removal algorithm which not only detects a hazard, but
also identifies the cause of the hazard, and then removes
it. In comparison with traditional synthesis methods for
asynchronous circuits, which usually constrain themselves
on a limited set of hazard-free and hazard-non-increasing

techniques, the proposed method achieves better results by
exploiting more powerful CAD tools and technology libraries
for synchronous circuits, as demonstrated through experi-
mental results.

REFERENCES

[1] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and
L. Plana, “Minimalist: An environment for the synthesis, verification
and testability of burst-mode asynchronous machines,” Columbia
University, NY, Tech. Rep. TR CUCS-020-99, July 1999.

[2] D. S. Kung, “Hazard-non-increasing gate-level optimization algo-
rithms,” in International Conference on Computer Aided Design, 1992,
pp. 631–634.

[3] S. H. Unger, “A building block approach to unclocked systems,” in
Proc. Hawaii International Conf. System Sciences, vol. I. IEEE
Computer Society Press, Jan. 1993.

[4] C. J. Myers, Asynchronous Circuit Design. New York: John Wiley
and Sons, Inc., 2001.

[5] S. M. Nowick and D. L. Dill, “Synthesis of asynchronous state
machines using a local clock,” in Proc. International Conf. Computer
Design (ICCD). IEEE Computer Society Press, Oct. 1991, pp. 192–
197.

[6] S. M. Nowick, “Automatic synthesis of burst-mode asynchronous
controllers,” Ph.D. dissertation, Stanford University, Department of
Computer Science, 1993.

[7] S. M. Nowick and D. L. Dill, “Exact two-level minimization of
hazard-free logic with multiple-input changes,” IEEE Transactions on
Computer-Aided Design, vol. 14, no. 8, pp. 986–997, Aug. 1995.

[8] C. Myers and H. Jacobson, “Efficient exact two-level hazard-free
logic minimization,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems. IEEE Computer
Society Press, Mar. 2001, pp. 64–73.

[9] M. Theobald, S. M. Nowick, and T. Wu, “Espresso-HF: A heuristic
hazard-free minimizer for two-level logic,” in Proc. ACM/IEEE Design
Automation Conference, 1996.

[10] J. Rutten and M. Berkelaar, “Efficient exact and heuristic minimization
of hazard-free logic,” in Proc. International Conf. Computer Design
(ICCD), Oct. 1998, pp. 152–159.

[11] S. H. Unger, Asynchronous Sequential Switching Circuits. New York:
Wiley-Interscience, John Wiley & Sons, Inc., 1969.

[12] B. Lin and S. Devadas, “Synthesis of hazard-free multi-level logic
under multiple-input changes from binary decision diagrams,” in Proc.
International Conf. Computer-Aided Design (ICCAD), Nov. 1994, pp.
542–549.

[13] P. Siegel, G. D. Micheli, and D. Dill, “Automatic technology mapping
for generalized fundamental-mode asynchronous designs,” in Proc.
ACM/IEEE Design Automation Conference, June 1993, pp. 61–67.

[14] P. A. Beerel, K. Y. Yun, and W. C. Chou, “Optimizing average-
case delay in technology mapping of burst-mode circuits,” in Proc.
International Symposium on Advanced Research in Asynchronous
Circuits and Systems. IEEE Computer Society Press, Mar. 1996.

[15] R. M. Fuhrer, B. Lin, and S. M. Nowick, “Symbolic hazard-free
minimization and encoding of asynchronous finite state machines,” in
Proc. International Conf. Computer-Aided Design (ICCAD). IEEE
Computer Society Press, 1995.

645

