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Abstract— The replacement policies commonly used in mod-
ern processors perform an average of 57% worse than an
optimal replacement policy for commercial applications using
large, shared caches in a chip-multiprocessor (CMP). Recent
proposals that improve the performance of smaller, unipro-
cessor caches with SPEC CPU workloads do not achieve
similar benefits with commercial workloads and larger caches
, even though these caches still perform worse than optimal.
The recently proposed Shepherd Cache replacement policy
reduces miss-ratios by 7.3% on average, but it relies on an
impractical LRU policy and requires 5.3% overhead relative
to the total cache capacity. We propose two new, practical,
low-overhead replacement policies that mimic Shepherd Cache
with significantly less meta-data overhead. First, we propose
a Lightweight Shepherd Cache design that reduces miss-ratios
by 8% on average and up to 19%, while requiring only 1.9%
meta-data overhead . We also propose an Extra-Lightweight
Shepherd Cache design that reduces overhead to only 0.5%
when combined with a practical Clock replacement policy while
reducing miss-ratios by an average of 5.4% and up to 14%.

I. INTRODUCTION

In the foreseeable future, the current trend towards chips
with more cores and larger shared caches is expected to
continue. Besides capacity and associativity, the replacement
policy has an important impact on performance. Despite this,
modern caches still use replacement policies that were tuned
for relatively small uniprocessor caches. Even recent research
on cache replacement policies (e.g. [1], [2], [3]) continues
to use relatively small, 128KB to 2MB caches evaluated
with SPEC CPU workloads. This work evaluates different
replacement policies for 4MB to 32MB shared caches with
commercial workloads. We focus on improving cache miss-
ratios with practical, low-overhead replacement policies.

Our initial investigations evaluate a few common, well-
known replacement policies, and demonstrate that they result
in miss-ratios that are as much as twice the miss-ratio
obtained when using Belady’s MIN algorithm [4]. While the
future knowledge used by this algorithm makes it unrealistic,
it still indicates the potential for significantly lower miss-
ratios over conventional replacement policies.

Recently, Rajan and Govindarajan introduced the Shep-
herd Cache (SC) design that attempts to mimic the decisions
made by an optimal replacement policy [2]. SC requires a
significant amount of meta-data overhead. For example, the
meta-data overhead for a 4MB cache is 219KB, or 5.3%
of the total cache capacity. This meta-data consumes not
only significant on-chip area, but also significant power as a
large portion of the replacement meta-data must be read for
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each cache access. In addition, the SC design incorporates
a baseline LRU replacement policy that is impractical to
implement for commercial designs with highly associative
caches. Our new designs follow the same approach as the
shepherd cache, but with a focus on reducing meta-data
overhead and on making the design practical.

As an alternative to true LRU, commercial designs often
approximate them with more practical pseudo-LRU replace-
ment policies. However, we demonstrate that these approxi-
mations can increase miss-ratios up to 9% compared to true
LRU. As a result, this work takes into consideration the prac-
ticality of implementing true LRU replacement policies and
the performance impact of using more practical alternatives.

We present two new designs based on the original Shep-
herd Cache concept. The first design, the Lightweight Shep-
herd Cache (SC-L), directly mimics the original shepherd
cache over 98% of the time, while requiring 63% less meta-
data overhead. The second design, the Extra-Lightweight
Shepherd Cache (SC-XL), attempts to capture only the
essential characteristics of the original design while requir-
ing minimal amounts of meta-data overhead. Comparing
the different designs, the original Shepherd Cache requires
438 bits of meta-data per set, representing an overhead of
5.3% of the cache data capacity, and reduces miss-ratios by
an average of 7.3% compared to LRU replacement. SC-L
requires just 1.9% meta-data overhead and reduces miss-
ratios by 8.2% on average. The SC-XL design combined
with a baseline clock replacement policy requires just 0.5%
overhead, while reducing miss-ratios by an average of 5.4%
across all workloads and cache sizes.

The remainder of the paper is organized as follows:
Section II describes several existing replacement policies and
other related work. Section III describes the two new replace-
ment policies. Section IV evaluates the different replacement
policies. Finally, Section V summarizes and concludes the
work.

II. BACKGROUND AND RELATED WORK
A. Non-Adaptive Replacement Policies

Most caches use one of a small number of well-known
cache replacement policies. The most well-known policy
is the least-recently used (LRU) policy. Others include
pseudo-LRU algorithms (PLRU) that approximate LRU,
least-frequently used (LFU), the clock algorithm (Clock) [5],
random replacement, and the “not most recently used” (Not-
MRU) policy.



LRU uses a stack to track the order of the most recent
accesses to a set of cache lines. Upon an access to a line,
the line moves to the top of stack, indicating that it is the
most recently used (MRU) line. When choosing a victim
line for replacement, the line at the bottom of the stack, the
least-recently used (LRU) line, is chosen. In the traditional
LRU policy, new cache lines are placed at the top of the
stack in the MRU position; we refer to this as the MRU
insertion policy (MIP). For an N-way set-associative cache,
each set requires at least log,(N!) bits to maintain an LRU
stack. While this overhead is manageable for associativities
of four or less, it quickly becomes impractical for higher
associativities. As an alternative, a number of pseudo-LRU
algorithms have been proposed that approximate the LRU
stack with less overhead [6]. The LRU and pseudo-LRU
algorithms exploit temporal and spatial locality in programs
and attempt to keep recently accessed lines in the cache.

The LFU policy maintains an access count for each cache
line in a set. When choosing a victim for replacement, the
line with the lowest count (i.e., fewest accesses) is evicted.
LFU policies typically also implement an aging policy that
automatically reduces access counts over time to prevent
cache pollution from stale lines.

The clock algorithm [5] is a well-known operating system
page replacement policy, but it is equally applicable to
processor caches. In this policy, the “hand” of the clock is a
pointer to one of the cache lines in a set. Each cache line has
a single rouched bit. When a new line is allocated, the line
pointed to by the hand is examined. If the touched bit for this
line is not set, then it is chosen as the victim. Otherwise, the
bit is reset and the hand is incremented to point to the next
cache line. This process repeats until a line with a cleared bit
is found and evicted. The fouched bit for a line is set upon an
access to that line, including the initial access. Despite being
more complex than other algorithms, the Clock algorithm
benefits from low area overhead that grows linearly with the
cache associativity. Also, although conceptually Clock uses
a sequential process, it can be implemented in a single cycle.

Random replacement and Not-MRU are two very simple
policies. Random replacement, as its name suggests, simply
selects a victim at random. This requires no additional meta-
data and can use a linear feedback shift register to select
victim cache lines. As a slight improvement, the Not-MRU
policy tracks the most recently used (MRU) line and evicts a
random line other than the MRU line. This policy has been
shown to out-perform random for some workloads.

B. Adaptive Insertion Policies

In a recent work, Qureshi et al. [1] propose modifying the
traditional LRU replacement policy by changing where new
cache lines are inserted into the LRU stack. They propose
an LRU insertion policy (LIP), a bimodal insertion policy
(BIP), and a dynamic insertion policy (DIP).

The work is motivated by the observation that the tra-
ditional LRU policy uses an MRU insertion policy (MIP),
inserting new lines in the MRU position in the stack. Work-
loads with large working sets and cyclic access patterns are
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known to have poor hit-rates when using MIP. To overcome
this problem, LIP instead inserts new lines in the LRU
position at the bottom of the stack. This policy performs
well for cyclic workloads, but penalizes many MIP-friendly
workloads.

In the next policy, BIP, most lines are inserted in the
LRU position, but with a small, fixed probability, €, some
lines are inserted in the MRU position. This provides an
aging mechanism to help the policy adjust to changes in the
working set. Finally, DIP dynamically chooses between using
either BIP or MIP. A small number of sets are dedicated to
using each policy, and a saturating counter compares which
policy results in more misses. The remaining sets in the cache
use whichever policy performs best in the dedicated sets.

C. Shepherd Cache

Rajan and Govindarajan [2] have proposed the Shepherd
Cache (SC) design that attempts to emulate an optimal cache
replacement policy for a conventional cache.

SC replaces a large, highly associative cache with a cache
with lower associativity (the main cache, or MC), and uses
a secondary, shepherd cache to approximate an optimal
replacement policy in the main cache. The intuition is that
the benefits of using optimal replacement will overcome the
reduced associativity of the main cache. Blocks are initially
allocated into the shepherd cache (SC), delaying the optimal
decision that will be emulated. While a line is in the SC, it
collects information about the order of accesses to each line
in the same set in the main cache. A FIFO order is maintained
within the SC, and when the SC is full each allocation evicts
the oldest line from the SC. When a line is evicted from the
SC, the information that was collected is used to approximate
the replacement decision that an optimal replacement policy
would have made when the line was first allocated.

An optimal replacement policy replaces the line with the
least imminent access, that is the line whose next access is
farthest in the future [4]. To determine this information, each
line in the SC tracks the imminence order of each line in the
set. Specifically, the imminence order is the order of the
first access to each line after the initial allocation of the SC
line. For this purpose, each SC line maintains an imminence
counter for each line in the same set. These counters are
initialized to a value representing unknown imminence, then
the first line accessed sets its counter to O, the next line to
1, and so on.

FIFO order is maintained within the SC. When a new
block is allocated in a full SC, the oldest block in the SC
tries to move to the main cache. At this point shepherd cache
approximates the optimal replacement decision in the main
cache. The imminence counters are used to evict the least
imminent line, that is, the line with the highest value in its
imminence counter.

The optimal replacement decision can only be determined
when all lines have been accessed since the SC line was
first allocated. Otherwise, the decision is approximated by
evicting one of the lines with unknown imminence. If the
line moving from the SC to the main cache has unknown
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Fig. 1. Shepherd Cache metadata for one set in a 16-way set-associative
cache with 4 SC-ways and 12 MC-ways.

imminence, it is directly evicted, otherwise, a baseline LRU
replacement policy is used to evict one of the lines from the
main cache which has unknown imminence. ! Lines in the
SC are not tracked by the baseline replacement policy, so
the SC line is placed in the LRU position when it moves to
the main cache.

To avoid moving lines between two distinct structures,
the actual design maintains only a single cache array. Each
line has a single bit SC-flag to indicate whether it is an
MC-way or an SC-way, as well as an SC-ptr field that
uses logy(SC-associativity) bits to indicate which immi-
nence counters belong to each SC-way. Each line has SC-
associativity imminence counters, each log, (Associativity) +
1 bits wide. In addition, each set has a Next Value Array
(NVA) that stores the next counter value for each SC-way. Fi-
nally, log, (SC-associativity!) bits are used to maintain FIFO
order amongst the SC-ways. For an SC design with four
SC-ways and 12 MC-ways, all of this meta-data combined
requires 393 bits of overhead per set, as shown in Fig. 1.
When combined with a baseline LRU policy requiring 45
bits, this results in a total of 438 bits of meta-data per set.
As a result of this large amount of meta-data, Rajan et al. [2]
compare against a baseline with one additional block of data
in each cache set.

D. Other Replacement Policies

Subramanian et al. [3] propose an adaptive mechanism
similar to the DIP policy proposed by Qureshi et al. [1],
except that it compares and selects from two entirely different
replacement policies instead of just two insertion policies.
This scheme is motivated by scenarios where different re-
placement policies perform significantly better for different
workloads. In our results, we found the relative performance
of different replacement policies was similar across different
workloads. However, varying the insertion policy with LRU
replacement does perform better for some workloads. Thus,
we evaluate DIP but not the adaptive caches proposed by
Subramanian et al.

'The implementation used in [2] reverses this order, only evicting the SC
line if no line in the main cache has unknown imminence. However, the
main effect of this difference is that a design with N SC lines per set using
our implementation behaves similar to a design with N — 1 SC lines per set
using the original implementation.

The concept of a cache appears in many contexts in
computer systems. Virtual memory paging systems, disk
buffer caches, and web browser caches all act as caches, and
they all employ replacement policies. A number of recent
works have proposed new replacement policies in these
other contexts [7], [8], [9]. These replacement policies could
potentially be applied to processor caches. However, these
algorithms typically require significant metadata overhead
and complex logic that make them unattractive to implement
in hardware.

III. NEW REPLACEMENT POLICIES
A. Lightweight Shepherd Cache (SC-L)

Our first new replacement policy simplifies the approach
taken by the shepherd cache design. Instead of attempting to
identify the imminence order of all lines in a set, our new
Lightweight Shepherd Cache design (SC-L), divides each set
into two groups: those with known imminence, and those
with unknown imminence. When at least one line in the
cache has unknown imminence, our new SC-L design follows
the same replacement policy as the original SC design and
uses a baseline replacement policy to select from the group of
lines with unknown imminence. When all lines in the cache
have known imminence, SC-L relies on the baseline policy
to select a victim, instead of using the imminence counters
to evict the least imminent line.

We described the metadata structures of the original SC
design in Section II-C. In our new SC-L design, we re-
place the logs (associativity) + 1 bit imminence counters with
single bit known flags. Where the original design would
update the value of these imminence counters, the new SC-L
design merely sets the known bit. The NVA is removed, and
all the remaining metadata remains the same. This design
reduces the total replacement policy overhead from 438 bits
to only 162 bits per set when combined with a baseline LRU
replacement policy.

B. Extra-Lightweight Shepherd Cache (SC-XL)

The SC-L design takes a simple approach to identifying
whether a line has known or unknown imminence, and uses
this information to approximate the behavior of the SC
design. Our second design takes an even simpler approach
and attempts to capture only the behavior of the SC design
with a completely different mechanism.

When evicting a line, SC and SC-L look at three possi-
bilities: 1) the SC line with unknown imminence; 2) an MC
line with unknown imminence; and 3) a line with known
imminence. We observe that lines with known imminence
have necessarily been accessed more recently than lines with
unknown imminence. Thus, if any lines in the MC have un-
known imminence, then the LRU line should have unknown
imminence. 2 Thus, if the known flags or imminence counters

2In practice, this is not strictly true. SC lines are placed in the LRU
position when they move to the MC, even if they have known imminence
relative to other SC lines. However, we ignore this slight discrepancy when
motivating the SC-XL design.
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are mainly used to identify lines with unknown imminence,
the baseline LRU policy could potentially be used instead.

Based on these observations, we propose the Extra-
Lightweight Shepherd Cache (SC-XL) that takes advantage
of the inherent imminence ordering of LRU. The imminence
counters of the SC design and the known bits of the SC-
L design are all replaced with a single known bit for each
SC-way. Newly allocated lines clear the known bit, and any
subsequent access to that line will set the known bit. Like
the previous SC and SC-L designs, newly allocated cache
lines are placed into a small SC FIFO. If the oldest SC line
does not have its known bit set, then it is evicted. Otherwise,
the LRU line in the MC is evicted, and the oldest SC line
becomes the LRU line in the MC.

Like the previous SC and SC-L designs, instead of main-
taining separate SC and MC structures, metadata is used to
identify which cache ways currently store SC-ways. We use
a single pointer for each SC-way, as well as a single known
bit for each SC-way, in addition to the metadata needed
for the baseline replacement policy. Thus, for a 16-way set-
associative cache with four SC ways, and a baseline LRU
policy, SC-XL requires a total of 65 bits per set. This includes
45 bits for the baseline LRU replacement policy, four 4-bit
pointers to identify the four SC-ways, and four 1-bit known
flags.

C. Different Baseline Replacement Policies

Both of our new replacement policies require significantly
less metadata overhead than the original SC design. However,
they both still use an impractical LRU replacement policy. In
theory, any replacement policy can be used as a replacement
policy. Thus, the following two sections describe how we
adapt SC-L and SC-XL to use more practical replacement
policies.

1) Adapting SC designs to PLRU: Instead of the im-
practical LRU policy, commercial designs often use sim-
pler pseudo-LRU [6] replacement policies. As an example
pseudo-LRU algorithm, we consider the policy used in the
IBM 3033 [6]. In this algorithm, a binary tree is used to
represent relative orderings between groups of cache lines
in a set. The leaves of the tree represent the order between
adjacent cache lines; the next level of the tree represents the
order between adjacent pairs, and so on until the root of the
tree which represents the order between the two halves of
the tree. On each access, a block becomes the most recently
used block and adjusts the relative orderings at each level of
the tree as necessary to indicate that that block was touched
more recently than all others. As a small optimization, the
top two levels of the tree are combined into a single 4-way
branch and five bits are used to represent an exact LRU
order between four sub-trees. This implementation requires
loga(N)+1 bits of metadata for each set in an N-way set-
associative cache.

The binary tree implementation provides a total ordering
between all cache lines, but this order usually differs from the
actual LRU order. As an extreme example, when the MRU
line and LRU line are in adjacent ways, the LRU line might

be represented in the pseudo-LRU order as being the second
most recently used line.

We adapt SC-L, and SC-XL to use pseudo-LRU as the
baseline replacement policy by treating the total order rep-
resented by the tree as the true LRU order. When placing a
line in the LRU position, we modify all levels of the tree to
indicate that the given way is the LRU way. When selecting
the LRU line from among a subset of all the lines in a set,
we use the total order provided by the binary tree. Similar to
our implementations with LRU, the oldest SC line is treated
as being less recently used than all of the MC lines.

2) Adapting SC designs to Clock: Our evaluation in
Section IV shows that a simple Clock algorithm performs
better on average than SC-L or SC-XL when they use a
baseline pseudo-LRU algorithm. Thus, it seems reasonable to
adapt SC-L and SC-XL to use a clock replacement policy. To
adapt our designs, we have to change the policy for selecting
candidates for replacement decisions, as well as the policy
for moving a line from an SC-way to an MC-way.

For both designs, if the oldest SC entry has not been
touched since being allocated (i.e., it has unknown im-
minence), then this line is chosen as the victim. For the
SC-L design, we then search for any lines with unknown
imminence. While LRU and pseudo-LRU policies provide
an order to select one of these lines, the Clock policy does
not. Instead, we define a fixed order among ways, starting
with way O and ending with way associativity — 1. If all
lines have known imminence, then we use the normal clock
replacement policy, skipping any lines in SC-ways. For the
SC-XL design, if the oldest SC-entry is not chosen, we
simply use the baseline clock policy, again skipping any lines
in SC-ways.

Finally, when moving a line from an SC-way to an MC-
way, both designs treat this as a new allocation and clear the
line’s fouched bit.

IV. EVALUATION

This section evaluates the new SC-L and SC-XL re-
placement policies. Section IV-A describes our evaluation
methodology. Section IV-B evaluates a number of common
replacement policies and demonstrates the potential improve-
ment offered by the optimal replacement policy. Section V-
C re-examines the different insertion policies proposed by
Qureshi et al. [1] and shows that they offer little benefit for
commercial workloads when combined with practical PLRU
replacement policies. Finally, Section IV-D compares SC,
SC-L, and SC-XL designs when combined with LRU, PLRU,
and Clock baseline replacement policies.

A. Methodology

We used the Casper [10] trace-based cache simulator to
measure cache miss-ratios. We used bus traces collected
from an eight processor system where each processor had
a 256KB L2 cache. We simulated a four core CMP where
each core used SMT to execute two threads, and the memory
references in the traces were injected into the L2 caches. The
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Fig. 2. Common replacement policies.

cache hierarchy consists of four private 256KB, 8-way set-
associative L2 caches and a shared, 16-way set-associative
L3 cache with a capacity ranging from 4MB to 32MB. All
caches use 64-byte blocks. All experiments used an LRU
replacement policy for the private L2 caches. We present
results in terms of global off-chip miss-ratios for the shared
L3 cache. The global miss-ratio is defined as the number of
references that miss in the L3 divided by the total number of
memory references in the trace. Results are presented relative
to the baseline global miss-ratio for the same workload on
the same cache with an LRU replacement policy with MRU
insertion. All figures use this same baseline for comparison.

We used traces from four commercial workloads: SpecJBB
(SIJBB), a SAP workload, TPC-C, and TPC-E. For each
trace, we used 50 million references to warm-up the caches
and measured miss-ratios for the remaining references in the
trace, which ranged from 200 to 250 million.

B. Simple Cache Replacement Policies

First, we examine the performance of various well-known
replacement policies. Fig. 2 shows the relative miss-ratio of
the L3 cache for all four workloads with cache sizes of 4MB,
8MB, 16MB and 32MB. The six curves show relative miss-
ratios for: random replacement (RND), the Not-MRU policy,
a pseudo-LRU algorithm (PLRU) based on the policy used
in the IBM3033, least-frequently used (LFU) replacement,
the clock algorithm (CLOCK), and finally, Belady’s MIN
algorithm for optimal replacement (OPT). The miss-ratios
are normalized to the miss-ratio of LRU replacement with an
MRU insertion policy. The two random replacement policies
use the standard C library random number generator instead
of modeling a specific LFSR implementation.

Fig. 2 shows that RND and Not-MRU perform very poorly,
between 20% and 40% worse than LRU for most cases.
Also, note that OPT performs an average of 36% better
than LRU, indicating potential for new algorithms to improve
performance.

Finally, we note the interesting behavior for SIBB when
going from 8MB to 16MB. The LRU policy results in a
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Fig. 3. LRU replacement with different insertion policies.

sharp decline in absolute miss-ratios between these two
points, representing an inflection point in the miss-ratio
curve. This inflection point occurs for slightly larger cache
sizes for other policies, resulting in the behavior shown in
Fig. 2, where relative miss-ratios of different policies vary
drastically. Many of our other results also show this same
behavior for SIBB.

C. Insertion Policies

We next consider the effects of varying the insertion policy
used with an LRU replacement policy. Fig. 3 shows the
relative miss-ratios using an LRU insertion policy (LRU-
LIP), a bimodal insertion policy (BIP) with € = 1/32 [1],
and dynamic insertion policies with 8-bit counters and 32,
128, and 512 dedicated sets (DIP-32, DIP-128, and DIP-512).
To highlight DIP’s ability to select between two different
insertion policies, we select between LIP and MIP insertion
policies (instead of BIP and MIP as in [1]). We use the
method described in [1] for selecting dedicated sets. Fig. 3
shows that using BIP or LRU-LIP instead of the baseline
LRU-MIP can reduce miss-ratios by up to 15% for SIBB
and up to 10% for TPC-E. However, out of the seven points
where LRU-LIP out-performs the baseline, DIP only sees
improvement for two of these points. This behavior is a result
of biased behavior in the dedicated sets. The sets dedicated
to LIP have not only more absolute misses but also higher
miss-ratios for many cases were LIP outperforms MIP in
general (e.g., TPC-E with an 8MB cache). In such cases, the
dedicated sets exhibit behavior counter to the overall cache
trends, resulting in selecting a poorer performing insertion
policy.

1) Prime-Modulo Set Indexing: To overcome the biasing
of the dedicated sets, we implemented a prime-modulo set
indexing scheme [11]. Fig. 4 shows the results of using
prime-module set indexing for SJBB and TPC-E. The y-axis
still shows relative miss-ratio compared to the baseline of
LRU-MIP with conventional set-indexing. In addition to the
three DIP configurations, we also show results for LRU-MIP
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and LRU-LIP with prime-modulo set indexing. Using prime-
modulo set indexing does reduce the bias in the dedicated
sets, as the DIP curves generally behave similarly to the best
policy (LIP or MIP). However, for SIBB, we see that the
number of dedicated sets has a significant effect on overall
performance of DIP. Thus, while prime-modulo set-indexing
improves the performance of DIP for our workloads, careful
parameter tuning is still required for the best results.

2) Effects of Pseudo-LRU Replacement: Fig. 5 shows
the effects of different insertion policies when used with
the pseudo-LRU algorithm described in Section III-C.1. All
results are shown relative to the same baseline as previous
figures. The dashed curves with hollow markers show results
for pseudo-LRU using LIP, MIP, and DIP with 128 dedicated
sets. The solid curve shows results for DIP-128 using prime-
modulo set indexing.

When individual curves are compared in Fig. 3 and Fig. 5,
the results demonstrate that using pseudo-LRU performs
worse than true LRU for any given insertion policy. It also
reduces the benefits of varying insertion policies. Even the
best policy shown in Fig. 5, PLRU-DIP-128-prime, increases
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Fig. 6. SC, SC-L, and SC-XL designs with baseline LRU replacement.

the miss-ratio by an average of 2.7%, and in the best case
it only sees a reduction in miss-ratio of 7.3%. Compare
this with the results of the simple Clock algorithm shown
in Fig. 2 which increases miss-ratios by only 0.9% on
average. This demonstrates that for a practical low-overhead
replacement policy, using a dynamic insertion policy offers
little or no benefit compared to other well known replacement
policies.

3) Insertion Policy Summary: Different insertion policies
can reduce miss-ratios up to 15% in the best case. But in
practice dynamic insertion policies are difficult to tune and
require techniques such as prime-modulo set indexing to
avoid problems with non-uniform set accesses. When more
practical PLRU algorithms are used, the maximum benefit is
reduced to only 7.3%, and the average miss-ratio is worse
than simply using the Clock replacement policy.

D. Shepherd Cache Policies

Fig. 6 shows the relative miss-ratios of a number of
shepherd cache designs compared to our baseline 16-way
cache with LRU-MIP replacement. The first curve, indicated
by grey squares, shows miss-ratios for an SC design with
four SC-ways and eleven MC-ways, for a total of 15-way
associativity. Despite having a smaller cache capacity, the
additional metadata overhead for this design results in a total
cache area comparable to the baseline design. The second
curve, indicated by grey triangles, shows the miss-ratio for
an SC design with four SC-ways and 12 MC-ways, for a total
of 16-way set-associativity. This second design has the same
data capacity as the baseline cache designs, but the extra
replacement policy overhead is roughly equivalent to adding
an extra way to the cache. The final two curves, indicated
by hollow diamonds and asterisks, show SC-L and SC-XL
designs, respectively, both with four SC-ways and 12 MC-
ways. These two designs have the same data capacity as the
baseline cache, and significantly less extra overhead than the
original SC design.

These results show that our SC-L and SC-XL designs
perform similarly to the original shepherd cache design for
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Fig. 7. Fraction of all replacements where all lines in the set have known
imminence.

our workloads. In fact, for TPC-E, our new designs perform
better than the original shepherd cache design. As expected,
SC-L performs better than SC-XL. Across all these cache
sizes and workloads, the SC design offers a 7.3% reduction in
miss-ratio while SC-L offers a slightly better 8.2% reduction
in miss-ratio, and SC-XL offers an average of 4.9% reduction
in miss-ratio.

The key difference between the SC and SC-L designs is
that SC creates a precise imminence ordering, while SC-L
simply tracks known or unknown imminence. Fig. 7 shows
the fraction of all replacement decisions where all lines have
known imminence for the 15-way SC-4 design shown in
Fig. 6. The figure shows that 98.6% to 99.97% of the time
there is at least one cache line that has unknown imminence
and SC and SC-L should make the same replacement deci-
sion. 3

1) Shepherd Cache + Pseudo-LRU: The SC, SC-L, and
SC-XL designs considered so far relied upon a baseline
LRU replacement policy in the MC-ways. Fig. 8 shows the
results of implementing our SC-L and SC-XL designs with a
pseudo-LRU baseline replacement policy (grey lines labeled
SC-L+PLRU and SC-XL+PLRU). For comparison, the graph
also shows the same designs using a baseline LRU policy.
We also show the results of using a simple clock algorithm.
All of the SC-L and SC-XL designs shown here have four
SC ways and 12 MC ways. We omit the original SC design
since it behaves similar to the SC-L design.

These results show that changing the baseline LRU policy
to a pseudo-LRU policy eliminates much of the benefit of
using shepherd cache. Averaging across all cache sizes and
designs, the SC-L+PLRU shows a 0.3% increase in miss-
ratio compared to our baseline of true LRU replacement,
while the SC-XL+PLRU shows an even worse 6.2% increase
in miss-ratio. Compare this to a simple clock algorithm
which on average only increases the miss-ratio by 0.9% while

3In practice, the actual decisions can differ, e.g., the victim chosen by
one design might have been previously evicted in the other design at a time
when all lines had known imminence.
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Fig. 9. SC-L, and SC-XL designs with baseline Clock (CLK) replacement.

requiring a total of 20 bits of overhead per set compared to
135 bits per set for SC-L+PLRU.

2) Shepherd Cache + Clock: Since the simple Clock algo-
rithm performs better than SC-L and SC-XL with a pseudo-
LRU algorithm, we have adapted our two new designs to
use clock as a baseline replacement policy. The results are
shown in Fig. 9, with the two grey curves labeled SC-L+CLK
and SC-XL+CLK showing our designs with a baseline clock
replacement policy, and the three dashed curves showing
SC, SC-L, and SC-XL designs using LRU as the baseline
replacement policy

The SC-XL design performs better than the SC-L design
when combined with the Clock baseline replacement policy.
This is a result of how the two designs were adapted to
the new baseline replacement policy. In the end, the SC-
XL+CLK design reduces the miss-ratio by an average of
5.4% and by up to 12.5% for the best case of SJBB with
an 8MB cache. Note that this design requires only 40 bits
of overhead per set compared to the next best design, SC-
L+LRU, which requires 162 bits per set.
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TABLE I
SUMMARY OF METADATA OVERHEAD AND MISS-RATIO REDUCTION.

Overhead

Policy Bits / Set % of Capacity Min Max Average
LRU 45 0.5% 0 0 0
PLRU 17 0.2% -9.0% 0.5% -4.7%
Clock 20 0.2% -13.0%  6.1% -0.9%
DIP 45 0.5% -1.0% 8.9% 0.1%
DIP-prime 189-237 23-29% -1.5% 11.2% 32%
DIP-PLRU 17 0.2% -9.1% 0.6% -4.3%
DIP-PLRU-prime 161-209 2.0-2.6% -9.0% 1.2% -3.4%
SC-4 + LRU 438 5.3% -1.3% 21.2% 7.3%
SC-L-4 + LRU 162 1.9% -2.0% 19.2% 8.2%
SC-XL-4 + LRU 65 0.8% -6.6% 17.4% 4.9%
SC-L-4 + PLRU 131 1.6% -154%  10.6% -0.3%
SC-XL-4 + Clock 40 0.5% -2.3% 14.4% 5.4%

E. Result Summary

Table 1 provides a comparison of the miss-ratios and
overhead of the best designs. The first column lists the
different policies: LRU, pseudo-LRU (PLRU), clock, dy-
namic insertion policy with 128 dedicated sets with LRU
replacement and normal set indexing (DIP) and prime mod-
ulo set-indexing (DIP-prim), DIP with 128 dedicated sets
with pseudo-LRU replacement and normal (DIP-PLRU) and
prime-modulo (DIP-PLRU-prime) set indexing, and different
SC, SC-L, and SC-XL designs, all with four SC ways and 12
MC ways and with the baseline replacement policy indicated
as LRU, PLRU or Clock. The second column shows the
number of bits per set required for storing replacement policy
metadata, and the third column shows this overhead as a
fraction of the total data capacity of the cache. For SC, SC-
L, and SC-XL designs, this overhead includes the overhead
for the baseline replacement policy. For the four DIP policies,
the small overhead of the policy select counters is ignored.
The overhead shown for prime-modulo set indexing results
from storing larger tags and assumes a 50-bit physical
address and depends on the total number of sets in the
cache, with larger caches incurring less overhead. The last
three columns show the minimum, maximum and average
reduction in miss-ratios for the different policies compared
to the baseline LRU policy. These are arithmetic averages
across all cache sizes and all workloads. Note that a negative
reduction is equivalent to an increase in miss-ratio.

V. CONCLUSION

The basic replacement policies commonly used in modern
processors perform an average of 57% worse than than op-
timal replacement policy for commercial applications using
large shared caches in a CMP. Unfortunately, most work on
cache replacement policies has been evaluated based upon
SPEC CPU benchmarks running on uni-processors with rel-
atively small caches. Recent work on dynamically changing
the insertion policy while still using a traditional replacement
policy [1] offers only limited potential improvements for
commercial workloads and requires careful tuning, including
a guarantee of even distribution of accesses across sets. The
recently proposed shepherd cache policy offers significant

potential for improvement, up to 21.2% reduction in miss-
ratio for some cases and an average of 7.3% reduction for
all cases we studied. However, this design has a complex
replacement policy and requires over 46 bytes of metadata
for each cache set.

Our newly proposed SC-L and SC-XL designs can achieve
most of the potential improvement of the original shepherd
cache with drastic reductions in the amount of metadata
required. Our simple SC-L design combined with a baseline
LRU replacement policy reduces miss-ratios by an average
of 8.2% and up to 19.2% for some cases while requiring
162 bits of metadata per set, less than half the overhead of
the original SC design. In addition, our SC-XL design, when
combined with a practical clock replacement policy, further
reduces overhead to only 40-bits per set while still reducing
miss-ratios by an average of 5.4% and up to 14.4% for
some cases. This design offers a promising new heuristic that
achieves miss-ratio reductions for commercial applications
using large caches with minimal additional overhead.
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