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Abstract— Increases in cache capacity are accompanied by
growing wire delays due to technology scaling. Non-Uniform
Cache Architecture (NUCA) is one of proposed solutions to
reducing the average access latency in such cache designs. While
most of the prior NUCA work focuses on data placement, data
replacement, and migration related issues, this paper studies the
problem of data search (access) in NUCA. In our architecture
we arrange sets of banks with equal access latency into rings.
Our Last Access Based (LAB) prediction scheme predicts the
ring that is expected to contain the required data and checks
the banks in that ring first for the data block sought. We
compare our scheme to two alternate approaches: searching
all rings in parallel, and searching rings sequentially. We
show that our LAB ring prediction scheme reduces L2 energy
significantly over the sequential and parallel schemes, while
maintaining similar performance. Our LAB scheme reduces
energy consumption by 15.9% relative to the sequential lookup
scheme, and 53.8% relative to the parallel lookup scheme.

I. INTRODUCTION

The on-chip L2 and L3 cache capacities continue to

increase to accommodate growing data-set sizes and pres-

sures coming from multi-threaded applications. As hardware

manufacturers move toward smaller process technologies, the

global wire delays increase, resulting in high access latencies

for large uniform access cache structures. One way of coping

with these increasing latencies is to divide the cache into

banks that exhibit nonuniform access latencies. A cache

architecture with different access latencies to banks is called

NUCA [1], [2].

In a NUCA-based system, the L2 space is organized as

a set of banks connected to each other using an on-chip

network [3], [4], [5], [6], [7]. Each of these banks can be

accessed independently, with access latency dependent on the

physical distance of the bank from the CPU. We use the term

“ring” to denote a set of banks that exhibit the same access

latency based on the Manhattan distance. Figure I shows the

logical view of our “ring” based NUCA system.

In this paper, we focus on the data access policy and aim to

reduce the average access latency and energy consumption.

The two base access schemes are sequential and parallel

search, and are similar to the access schemes presented by

Fig. 1. An example of NUCA topology with six rings and different access
latencies.

Kim et al. [1]. In the sequential access scheme, on a data

request, the lowest latency ring is queried first. On a miss in

that ring, the search expands to outer rings, one at a time,

until the requested data is found or an L2 miss is determined.

When data is placed in rings near the CPU, this method is

power efficient. However, when data is placed in outer rings,

this method incurs a significant performance penalty. In the

parallel access scheme all rings are queried at the same time,

resulting in shorter average access time and a significantly

higher energy cost than that of the sequential search. We

propose a Last Access Based (LAB) scheme ring prediction

that strikes a balance between the parallel and sequential

search. In our scheme we predict the ring of the bank that

contains the data sought, based on past access history, and

check all the banks in that ring first. With high ring locality

of data accesses, we can expect good performance and power

behavior from this approach.

Our main contributions can be explained as follows:

We propose the Last Access Based ring prediction scheme

in which the next access is predicted to hit in the ring that

satisfied the current request. Our experimental evaluation

of this prediction scheme using the benchmarks from the
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TABLE I

DEFAULT SYSTEM CONFIGURATION PARAMETERS.

Processor single-issue, in-order (4GHz)

L1 cache split I/D, each 32KB,
4-way, 32B line,
5-cycle latency,
write-back

L2 cache unified, 2MB, 8-way,
64B line,
7-cycle per bank
access latency

Number of banks 64

Number of rings 6

Per hop latency of 3 cycles
network

Data placement policy banks divided into bank-slices,
static placement in slice
based on data address,
random placement within the slice

Data migration policy no migration (default)
migrate/swap to closer
bank (with migration)

Data replacement policy off-chip (default)
swap with the migrated
data (with migration)

Spec2000 suite [8] shows that this LAB ring prediction

is successful in most of the benchmarks. Specifically, this

prediction scheme leads, on average, to 54.8% saving on

energy compared to searching all the rings in parallel, with

a performance similar to sequential search.

The reminder of this paper is organized as follows. Sec-

tion II describes our experimental setup. Section III gives the

description of two previously proposed simple data access

schemes for NUCA. Section IV-A explains the details of our

LAB ring prediction scheme and presents an experimental

evaluation of it. Section V discusses related work on NUCA

and Section VI concludes the paper by summarizing our main

observations and presenting future research goals.

II. EXPERIMENTAL SETUP

We use the SIMICS tool set [9] to implement and evaluate

our data access policies. We simulate a single-issue, in-order

processor running at 4GHz. We calculate the energy values

using CACTI [10] and work by Chen et al.[11]. The default

system configuration is given in Table I. The lowest access

latency to our ring based NUCA L2 cache, including both

network latency and bank access latency, is 10 cycles and

the highest latency is 25 cycles. Our simulations assume that

there is no network contention inside of the cache, to simplify

and accelerate the simulation process.

To evaluate the performance and energy consumption of

LAB scheme for various data access patterns we use the

SPEC 2000 benchmark suite. We fast-forward each bench-

mark to the end of the initialization part, and simulate a

4 billion instruction window. Table II presents the L1 miss

rates of our benchmarks, collected using the default values

of our simulation parameters listed in Table I.

TABLE II

L1 MISS RATES FOR THE SPEC 2000 BENCHMARKS.

Benchmarks L1 miss rates

wupwise 1.79%

swim 1.36%

mgrid 1.09%

applu 2.12%

mesa 1.6%

art 14.37%

equake 2.13%

ammp 34.15%

apsi 0.71%

gzip 3.83%

vpr 3.51%

mcf 1.83%

crafty 3.00%

parser 2.99%

gap 0.89%

vortex 2.44%

twolf 7.3%

III. BASE DATA ACCESS SCHEMES

In this section, we discuss the sequential and parallel data

search schemes. These two base search schemes do not use

any ring prediction. The first of these, called the sequential

scheme in this paper, accesses the rings one by one, starting

with the lowest latency ring, until the requested data is found

or a miss is identified (see Figure 2(a)). The second one,

the parallel scheme, accesses all the rings in parallel, and

is illustrated in Figure 2(b). Note that both sequential and

parallel schemes were discussed by Kim et al. [1].

There is an trade-off between performance and energy

consumption between these two schemes. When no migration

scheme is present, the sequential access scheme on average

results in degraded performance, when compared to the

parallel search scheme. However, because the banks/rings

are accessed one a time in the sequential scheme, it usually

consumes less energy than the parallel scheme. Additionally,

the sequential search scheme places less strain on the on-chip

network connecting the banks and cores.

IV. LAST ACCESS BASED (LAB) RING PREDICTOR

A. Description

Our proposed predictor scheme uses the last ring that

satisfied a data request to predict the next ring that will be

accessed. That is, it predicts that the ring that contains the

next data to be accessed is the one that supplied the current

data. If the prediction is correct, the data is accessed in one

ring access request. If, on the other hand, the prediction is

not correct, our approach checks the rings that are enclosed

by the predicted ring, starting with the closest ring to the

predicted one and ending with the ring that is closest to the

CPU. If the requested data is still not found, the remaining

rings (i.e., the ones that enclose the originally predicted ring)

are accessed sequentially, ending with the outermost ring. If

the data is not in one of those rings either, this indicates an

L2 miss and the data is fetched from the off-chip memory.
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(a) sequential (b) parallel (c) ring prediction

Fig. 2. Different data search (access) schemes in NUCA.

At high level, as shown in Figure 2(c), our proposed ring

prediction based scheme, takes at most three steps to locate

data (or identify an L2 miss). These steps are: an access to the

predicted ring; accesses to the inner rings (sequentially); and

accesses to the outer rings (sequentially). When prediction

accuracy is high, our ring prediction should have comparable

or better performance than the sequential search scheme.

In case when the data location is miss-predicted, and data

is located in the inner banks, the sequential scheme may

be more power efficient. However, if the data is located in

middle or outer rings, our approach should consume less

energy. Likewise, when the prediction accuracies are high,

our LAB scheme should be more power efficient than the

parallel scheme. Also, with high prediction accuracies, the

performance of LAB should be close to that of the parallel

scheme.

We want to emphasize that our prediction based scheme

can be used with or without data migration. In fact, our

approach is orthogonal to the selection of specific data

placement, replacement and migration policies. However,

depending on whether data migration is employed or not, the

benefits of our approach may vary, since migration brings

frequently used data closer, to the rings near the CPU. In

our experimental evaluation, we quantify the benefits of our

approach with and without data migration within the L2

space. However, in our default configuration, data migration

is not used.

B. Evaluation

In this section, we compare our LAB predictor scheme

with sequential and parallel search schemes. Prediction ac-

curacy of LAB for our benchmarks is on average 57.7%

for floating-point benchmarks, and 43.8% for integer bench-

marks, as shown in Figure 3. When our search scheme miss-

predicts the ring that should contain the data, 42.7% of the

time on average, the data is located in inner rings, and 57.3%

of the time in the outer rings. The performances of these

three schemes (sequential, parallel and LAB predictor) are

compared in Figure 4. While the execution cycles obtained

for all three are similar, as expected, the prediction based

scheme ranks between the sequential and parallel search

schemes (it is 4.1% worse than the parallel search scheme

and 0.7% better than the sequential search scheme, on

average).

Note that the energy consumption values include the

energies spent during both the network access and the bank

access. The average energy consumption per L2 hit under the

three search schemes is plotted in Figure 5. Our prediction

based approach performs better than the alternatives, with the

average energy savings of 15.9% over the sequential search

and 53.8% savings over the parallel search scheme. Overall

our LAB search scheme results in energy savings, while

offering comparable performance. However, for benchmarks

which exhibit low prediction accuracy such as gzip and vpr,

our scheme consumes more energy than the sequential search

(as can be seen from Figure 5).

We now evaluate sensitivity of our prediction scheme to

the bank size (when cache size remains constant) and effects

of data migration. For our sensitivity analysis, we focus

on four representative benchmarks (two integer and two

floating-point). The omitted SPEC benchmarks had similar

trends to those presented here. We study the effects of vary-

ing the number and size of banks in L2 while maintaining a

constant L2 size. Recall from Table I, the default that the

number of banks used in the experiments so far was 64

(i.e., 32KB bank size). Impacts of varying the cache bank

size on the execution time and average energy consumption

per access are shown in Figures 6 and 7, respectively. For

each benchmark, results are normalized with respect to the

16KB bank size configuration. We observe that 32KB banks

generate the best execution cycle results, and 16KB banks

result in the worst cycles. On the other hand, 64KB banks

provide most energy savings, and 32KB banks are the second

best regarding the energy savings.

The next issue we study is the sensitivity of our results to

data migration. Figure 8 and Figure 9 show the effects of the

bank data migration on execution cycle and energy results,

respectively, for the LAB prediction scheme. We see that,

for the three benchmarks with low L1 miss rates (mgrid,

parser and gap) the migration scheme has little impact on

the benchmark performance. The art benchmark has a 14%

L1 miss rate and performance increases due to migration, as

expected from the work by Kim et al. [1]. However, we also

observe that this increase in performance is accompanied

by a significant increase in average energy consumption

per access. This increase is caused by the additional data
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Fig. 3. Prediction accuracies for the SPEC CPU2000 benchmarks.

Fig. 4. Execution cycles for the SPEC CPU2000 benchmarks with our ring prediction based scheme, sequential scheme, and parallel scheme. For each
benchmark, the last two bars are normalized with respect to the first bar.

Fig. 5. Relative energy per access of SPEC CPU2000 benchmarks with our ring prediction based scheme, sequential scheme, and parallel scheme. For
each benchmark, the last two bars are normalized with respect to the first bar.

movements inside of the cache structure.

V. RELATED WORK

In this section, we discuss related work on NUCA based

architectures. Kim et al. [1] introduced the concept of

Non-Uniform Cache Architecture (NUCA), based on the

observation that the increasing wire delay dominates the L2

cache access latency. Thus the access latency to a large

L2 cache becomes dependent on the distance between the

processor and the cache bank being accessed. Based on this

observation, Kim et al. designed several NUCA architectures,

by partitioning L2 cache into multiple banks and using a

switched network to connect these banks. They proposed

associated cache management policies such as cache line

placement, search, and migration. Incremental and multicast

searches are two methods commonly used to locate a cache

line. Smart search, which is based on partial tag comparison,

reduces the L2 miss determination time and the number

of L2 bank lookups. Our work, based on ring prediction,

proposes alternate cache line search policies between the two
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Fig. 6. Impact of bank size on execution cycles.

Fig. 7. Impact of bank size on energy consumption.

Fig. 8. Execution cycles with our LAB ring prediction scheme with and
without data migration.

extreme search policies: incremental and multicast. The goal

is to provide a better performance-power trade-off for cache

line searches in NUCA. Note that our schemes can work

independently of or together with smart search, which mainly

optimizes L2 miss behavior. Chishti et al. [12] proposes

another NUCA architecture, which features a more flexible

cache placement and sequential tag-data accesses. However,

that design requires that additional pointers from the tag array

to the data array be maintained and updated by the cache.

Since emerging multi-core architectures often include a

Fig. 9. Relative energy per access with the LAB ring prediction scheme
with and without data migration.

large on-chip L2 cache, many research efforts have devoted

into NUCAs under Chip Multiprocessor (CMP) scenarios.

[13], [14], [2], [15], [16], [17], [18], [19] are the repre-

sentative works belonging to this category. Most of these

works targeted the trade-offs between short L2 access latency

and large effective L2 capacity based on data replication,

migration or cache partitioning techniques. Little attention

is paid to cache line search policies. Normally they em-

ploy incremental/multicast searches or some cache coherence

policy, to locate a cache line in an L2 NUCA. All of

them targeted L2 cache performance, without considering L2

power optimization. In this paper, we focus on uniprocessor

architecture, in order to better understand impacts of cache

line search strategy on both performance and power. Our

work is important in light of processor designs, where

processor cores are surrounded by many banks (Guz et

al. [20] and Liu et al. [21]).

Both cache and Network-on-Chip (NoC) consume signifi-

cant portions of total chip power. There have been enormous

efforts aiming to optimize cache or NoC energy consump-

tion. Notable works around cache energy optimization are

cache decay [22] and drowsy cache [23], which turn off or

scale down the voltages of inactive cache lines based on

cache access patterns. Regarding NoC energy optimization,

several software- and hardware-based techniques [24], [25],

[26] are proposed. However, to the best of our knowledge, no

previous work optimized the power consumption of an NoC

connected NUCA architecture. Our work aims to reduce the

power consumption of both caches and NoCs in an NoC-

based NUCA simultaneously by controlling the number of

cache lookups and the number of multicast requests through

search policies.

Development of NUCA cache architecture has also spurred

development of unique hybrid private/shared caches. Guz

et al. [20] proposed their multi-core architecture Nahalal,

where the shared elements of the cache are located at the

center of the die, while private elements of the cache are

located on the outside and periphery of the system die.

Liu et al. [21] consider utilizing a single small block of

the NUCA cache to serve as a shared data block for all
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processors. The ever decreasing feature sizes, and increasing

wire latencies are also forcing designers to consider on and

off chip interconnect properties in designing the coherency

protocols [3], [27], as well as moving into three dimensions

in order to reduce the average hop count [4].

VI. CONCLUSIONS

In this paper, we propose and experimentally evaluate the

Last Access Based (LAB) ring prediction data access scheme

for NUCA based systems. We compare our scheme against

two base access schemes: the parallel access scheme and

sequential access scheme. Our LAB scheme uses the last

accessed ring to predict the L2 ring that holds the data needed

on current request. Our LAB ring prediction mechanism,

results in significant energy savings over the fully parallel

and fully sequential schemes. Our LAB scheme reduces

energy consumption by 15.9% relative to the sequential

lookup scheme, and 53.8% relative to the parallel lookup

scheme. Our ongoing work includes exploration of prediction

aware data replication schemes within NUCA, and novel ring

prediction schemes. We are also evaluating effectiveness of

our ring predictor on other types of applications.
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