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Abstract—As a replacement for the fast-fading Globally-
Synchronous model, we have defined a flexible design style
for SoCs, called GRLS, for Globally-Ratiochronous, Locally-
Synchronous, which does not rely on global synchronization and
is based on using rationally-related clock frequencies derived
from the same source. In this paper, using the special periodical
properties of rationally-related systems, we build a latency-
insensitive, maximal-throughput, low-overhead communication
method, based on the idea of using both clock edges to sample
data at the Receiver. The validity of the method and its resistance
to non-idealities such as jitter, misalignments and clock drifts are
formally proven while experimental results including overhead
are presented for 90 nm technology. Despite allowing much
greater flexibility, the overhead of our method is comparable to
that of state-of-the-art mesochronous communication techniques.
We also show performances, complexity and overhead improve-
ments over all other approaches that have so far been proposed
for rationally-related clock frequencies.

I. INTRODUCTION

With technology scaling, designing globally balanced clock
trees is a difficult proposition [1] and any small change in
design requires timing closure iterations that aggravate the
SoC engineering costs. What is needed is a latency-insensitive
design style that will enable hierarchical physical design with
little or no chip-level timing closure issues. Multiple clock
domains are routine in today’s SoCs [2]. Eliminating the global
clock tree leads to easier timing closure, higher working fre-
quencies and a considerable reduction in the power consump-
tion of the clock distribution net [3]. Several taxonomies of
non-fully-synchronous design styles have been proposed [2],
[4]. GMLS, for Globally-Mesochronous, Locally-Synchronous,
uses a single clock frequency that is distributed throughout
the chip using a global unbalanced distribution tree coupled
with local balanced clock trees [5]. Recently there has been
a lot of interest around this design style [6]–[8]. More gen-
erally, GALS systems, for Globally-Asynchronous, Locally-
Synchronous [9]–[11], a term that we use here with a broad
meaning, consists in using totally unrelated clock frequencies
in the different synchronous islands.

We are investigating the concept of building chips based
exclusively on rationally-related frequencies obtained from the
same source and non skew-aligned. We call this design style
GRLS, for Globally-Ratiochronous, Locally-Synchronous.

A conceptual view of the clock distribution scheme in a
GRLS chip is shown in Figure 1. A single high-frequency
clock generated by a central Clock Generation Unit (CGU) is
distributed throughout the GRLS chip. This global clock net
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Fig. 1. Ideal layout of a GRLS system

has a low fanout, being equal to the number of synchronous
islands, and is unbalanced. No assumptions are made on the
phase relationship of the clock edges at the leaf nodes of
the global clock tree. A local CGU in every synchronous
island divides the frequency of the high-frequency clock by a
programmable factor. Thus, in a GRLS system all local clocks
have rationally-related frequencies and are not skew-aligned.

The flexibility of GRLS in the choice of the local fre-
quencies lies between those of GMLS and GALS, as the
frequencies on the chip are constrained to be submultiples
of the same global frequency. However, local CGUs in a
GRLS system are very simple, fast and easily-programmable
fully-digital blocks. This adds flexibility to the system, and
allows a very easy and fast implementation of Distributed
Frequency Scaling [12], which in turns could help decrease
the total power consumption of the system. In this respect,
the loss of flexibility compared to GALS is mostly theoretical,
as programmable local oscillators in a GALS system are
usually obtained by using clock dividers and are therefore only
discretely programmable [13]. Because all clocks are derived
from the same source, GRLS also guarantees the same fre-
quency stability of GMLS systems. Integrating heterogeneous
IPs with different frequency requirements is also more simple
in a GRLS system compared to a GMLS system.

Compared to GALS, an additional overhead for the distri-
bution and division of the global clock is introduced. A simple
example of a very fine-grained GRLS chip with a global 1 GHz
clock was carried out for a 4mm2 chip in 90 nm technology
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with 25 synchronous islands, each hosting a local CGU (an
unoptimized programmable divider for ratios between 1 and
64) driving 3600 flipflops, roughly corresponding to a simple
RISC processor. Two scenarios were analyzed, one with an
average island frequency of 500 MHz and the other with an
average frequency of 125 MHz. The power breakdowns for the
two cases are shown in figure 2. As expected, the percentage
overhead is higher when the average island frequency is lower,
which translates to lower power consumption in the local clock
net. The analysis shows that the additional power overhead
of GRLS compared to GALS and GMLS is small even for
extremely fine-grained systems, unlikely to happen in reality,
and can be outweighted by the benefits of distributed Dynamic
Voltage Frequency Scaling.

9.59 mW * 25
239.6 mW
93.9%

3.046 mW
1.2%

0.5 mW * 25
12.5 mW

4.9%

Islands clocked
in average at 500 MHz

2.39 mW * 25
59.9 mW
79.4%

3.046 mW
4.0%

0.5 mW * 25
12.5 mW
16.6%

Islands clocked
in average at 125 MHz

unbalanced global clock treelocal clock trees clock dividers

Fig. 2. Power breakdown of a 2mm× 2mm GRLS system with 25 equal-
sized islands, each containing 3600 flipflops, using a 1 GHz global clock.

The contribution of this paper consists in defining, build-
ing on the special periodic properties of rationally-related
clock frequencies, a maximal-throughput, low-latency, low-
overhead communication method for GRLS systems which
can be inserted at high-level and dynamically adapts to any
phase difference between the clocks. Despite the increased
flexibility in the choice of the local frequencies, performances
and overhead are comparable to state-of-the-art mesochronous
interfaces. We also show performances, overhead, flexibility
and complexity improvements over all existing techniques that
have so far been proposed to cross the boundary between two
rationally-related clock domains.

The remainder of the paper is organized as follows: in
section II, a survey of existing approaches is presented. Section
III formally defines the communication problem in a GRLS
system and introduces the notation used in the rest of the
paper. Section IV presents our communication scheme in
detail. Section V analyzes how the scheme can cope with
non-idealities such as jitter, strobe and data misalignments
and clock drifts. In section VI we compare our interface
with other approaches in terms of throughput, latency and
overhead. In section VII we gauge the overhead of our scheme
in 90 nm technology and calculate a realistic upper bound
for the working frequency of the system. Section VIII draws
conclusion and analyzes future work.

II. RELATED WORK

GALS communication methods such as pausible-clocking
[10] and asynchronous FIFOs [11] can be used to cross the
boundary between rationally-related clock frequencies. Com-
pared to pausible-clocking, our interface avoids the handshake
latency, the performance penalty for communication and the
inherent non-determinism; compared to asynchronous FIFOs,
we avoid synchronization latency.

There have been previous attempts at designing interfaces
for rationally-related frequencies. The earliest research was
carried out by Sarmenta and coworkers at MIT [14]. For their
Rational Clocking interfaces, the authors assume no phase
difference between the clocks. As the authors use only the pos-
itive edge of the clock for sampling data at the Receiver, their
fast-Transmitter interface can guarantee maximum throughput
only by using two sets of output registers in the Transmitter. In
different clock cycles, the Receiver should alternate between
the two registers, which leads to a lazy algorithm with non-
optimal latency.

We argue that in modern-day systems it is difficult to keep
the clocks aligned, as the clock trees are large and their
delay can easily exceed the clock period. For example, in
the same 400 µm × 400 µm synchronous island containing
3600 synchronous elements that was considered in section I,
the delay of the local clock tree can be as high as 1.5 ns,
which is comparable with the minimal clock period supported
by a small RISC core. Even if the designer managed to have
phase-aligned clocks at the root of the local clock trees, the
propagation delay through the local trees would break the
alignment. To get aligned clocks, the global clock tree should
compensate for the delays of the local clock trees, which
would increase the power consumption in the global clock tree
(55% in our example), prohibit hierarchical physical design
and complicate the design flow.

Arguing that Sarmenta’s approach is essentially a worst-case
analysis, in [15] a protocol-aware formalism is introduced to
calculate in which cycles synchronization failures could arise,
ameliorating latency and overhead figures of the communica-
tion scheme. However, when the phase difference between the
Transmitter and the Receiver clocks is unknown, a worst-case
analysis such as the one presented by Sarmenta is the only
feasible approach.

We also compare our approach to what is perhaps the
most obvious solution to the problem of interfacing two
clock domains with rationally-related clock frequencies and
unknown skew. A lot of research effort has been lately put into
developing synchronizers for mesochronous communication.
If a high-frequency unit clocked with a multiple of the two
frequencies is inserted in the channel, two rationally-related
clock domains can be interfaced using a double mesochronous
link. State-of-the-art solutions for mesochronous communi-
cation are based on the STARI approach [5] and use self-
timed FIFOs which are initialized to be half-full. In one clock
cycle, the transmitter writes one item of data and the Receiver
reads another item, avoiding overflows and underflows. Four-
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elements FIFOs, which can be realized using latches, result
in a small overhead and have become some sort of standard
solution in industrial and state-of-the-art applications [6], [7].
Other mesochronous solutions, such as STSS [16] and SKIL
[17], are more similar to our approach as they propose to
dynamically select the edge of the clock used at the Receiver
for sampling data.

In [18], the STARI approach was generalized by reducing
the size of the FIFO to a single handshaking stage realized
with a latch. This leads to a optimal-latency communication
scheme introducing three latches on the data path: the first
controlled by the Transmitter clock, the last controlled by
the Receiver clock and the central becoming transparent only
at specific time instants in which data can safely cross the
clock domain boundary. Controlling the central latch is the
main challenge of this approach, and the solution proposed
by the authors relies on complex transistor-level design. The
authors also propose an interface for rationally-related clock
frequencies, using a rate multiplier to divide the rate of the
faster clock. This solution obtains the same latency figures
of our approach, but its high design complexity makes it an
unlikely solution for commercial applications.

III. PROBLEM DEFINITION AND NOTATION

We propose a communication scheme to interface a Trans-
mitter clocked by a clock clkT at frequency fT = 1

TT
and a

Receiver clocked by a clock clkR at frequency fR = 1
TR

under
the constraint that there exists an ideal or physical clock with
frequency fH = lcm (fT , fR) = 1

TH
. When fR > fT , we call

the system fast-Receiver; when fT > fR, we call the system
fast-Transmitter; If fR = fT , the system is mesochronous. We
make the assumption to have a stable, albeit unknown, phase
difference between the clocks. We will show in section V how
this constraint can be largely relaxed.

We define NT = fH

fT
and NR = fH

fR
.

We further define P = lcm (NT , NR). The periodicity cycle
PC = P TH is the smallest common time interval that both
Transmitter and Receiver clocks can count, P

NT
clkT ticks and

P
NR

clkR ticks respectively.
It can be noted that any communication method for

rationally-related clock frequencies poses, explicitly or implic-
itly, some limitations on fH . Clearly, when the least common
multiple of fT and fR is higher than a certain bound, for all
practical purposes they should be considered unrelated.

IV. THE GRLS COMMUNICATION INTERFACE

In this section we describe in detail the GRLS communica-
tion scheme. We begin by selecting a flow control algorithm,
whose properties, analyzed in subsection IV-A, are the basis
for the GRLS communication scheme. In subsection IV-B
we present the GRLS Receiver Interface. Finally, in subsec-
tion IV-C, we analyze simplifications of our communication
scheme for fast-Receiver/mesochronous systems and situations
in which the phase difference between the clocks is known.

A. Flow Control

Two systems cannot communicate, on average, faster than
the slower of the two clock frequencies. In fast-Transmitter
systems, bursts need to be absorbed by FIFOs, whose dimen-
sioning is not within the scope of this paper. A flow control
algorithm decides on which transmitter clock edges data is
transmitted (see figure 3). We select the rate divider algorithm
in [18] as our control-flow algorithm, as its properties are
crucial to the GRLS communication scheme. The pseudo-code
is shown as Algorithm 1. Figure 3 shows the application of the
regulation algorithm to a fast-Transmitter scheme. The GRLS
communication scheme is a form of source-synchronous com-
munication using a strobe signal that toggles whenever send
is asserted. A new data item can be output only when the
strobe toggles. If the data item is a valid item, the validc

signal is set to one; if the Receiver has nothing to send, the
validc signal is set to zero.

Algorithm 1 can handle all three clocking scenarios. How-
ever, if the system is mesochronous or fast-Receiver, data is
output in every clock cycle and the regulator is redundant.

T=2TR=6THPC=3TNT R=2 N =3 P=6

data

clkT

datac

validc

strobe

clkR

valid

send

clkT

data

validc

datac

clkT
clkT

E
strobe

clkT

Regulator

(alg. 1)

read

Transmitter valid
FIFO

send

Fig. 3. Data regulation at the Transmitter

Algorithm 1 Regulation algorithm
1: if NR ≤ NT then
2: send = 1
3: else
4: c⇐ NR;
5: loop
6: Wait until the rising edge of clkT .
7: if c > NR −NT then
8: send = 1
9: c⇐ c− (NR −NT )

10: else
11: send = 0
12: c⇐ c+NT

13: end if
14: end loop
15: end if

Informally, a regulator based on algorithm 1 generates a
periodic flow of data with a rate of min (fT , fR) introducing
as little jitter as possible. More formally, a flow of data
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regulated by algorithm 1 has the following properties, whose
formal proofs are being skipped to meet the space constraints:

1) average rate: The number of data items d output in a
time K TR with K integer is always d ≤ K + 1, with
K ≤ d ≤ K + 1 if the Transmitter is sending data at
the maximum rate in a fast-Transmitter system.

2) periodicity: The regulated flow of data is periodic with
period PC: if data can be output at time instant ti, data
can also be output at time instant ti + PC.

3) maximal instantaneous data rate: The minimal time
between two successive data outputs is TD > TR

2 . Since
data is output only on positive clkT edges, TD is a
multiple of TT , which is a multiple of TH . Since TR

2

is a multiple of TH

2 , TD ≥ TR

2 + TH

2 .
4) minimal instantaneous data rate: Assuming that the

Transmitter is sending data at the maximum possible
rate, the maximal amount of time between two succes-
sive data outputs is TT

⌈
NR

NT

⌉
.

Algorithm 1 can be implemented as an FSM, but for small
values of NT and NR, a more optimal solution is to exploit
data-flow property 2, precompute the output of algorithm 1
for P

NT
cycles and load it in a circular shift register with a

programmable feedback tap.

B. Receiver Interface

1) Main Concepts: Data is sampled on both clock edges
so that every data item can be safely sampled at least once.
The strobe is used to detect on which clock edges data can be
safely sampled and when a new data item is available. This is
realized by sampling the strobe at two slightly different time
instants close to every edge of the clock, and sampling data in
the middle of these two time instants. Because the flow of data
and the Receiver are both periodic, the information obtained
from the analysis of the strobe determines data sampling one
or more Periodicity Cycles later.

2) Functionality: To detect if a clock edge could cause
metastability, the Receiver samples the strobe on every positive
and negative edge of the two clocks clkR and clkR2, the latter
obtained by delaying clkR by an amount of time that we define
as 2TW , where TW is the time window of the Receiver. If
the two samples match, the clock edge is considered safe for
data sampling. Data flow property 3 guarantees that every
data item can be safely sampled at least once as long as
TH

2 > 2TW + ts + th, where ts and th are respectively the
setup and the hold times of the Receiver flipflops. Figure 4
shows a worst-case scenario: data item B cannot be safely
sampled on the first falling edge, but data item C cannot arrive
before TR

2 + TH

2 and data item B can be safely sampled half a
cycle later. In general a data item can be safely sampled more
than once. To ensure that the same data is not sampled twice,
the strobe sample obtained at t0 is compared with the strobe
sample obtained at t0 − TR

2 : if the two values are different,
then a new data item is available at time t0.

When the two strobe samples obtained at t0 and t0 + 2TW

match, it is guaranteed that there was no data/strobe transition

data
c

TD=TR/2+TH/2

TR/2+2TW+ts+th t0+2TW+th

clk
R

clk
R2

t0+ts

B C

strobe

A

Fig. 4. Strobe sampling: worst-case scenario

between the times t0 + th and t0 + 2TW − ts. Data is sampled
on every clock edge of clkR1, an additional clock obtained by
delaying clkR by TW . As long as TW > ts + th, a clock edge
considered safe by the strobe analyzer cannot cause the data
samplers to encounter metastability.

Since data flow property 2 ensures that both the Receiver
and the regulated flow of data are periodic with periodicity
PC, the strobe samples obtained at time instants t0 and t0 +
2TW are used to determine data sampling at time t0 + TW +
K PC with K integer.

Figure 5 shows how strobe samples obtained in periodic-
ity cycle PCi determine data sampling in periodicity cycle
PCi+1. On the first rising edge of PC, the two strobe samples
match and the sample is accepted. The following strobe
transition happens dangerously close to the edge of clkR1 and
the two samples do not match. The next two clock edges are
also safe, but sampling on the last edge of PC would lead to
a duplicate. Strobe samples obtained in periodicity cycle PCi

determine data sampling in periodicity cycle PCi+1.

PCi PCi+1

data

clk
R2

clk
R1

R
clk

0 110

0 1 1 1

strobe

M D

Fig. 5. Data and strobe sampling (NT = 2, NR = 3, P = 6)

The limitation TH

2 > 2TW + ts + th gives the following
upper bound for fH :

fH <
1

4TW + 2ts + 2th
If TW = TWmin = ts + th:

fH <
1

6 (ts + th)

The GRLS Receiver is shown in figure 6.
3) Receiver Registers Stage: As shown in the upper part

of figure 6, the Receiver uses the two sets of input registers
P-REG (positive-edge-triggered) and N-REG (negative-edge-
triggered), both clocked by clkR1, to sample the input flow
of data. Note that race conditions cannot occur when data is
transfered from the sampling registers to the Receiver clock

112



clkR1clkR clkR2

clkR

clkR

clkR

clkR

clkR clkR clkR

clkR clkR clkR

clkR

sp0

clkR

P0

vnvs(!vp)

vp(vn+vs)

REG
SYNC SAVE

REG

clkR

clkR

vs+vn+vp

datac

vout

1

0
1

0

E

P−REG

N−REG

E

v

clkR1sp

sn clkR1

vn

p

vs

vp
vs

LP
LN

validc

data

P*/NR−LS−1

P*/NR−LS−1

synchronizers

selector
0 1 2 3

selector
1 2 3

T T

0

strobe

sp

sn

clk

clkR

clk

R2

R2

P2

N0

N2

SP0

SP2

SN0

SN2

S0

S2

sn0

multi−stage

strobe analysis stage

Receiver registers stage

clkR

D0

Fig. 6. GRLS Receiver stage

domain as clkR1 is delayed compared to clkR. sp and sn are
enable signals for P-REG and N-REG. sp and sn are generated
by the Strobe Analysis Stage of the GRLS Receiver and
guarantee that neither P-REG nor N-REG will ever become
metastable. Note that sn should arrive before the negative edge
of the clock. Signals vp and vn indicate validity of the data
items contained in P-REG and in the synchronization register
SYNC-REG, and are asserted only when the corresponding
register is enabled and samples a valid data item from the
input.

Register SAVE-REG is used as a single-position FIFO
buffer. SAVE-REG is loaded with the output of P-REG when
LP = 1 and with the output of SYNC-REG when LN = 1.
When SAVE-REG contains a valid data item, vs is set to
1. Buffering is necessary because the Receiver can sample
up to two data items per clock cycle but can consume only
one of them. Since data-flow property 1 guarantees that in
K Receiver clock cycles the Receiver will receive at most
K+ 1 items of data, a single-element buffer will be sufficient
to absorb all bursts in the flow of data even when data is sent
at the maximum rate. In other words, data-flow property 1
guarantees that the Receiver will never have to sample two
different data elements in the same clock cycle if SAVE-REG
already contains a valid data item. The single-stage buffer

will also never underflow if the Transmitter sends data at the
maximum rate and fT ≥ fR.

Note that the Receiver scheme introduces a slight degrada-
tion of the critical path of the system, as two multiplexers are
introduced in series with the outputs of the registers and P-
REG is clocked by clkR1. If this is an issue, then the designer
may want to introduce an additional register at the output of
the system. In the remainder of the paper, we assume that no
output register is present.

4) Strobe Analysis Stage: The bottom part of the system in
figure 6 analyzes the strobe and generates signals sp and sn

for the upper part of the system (connections are not shown
to keep the presentation simple).

The strobe signal is sampled in the Receiver by four
samplers: on the positive and negative edges of clkR by P0
and N0, and on the positive and negative edges of clkR2 by
P2 and N2.

Strobe samples obtained by N0 and N2 are synchronized to
the Receiver clock domain by positive-edge-triggered flipflops
S0 and S2. The strobe samplers sample the strobe contin-
uously, and can therefore go metastable. In order to avoid
cascaded metastability events, we use high-latency multiple-
stage synchronizers SP0, SP2, SN0 and SN2. In traditional
synchronized designs such as asynchronous FIFOs, the latency
of the synchronizers directly adds latency to the data, and the
number of synchronization stages is set as a trade-off between
latency and MTBF [19]. Usually a two-stage synchronizer
is sufficient to obtain a very high MTBF [20], but in the
GRLS Receiver interface multiple-stage synchronizers can be
used for additional system safety as they introduce no latency
penalty for data.

Flipflop D0 is used to record the value that the output of
SP0 had in the past cycle. This is because, at any time, the
output of SN0 was sampled half a cycle before the output of
SP0, and values for sp (sn) are obtained by comparing the
outputs of SP0 and SP2 (SN0 and SN2) with strobe samples
obtained half a cycle earlier. In particular, sp0 (sn0) is set
to 1 only when the outputs of SP0 and SP2 (SN0 and SN2)
match, which guarantees that strobe transitions happened far
enough from the edge of clkR1, and the output of SN0 (D0)
is different from the output of SP0 (SN0), which guarantees
that a strobe transition happened in the last half cycle so that
every data item is sampled only once and as soon as possible.

Programmable-length delay lines are inserted in series to sp0

and sn0 so that the total delay between strobe sampling and the
output of sp and sn is PC or a multiple of PC. In particular,
sp0 and sn0 are delayed for a number of cycles equal to P∗

NR
−

LS−1, where LS is the latency of the synchronizers in terms
of clock cycles, and P ∗ is the smallest multiple of P with
P∗

NR
> LS . The delay lines are implemented using a chain of

flipflops and a selector. One-hot encoding is used to obtain a
simple and fast implementation. Note that the sp signal should
be buffered with a negative-edge-triggered flipflop in order to
avoid race conditions as register P-REG is clocked with clkR1.
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C. Fast-Receiver, Mesochronous and Static Interfaces

Although the communication method that has been pre-
sented can work in all three different communication scenar-
ios, some simplifications can be made if it is known that the
system is always fast-Receiver or mesochronous.

In both these scenarios, the single-stage buffer in the Re-
ceiver is not needed because the Receiver will never sample
two different elements in the same clock cycle. The Receiver
stage can be simplified to a system with two registers con-
nected to an output through a multiplexer (figure 7). An
additional output register can be inserted if the critical path
degradation due to the multiplexer is a problem.

REG
SYNC

clkR

vp+vn

vout
datac

E

P−REG

N−REG

E

v

clksp

sn clk

vn

p

1

0

vnR1

R1

data

validc

Fig. 7. Receiver registers for mesochronous communication

In a fast-Receiver scenario, an additional simplification can
be made, since the minimal time between two successive data
outputs by the Transmitter is TT ≥ TR + TH . As long as
TH > 2TW +ts +th, the Receiver can use a single edge of the
clock to sample strobe and data; the system can be simplified
to the structure in figure 8. Note however that sampling on
both clock edges would increase the upper bound for fH .

clkR

clkR

clkR clkR clkR

clkR

P*/N −L −1R S

synchronizers

selector
0 1 2 3

multi−stagestrobe

clkR

clkR2

E

P−REG

clkR1

data

voutvalidc

datac

Fig. 8. GRLS Receiver stage for fast-Receiver systems

In certain scenarios it is possible to estimate the skew
between the clocks with sufficient accuracy through post-
layout static timing analysis. In this case, strobe generation
and analysis is not necessary; P

NR
values of sp and sn can be

precomputed and stored in two programmable-length feedback
shift registers; also, registers P-REG and N-REG can be
clocked by clkR and clocks clkR1 and clkR2 are not necessary.

V. NON-IDEALITIES

A. jitter and misalignments

Until now we considered an ideal scenario with no clock
jitter, no data jitter and no misalignments between the strobe
and the different data lines. In a real scenario, however, these
issues must be considered. Noise in the system introduces
jitter, and it is impossible to realize a bundle of data lines
with a perfectly-matched delay.

We consider now a more realistic scenario in which each
data and strobe line is subject to a jitter J ≤ JM , taking
into account the clock jitter at the transmitter plus the jitter
added by the propagation of the data through the channel.
We also assume that the Receiver clock is subject to a jitter
JRC ≤ JRCM . Two data lines have a misalignment MIS ≤
MISM . The GRLS communication scheme can cope with
these non-idealities if the delay TW between clkR, clkR1 and
clkR2 is increased. As the delay lines are never ideal, we have
TWmin ≤ TW ≤ TWmax. By setting

TWmin = ts + th + JM (strobe) +MISM

+JM (data) + JRCM

= ts + th + 2JM +MISM + JRCM

we can guarantee that the sampling strategy defined by
analyzing the strobe will be valid also to sample data. Note that
the jitter of the Receiver clock must be accounted for because
strobe sampling and data sampling are two events happening
in different clock cycles.

In the worst case, data will remain stable on the channel for
a time TR

2 + TH

2 ± JM and two Receiver samplings will be
spaced of TR

2 ∓JRCM . In this worst-case scenario, the system
will be able to define a sampling strategy as long as:

TH

2
− JM − JRCM > 2TWmax + ts + th

Which leads to the following upper bound for fH :

fH <
1

2 (ts + th + JM + JRCM + 2TWmax)

With ideal delay lines, assuming TW = ts + th + 2JM +
MISM + JRCM , we obtain:

fH <
1

6 (ts + th) + 6JRCM + 4MISM + 10JM

See section VII for calculations of a realistic upper bound
for fH in a 90 nm implementation.

B. Clock Drifts

Extending the concept of plesiochronous clocking [2] to
rationally-related clock frequencies, we define a plesiorati-
ochronous clocking scenario as a scenario in which fT and
fR are respectively submultiple of two frequencies fTH and
fRH , with fTH ' fRH ' fH closely matched and differing
only for a very small fraction of percentage from a nominal
value fH .
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With fTH = fRH + ∆f , the skew between clkT and clkR

drifts of ∼ P∗ ∆f
fH

between strobe sampling and data sampling.
The GRLS communication scheme can work in this scenario
as long as the timing window TW is increased to

TW = ts+ th + 2JM +MISM + JRCM +
P ∗∆f
fH

VI. COMPARISON WITH OTHER APPROACHES

A. Overhead

The number of flipflops in the GRLS Receiver interface is
given by:

N = 4W + 7 + 4S + 2 (Nmax − S − 1)

where W is the width of the data lines, S is the number
of synchronization stages, and Nmax is the maximum value
for NT and NR. The Receiver requires 4 flipflops for every
data line, which corresponds to the overhead of standard
mesochronous synchronizers [5]–[7]. Our method, however, is
more flexible as it supports rationally-related clock frequen-
cies. When the system is simplified for the mesochronous case,
the overhead of the GRLS Receiver is reduced to 3 flipflops
per data line.

Perhaps the most straightforward solution for ratiochronous
clock-domain crossing consists in introducing in the channel
an additional unit clocked by a clock clkH running at fre-
quency fH , connected with the Transmitter and the Receiver
using upsampling mesochronous links. The ideal situation
consists in having no skew between the high-frequency unit
and the Receiver clock, as this would allow the high-frequency
unit and the Receiver to communicate synchronously and
would require a single mesochronous link. However, this
solution is unpractical because in a modern chip it would be
difficult to generate a high-frequency clock synchronous with
the Receiver clock: clkR is obtained from a clock running
at fH , but clkR is delayed by the local clock tree before
reaching the leaf cells of the Receiver. The only available
solution consists in using two separate mesochronous links,
which would require at least 8 flipflops per data line and would
add a significant latency to the system (see section VI-B).
Also, the double-mesochronous solution would introduce a
considerable power overhead compared to the GRLS scheme
as it would require the introduction of a unit clocked with fH .
The overhead would be particularly high for systems in which
fH is significantly higher than fT and fR. Besides, our scheme
can work also when no physical frequency fH is present on the
chip, such as in certain plesioratiochronous systems. Using the
approaches in [16] and [17] would not improve the overhead
figures.

B. Throughput and Latency

The system is an optimal-throughput communication
scheme, as communication can always happen at the maximum
possible rate of one data item for every clock cycle of the
slowest of the two units.

To study the latency introduced by the communication
scheme, let us consider a condition in which all buffers are
empty and a single data item is sent from the Transmitter
to the Receiver. The latency of an item of data is defined
as the difference between the time at which the data item is
consumed by the Receiver and the time at which the same data
item was produced in the Transmitter. The latency is given by
the sum of the propagation delay through the channel TC plus
the latency L of the communication scheme. Ignoring setup
and hold times, if no regulation is present, data is immediately
output and L ≤ TR. Note that this latency is optimal, as data
can arrive at any time at the Receiver but can be consumed
only on positive clock edges.

For regulated fast-transmitter flows, given NT and NR,
it is possible to calculate an upper bound on the latency
introduced by the system. The maximal time between two
successive data outputs is, based on data-flow property 4, equal
to TT

⌈
NR

NT

⌉
, and corresponds to the maximal delay introduced

by the regulator. Remembering that TT = TR
NT

NR
and adding

one additional factor TR to account for the fact that data can
arrive at the Receiver at any time, we have:

L ≤ TR

(
1 +

NT

NR

⌈
NR

NT

⌉)
The average latency of our communication system for

different combinations of NR and NT can be calculated by
simulation. Since the latency introduced by the system depends
on the skew between the clocks and the channel delay, values
obtained from a set of different simulations are averaged. In
table I are reported latency values for different combinations
of NT and NR.

The table reports worst-case and average-case latency values
for two different situations: when there is skew between
the clocks and when there is no skew. The no-skew figures
are reported to compare with Sarmenta’s Rational Clocking
approach from [14]. The lazy algorithm of Rational Clocking
leads to worse latency figures for fast-Transmitter systems
compared to the GRLS interface.

Supposing two synchronization stages and taking as a
reference the implementation in [19], the worst-case and
average latencies of asynchronous FIFOs are respectively 3TR

and 2.5TR, which are always higher than the figures of our
communication system.

It can also be noted that, since our method samples data
at the Receiver on both clock edges, if the input stage of
the system allows a timing budget of half a clock cycle, it
is possible to delete the synchronization register SYNC-REG
in figure 6 to reduce the overhead and subtract TR

2 to all
average and worst-case latency figures. Data items sampled
on the negative edge of the clock become then immediately
available at the output.

State-of-the-art mesochronous links implemented such as
in [5], assuming that 4-stage FIFOs are used, introduce a
worst-case latency of 3TR. A double-mesochronous solution
for rational clocking using a high-frequency unit in the chan-
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NT : NR Worst-case latency (TR) Average latency (TR)
Skew No skew Skew No skew
GRLS GRLS RC GRLS GRLS RC

NR ≤ NT 1 0.5
(unreg.)
NT = NT

K
2 1 + 1

2K
2 : 3 2.333 1.667 2.000 1.389 1.333 1.667
2 : 5 2.200 1.800 2.000 1.220 1.400 1.600
3 : 5 2.200 1.800 2.800 1.340 1.400 1.800
3 : 7 2.286 1.857 2.714 1.234 1.429 1.571
5 : 7 2.429 1.857 2.429 1.418 1.429 1.571
8 : 11 2.455 1.909 2.000 1.426 1.455 1.545
7 : 12 2.167 1.917 2.750 1.326 1.458 1.625
12 : 17 2.412 1.941 2.000 1.414 1.471 1.529
16 : 17 2.882 1.941 2.000 1.497 1.471 1.529

TABLE I
LATENCY ANALYSIS AND COMPARISON WITH THE RATIONAL CLOCKING

(RC) APPROACH

nel would thus introduce a worst-case latency of at least
3TR+3TH , which is always higher than the latency introduced
by our interface.

VII. IMPLEMENTATION RESULTS

In TSMC 90 nm CMOS technology, we have ts + th =
31ps. Based on the equations in section V, a realistic value for
TWmin, assuming a medium-length interconnect with jitters
and misalignments of 20 ps, is 111 ps. A delay line is built
using 10 inverters in the technology library. The delay line
introduces a delay of 112 ps in the best case and 238 ps in
the worst case. In turn, this leads to the upper bound fH <
910MHz.

The delay lines have both an area of 16 Gate Equiva-
lents (GEs). In table II are reported the area overheads of
the communication system in terms of GEs. Synthesis has
been done in TSMC 90 nm technology targeting a working
frequency of 1 GHz. The parameter Nmax determines the
maximal value for NT and NR. For the fast-Transmitter
scenario, the regulator was realized using a feedback shift
register for Nmax = 16 and an FSM implementing algorithm
1 for Nmax = 32 as these were the optimal-area solutions.

Scenario Regulator Strobe Receiver Total
analysis registers

fast-Tran (Nmax = 16) 165 293 1450 1922
fast-Tran (Nmax = 32) 229 513 1450 2205
fast-Rec (Nmax = 16) - 150 274 438
fast-Rec (Nmax = 32) - 260 274 506
mesochronous - 141 1082 1237

TABLE II
AREA OVERHEADS OF THE COMMUNICATION SYSTEM IN GATE

EQUIVALENTS

VIII. CONCLUSION

In conclusion, we have shown how the overhead and perfor-
mances of our interface are close to those of state-of-the-art
mesochronous interfaces, despite allowing greater flexibility.

Using our approach, a GMLS system can be turned into a
much more flexible GRLS system introducing only a small
overhead. We have also shown latency, overhead, flexibility
and complexity advantages over all other approaches that have
so far been proposed to cross the boundary between clock
domains with rationally-related clock frequencies.

We now plan to further validate our communication scheme
by implementing a complete AXI-based GRLS chip using our
interfaces for communication.
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