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Abstract—In this paper, we describe a low-area, reduced-
power on-chip point-to-point bidirectional communication
scheme for heavily pipelined systems. When data needs to be
transmitted bidirectionally between two on-chip locations, the
traditional approach resorts to either using two unidirectional
wires, or to using a single wire (with a unidirectional transfer at
any given time instant). In contrast, our bidirectional commu-
nication scheme allows data to be transmitted simultaneously
between two on-chip locations, with a single wire performing
the bidirectional data transfer. Our approach borrows ideas
from the emerging area of network coding (in the field of
communication). By utilizing coding units (which also serve the
purpose of buffering the signals) along the wire between the
two endpoints, we are able to achieve the same throughput as
a traditional approach, while reducing the total area utilization
by about 49.8% (thereby reducing routing congestion), and
the total power consumption by about 11.5%. The area and
power results include the contribution of routing wires, coding
units, drivers, the clock distribution network and the required
reset wire. Our bidirectional communication approach is ideally
suited for heavily pipelined data intensive systems.

I. INTRODUCTION

Recently, the demand for high performance on-chip im-
plementations of data intensive applications has been on
the rise. This has been largely in response to the dramatic
increase in the demand from the gaming, DSP and mul-
timedia sectors. Circuit blocks such as filters, streaming
media, encryption and decryption blocks are increasingly
being integrated on the same large IC die or SoC. Such
applications exhibit a high tolerance to pipeline latencies,
while demanding extremely high performance in terms of
computational throughputs.

In traditional implementations of such systems, it is often
the case that two blocks need to conduct a bidirectional data
transfer between them. In other words, block A needs to
transfer data a to block B, while B needs to transfer data b
to A. Both of these are instances of unicast communication.
In general, a and b can both be n bits wide, where n is
the width of the data bus between A and B. Without loss
of generality, the discussion in this paper will assume that
n = 1, although our results are provided for n = 64. There
are two traditional approaches that have been used to achieve
the communication between A and B.

• Two wires can be routed between A and B, one for the
transfer of a from A to B, and the other for transferring b
from B to A. This method requires a higher wiring area,
but allows 2 bits of transfer per clock period.

• A single wire could be routed from A to B. Assuming
that the transfer rate desired in both directions is equal, we
would transfer a in one clock cycle and b in the next clock
cycle. This would require tristateable drivers at both ends
of the wire. This method has a lower wiring area compared
to the previously described technique, but allows only one
bit of transfer per clock period. However the inability to

insert buffers restricts this approach to short wires, which
is a serious restriction.

The first approach achieves twice the throughput of the
second, and can be employed for long wires. Hence it is
the method which we compare our approach to, since a
high throughput over long wires (typically buses) is desired
in data-intensive applications. However, the first approach
requires two wires to be routed between A and B. In the
sequel, we refer to the first of the above listed approaches
as the traditional approach.

This paper is motivated by the goal of achieving 2 bits
of transfer per clock period (one bit from A to B and the
other bit from B to A), while using a single wire, thereby
helping alleviate routing congestion in the IC. We borrow
ideas developed in the area of network coding in the field
of communication theory. By using intermittent coding units
in the wire between A and B, we achieve this goal. Each
coding unit is a synchronous element which reads incoming
data from both directions, nondestructively encodes the data,
and broadcasts the coded data in both directions.

Our approach has the following advantages. First, the
buffering of the wire between A and B (as required in deep
sub-micron technologies) is performed in the coding unit.
Thus the area overhead due to the coding logic is quite
small in practice. Second, our approach is not limited to
short wires since the wire is intermittently buffered by the
coding units. Thirdly, twice the amount of data is transferred
simultaneously between A and B, while using a single wire
for the transfer. Fourth, our approach, when compared to the
traditional approach (with optimal buffer insertion), achieves
∼ 49% lower total area utilization (hence reducing routing
congestion) and ∼ 11% less total power consumption while
matching the throughput of the traditional approach. Note
that the area and power results include the contribution of
routing wires, coding units, drivers, the clock distribution
network and the reset wire, used in our approach.

The transmission of data between A and B is pipelined in
our approach. Hence, our approach is particularly suitable for
data intensive bidirectional communication instances, where
the transfers are latency tolerant, while requiring extreme
high data throughputs and a low area and power utilization.
With the increasing complexity and die sizes of DSP and
multimedia ICs, such designs need to be heavily pipelined,
making our technique more suitable with each process gen-
eration. Recent Network-on-Chip (NOC) topologies such as
the flattened butterfly [1] and Multidrop Excess Channels [2]
(MECS) could benefit from our approach as well.

The key contributions of this paper are:

• This is the first paper to apply the concept of unicast
network coding to the VLSI context.

• For heavily pipelined VLSI systems, for the same latency,
our approach improves on the traditional wiring approach
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in terms of area (by about 49.8%) as well as total power
(by about 11%).

The remainder of this paper is organized as follows.
Previous work is described in Section II, while Section III
provides the details of our bidirectional communication ap-
proach. In Section IV we present results from experiments
which we conducted to implement our approach, along with
comparisons with the traditional (optimal buffer insertion
based unidirectional communication) approach. We conclude
in Section V.

II. PREVIOUS WORK

When data needs to be multicast in a communication net-
work, network nodes are typically used to simply duplicate
and forward incoming messages. Recently, there has been
significant interest in techniques in which network nodes
do more than simple duplication and forwarding. In other
words, these nodes are used for encoding, and are allowed to
generate new symbols by combining incoming data symbols.
This paradigm is referred to as network coding. Network
coding has been studied in the context of networking and
communication [3]. It has been shown that the capacity of a
multicast network can be increased by network coding [4],
[5].

Several recent research efforts have shown significant
improvements by applying network coding in the commu-
nication domain [6], [7], [8], [9], [10]. These papers have
addressed important network coding related topics such as
network capacity, algorithms for network coding, network
information flow, coding advantage, etc. Establishing effi-
cient multicast connections is one of the central problems in
network coding. In the multicast network coding problem a
source s needs to deliver h symbols to a set K of k terminals
over the underlying communication graph G. It was shown
in [3] and [11] that the capacity of the network (i.e. the
maximum number of packets that can be sent between s and
K per time unit) is equal to the minimum size of a cut that
separates the source s from a terminal t ∈ K. In other words,
a source s can send h symbols to all terminals in K if and
only if the total capacity of all edges in any cut that separates
s and t ∈ K is at least h. In [11], it was proved that linear
network codes are sufficient for achieving the capacity of the
network. In a subsequent work, [12] developed an algebraic
framework for network coding. This framework was used
by [13] to show that linear network codes can be efficiently
constructed through a randomized algorithm. The authors
of [14] proposed a deterministic polynomial-time algorithm
for finding feasible network codes for multicast networks.

The concept of multicast network coding has been applied
to improve the routability of VLSI designs in [15]. In a
VLSI IC setting, any signal with a fanout of 2 or more
is an example of a multicast signal. Among such signals,
a restricted subset can benefit from network coding. By
employing network coding in such situations, the authors
of [15] demonstrated that an improvement could be achieved
in routability, power (about 7.7%), wirelength (about 8%)
and active driver area as well (2.2%). There is a modest
delay increase (2.5%) that is incurred.

In [16], the authors applied the idea of multicast network
coding to the problem of FPGA routing. The technique
consisted of enumerating the multicast routing scenarios,
filtering out those that would benefit from network coding,
and then implementing the coding using free LUTs in the
design. In about 37% of the examples, the maximum number
of routing tracks was reduced, with a small decrease (3%)
in total wirelength, and about 15% decrease in worst case
routing delay. In [17], the authors use transition based

encoding for an on-chip bus, to reduce energy. However,
this approach does not achieve bidirectional data transfer in
a single wire.

Recently, it was shown that network coding can also be
applied in a unicast wireless communication scenario [18].
The authors demonstrated this approach on a 20-node wire-
less node testbed, showing that unicast network coding can
achieve improved network throughput. The basis of [18] is
illustrated in Figure 2. Suppose A needs to communicate
data packet a to B, and B needs to communicate b to A,
over a wireless channel, using an available relay unit. The
conventional wireless communication scenario is shown in
Figure 1. The entire transfer requires 4 transmissions, as
shown in the sequence in Phases 1 through 4. However,
in the unicast network coded example of Figure 2, the
transfer requires 3 transmissions. First a and b are transmitted
to the relay unit. The relay unit in this case does more
than store-and-forward, and is therefore referred to as a
coding unit. In particular it broadcasts the XOR of a and b.
When A receives this broadcast data, it can recover the data
transmitted by B by XORing the received data (a⊕b) with
what it had originally transmitted (a). B similarly recovers
the data intended for it as well.

i) Phase 1

Relay Unit

iii) Phase 3

Relay Unit

iv) Phase 4

Relay Unit 

ii) Phase 2

Relay Unit 

A a B A b B

A A Bba B

Fig. 1. Conventional Wireless Communication (without Network Coding)

i) Phase 1

Coding Unit Coding Unit

ii) Phase 2

Coding Unit 

iii) Phase 3

A a B A b B

BA a⊕b a⊕b

Fig. 2. Network Coding in Communication Systems [18]

In this paper, we apply the above unicast network coding
idea to the VLSI domain. When two blocks A and B need
to conduct a bidirectional data transfer, we have an instance
of unicast communication. We show that in such a situation,
we can achieve 2 bits of transfer per clock period (one bit
from A to B and the other bit from B to A), while using a
single wire. Similar to the coding unit of Figure 2, we utilize
intermittent coding units in the wire between A and B. Each
coding unit is a synchronous element which reads incoming
data from both directions, encodes (XORs) the received data,
and broadcasts the coded data in both directions. In general,
a and b can both be n bits wide, where n is the size of the
data transfer between A and B.

A prior approach [19] which attempts to achieve this goal
(of bidirectional data transfer using a single wire) uses circuit
level techniques. By using current mode signaling, bidirec-
tional communication was achieved. Both the locations A
and B have current mode drivers and receivers, allowing for
a bidirectional signal transfer. However, the receivers need to
perform high precision voltage sensing, making the method
complex, and sensitive to process variations. Additionally,
the power consumption of [19] is about 100× that of our
approach, since it uses current mode signalling. Further, for
long wires in Deep Sub-micron (DSM) technologies, buffer
insertion is a crucial requirement to reduce wiring delays.
The approach of [19] does not address this. Modifying
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the approach to incorporate buffer insertion would (at best)
require a drastic re-design of the scheme. In contrast, our
scheme does not require complex voltage sensing. Also, it
incorporates buffer insertion naturally in the formulation.

Another prior approach [20] addresses bidirectional signal
communication along a wire by using boosters. The insertion
of a booster does not break a wire into smaller sections as
is the case with buffer insertion. The wire has intermittent
boosters, and each booster has an early edge detection circuit,
along with a driver which aids the signal transition. However,
unlike our approach, the booster method does not allow data
to be simultaneously transmitted between A and B. Also,
the early edge detection circuits in the booster approach are
highly susceptible to noise, making it impractical for DSM
technologies.

III. OUR APPROACH

In recent VLSI designs, wiring delays have been domi-
nating logic delays [21]. As a consequence, signals on long
wires, if buffered, lead to a reduced wiring delay (since
the buffered wire segment has a lowered capacitance and
resistance) while increasing the logic delay (due to the use
of buffers). Thus there is an optimal number (and sizing) of
buffers such that the total signal delay is minimized. This
is referred to as the buffer insertion problem, and has been
widely studied. An excellent survey of this problem can be
found in [22].

Suppose the clock period of an IC is T . Even with optimal
buffer insertion, the maximum distance dL that a signal can
be transmitted on metal layer L in one clock period T is
limited, and does not cover the entire die area. This distance
is longer for wires on higher metal layers.

The starting point of our work was to quantify dL. Using
a series of HSPICE [23] sweeps, we found this distance for
metal layers of interest. For this experiment, we used 45-
nm PTM [24] model cards, and also used wiring parasitics
from [24] for a wiring configuration having minimum pitch
wires on the metal layer of interest, with ground planes
on the metal layers above and below the layer of interest.
The maximum distance a signal can be transmitted on metal
layers 3 and 4 (assuming a clock speed of 3 GHz) is 7.07
mm. This distance is achieved by optimal buffer insertion
(with an optimal number and sizing of buffers) obtained via
HSPICE sweeps.

Now we can make two observations. If the total length of
the wire on metal layer 3 or 4 is greater than 7.07 mm, then
for 3 GHz circuit operation, the data transfer will need to be
pipelined. Further, for bidirectional data transfers, 2 wires
would be needed in order to achieve maximal throughput
using the traditional approach, thereby increasing wiring
congestion.

With our network coding based bidirectional data trans-
fer scheme, we need just one wire to achieve the same
throughput, thereby reducing routing congestion. Just as in
the case of buffer insertion, we would require the transfer to
be pipelined.

A. Overview

Our network coding based approach is described next.
When high-throughput bidirectional data transfer is required
between two locations on the die, we use a single wire,
with a number of coding units between these two locations.
Figure 3 (i) illustrates 3 successive coding units, with their
intervening wiring segments shown. Note that each coding
unit is a synchronous circuit element, and adjacent coding
units utilize complementary clock phases. Figures 3 (ii) and
(iii) illustrate the mechanism of data transfer. When CLK is

i) Architecture of Our Approach
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Fig. 3. Network Coding for Bidirectional Data Transfer in VLSI

Coding Unit

Coding Unit Coding Unit
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CLK

Q

CLK

reset

CLK

CLK

Fig. 4. Circuit Structure of Coding Unit

low (Figure 3 (ii)) coding units P and Q are transmitting,
while coding unit R receives. Coding unit P transmits data p
and coding unit Q transmits data q. Coding unit R receives
both p and q. When CLK is high, coding unit R transmits
p⊕q, while P and Q receive, as shown in Figure 3 (iii).

Figure 4 illustrates the circuit level diagram of a coding
unit. Figure 4 shows the same block level arrangement of
coding units as in Figure 3, with the coding unit R shown
(circled) at the circuit level. During the low phase of CLK,
the values from coding units P and Q are XORed, and stored
in a latch. When CLK is high, the latched value is buffered
and driven out along the wiring segments towards coding
units P and Q. There are always an even number of buffers
in the buffer chain in the coding unit. Note that the latch is
resettable, a feature which will be discussed subsequently.
Also, the total area of the buffer chain dominates the area of
the coding unit. Finally, we observe that coding units P and
Q have an opposite CLK polarity compared to coding unit
R.

In this manner, data is transferred bidirectionally (using
a single wire) between the two die locations in a pipelined
fashion, with each coding block alternating between a receiv-
ing and a transmitting functionality during alternating phases
of the CLK signal.

B. Bidirectional Communication Protocol

We next discuss the implications of our transfer protocol
on the endpoints of the wire. Consider the bidirectional
data transfer between endpoints A and B whose topology
is shown in Figure 5. Table I enumerates the data on the
wires during the first 3 clock cycles of communication. The
first row indicates the reset state of the communication line.
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wiring segments

Coding Unit Coding Unit Coding Unit

1 2 3

CLKCLK CLKreset reset reset

BA wire 1 wire 2 wire 3 wire 4

Fig. 5. Bidirectional Data Transfer Protocol Topology

Clock Clock Received Wire Wire Wire Wire Received

Cycle Phase at A 1 2 3 4 at B

0 reset - 0 0 0 0 -

1 high - −→a1
←−
0

−→
0

←−
b1 -

1 low 0 ←−a1
−→a1

←−
b1

−→
b1 0

2 high - −→a2
←−−−−
a1⊕b1

−−−−→
a1⊕b1

←−
b2 -

2 low b1
←−−−−−−−
a1⊕b1⊕a2

−−−−−−−→
a1⊕b1⊕a2

←−−−−−−−
a1⊕b1⊕b2

−−−−−−−→
a1⊕b1⊕b2 a1

3 high - −→a3
←−−−−
a2⊕b2

−−−−→
a2⊕b2

←−
b3 -

3 low b2
←−−−−−−−
a2⊕b2⊕a3

−−−−−−−→
a2⊕b2⊕a3

←−−−−−−−
a2⊕b2⊕b3

−−−−−−−→
a2⊕b2⊕b3 a2

TABLE I

BIDIRECTIONAL DATA TRANSFER PROTOCOL

The subsequent rows indicate the value on different wire
segments that are part of the communication line between A
and B. Each entry in columns 4 through 7 describe the value
on the wire segments symbolically with the direction they
are being driven as an arrow on the top. During chip reset,
all coding units are reset to a 0 value. Now, when CLK =
1, A and B transfer a1 and b1 towards coding units 1 and
3 respectively, while coding unit 2 drives out a 0 (the reset
value) towards coding units 1 and 3. When CLK = 0, coding
units 1 and 3 drive out (a1⊕0) and (b1⊕0) respectively to
their neighbors. Again when CLK = 1, A and B drive new
data a2 and b2 towards coding units 1 and 3 respectively,
while coding unit 2 drives out a1⊕b1 towards coding units 1
and 3. Finally, when CLK = 0, coding units 1 and 3 drive out
a1⊕b1⊕a2 and a1⊕b1⊕b2 respectively. From this received
data, A can recover the message sent by B two cycles ago,
by XORing the received message (a1⊕ b1⊕ a2) with the
running XOR of the data it sent out over the last two cycles
(a1⊕a2 in this case). Similarly, B can recover the message
sent by A two cycles ago, by XORing the received message
(a1⊕b1⊕b2) with the running XOR of the data it sent out
over the last two cycles (b1⊕b2). During this phase of the
clock, coding unit 2 receives (a1⊕b1⊕a2) and (a1⊕b1⊕b2)
and would hence drive out (a2⊕b2) when CLK becomes 1.
It can be observed from Figure I that in subsequent cycles, A
(B) can retrieve the data sent by B (A) two cycles previously
by XORing their received data with the running XOR of
the data transmitted for the last 2 cycles. In this manner,
we achieve 2 bits of transfer per clock period (one bit in
both directions), while using a single wire and thus reducing
routing congestion.

In the above example, the number of coding units m is
odd. In this case, the transfer latency is (m+ 1)/2 clocks,
and each of A and B need to store a running XOR of the
last (m+1)/2 values that they transmitted. Note that m can
be even as well, in which case the above analysis still holds,
with the exception that A and B transmit data on opposite
phases of the CLK signal.

The decoding of received messages at A and B requires
the computation of an XOR of the received signal with the
running XOR of the last (m+1)/2 transmitted signals. The
latency of the XOR computations at A and B can be hidden
(by adding an additional pipeline stage, for instance). Since
the communication is heavily pipelined, this does not affect
the transfer throughput.

C. Circuit Level Considerations

Note that the overhead of routing the reset and CLK
signals is not high, since the high-throughput on-chip data
transfers that commonly occur in high performance SoCs
are parallel in nature (typically 32, 64 or 128 bits wide).
The CLK and reset signals are shared between all coding
units as shown in Figure 6. Since our scheme reduces the
number of data bus wires by a factor of 2, the addition of
2 additional control wires does not appreciably degrade the
improvement in the bus wiring area achieved by our method.

Coding Unit Coding Unit Coding Unit

Coding Unit Coding Unit Coding Unit

Coding Unit Coding Unit Coding Unit

wiring segments

Q63R63P63

P62 R62 Q62

P0 R0 Q0

CLK

reset

Fig. 6. Network Coding based 64-bit Data Transfer

The number of pipeline stages for our approach is greater
than that required by a buffer insertion solution due to two
reasons.

• In case of traditional buffer insertion, if the length
l between the endpoints is greater than the maximum
distance dL that a signal can be transmitted on metal layer
L, then ⌊l/dL⌋ pipeline flip-flops must be inserted. The
length of each resulting wiring segment is the distance
that can be driven in a clock period T of the design.
However, in our approach, the coding units are latch based.
Therefore, the length of a wiring segment is the distance
that can be driven by a buffer in half the clock period
(T/2). For this reason the number of wiring segments in
our approach is typically larger. Note that this does not
reduce the bidirectional transfer throughput.

• We cannot insert traditional buffers or inverters between
coding units since a bidirectional transfer is desired on
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the wire. As a consequence, the length of the wiring
segment between two successive coding units is equal to
the distance that can be driven by the driver in the coding
unit in half the clock period (T/2).

Another observation is that there is never a situation where
any coding unit has to charge both its wiring segments when
it is driving a logic high value. This is because it drives a
logic high value if the incoming signals (p and q in Figure 3)
are complements of each other. In such a case, one of the
wires is already driven high. Thus a high value need only be
driven on one wire. This allows us to have a smaller PMOS
device for the last driver stage of the buffer chain in the
coding unit.

The coding unit R in Figure 4 drives its output during the
high phase of CLK. The output of the final inverter of the
buffer chain in the coding unit R reaches its driving value
before CLK goes high1. As a result, when CLK goes high,
the output capacitance of the final inverter of the buffer chain
initially undergoes a charge sharing with the capacitance
of the wiring segment. This helps the signal of the wiring
segment switch faster.

Finally, we note that the buffer chain in the coding unit is
largely insensitive to the driver sizing ratio. Traditionally, in
an inverter chain, optimal delay is achieved if the output
capacitance of any inverter in the chain is about 3× its
input capacitance. In our coding unit however, a much larger
capacitance ratio can be tolerated, since the output of the
final inverter of the buffer chain reaches its driving value
before CLK goes high. As a result, delay optimality of the
wiring chain is not important, and hence a larger output
to input capacitance ratio is tolerable in the inverter chain.
The increase in power incurred by such a choice (due to
longer signal transition times) is a small fraction of the power
consumed in switching the large wiring capacitances.

IV. EXPERIMENTS

In this section, we compare the area and power charac-
teristics of our approach in comparison with the traditional
approach for achieving bidirectional communication. We
distinguish between the active area (area for coding units
as well as drivers) and the wiring area utilization of both
the methods. The total area and total power results in this
paper include the contribution of routing wires, coding units,
drivers, the clock distribution network and the reset wire.

We conducted many experiments for different total wire
lengths (i.e. the distance between endpoints A and B). We
varied the number and drive strength of the buffers (for the
traditional design) and the coding units (for our approach)
and present the results in this section. We also varied the
size of the data bus under consideration. Specifically, we
conducted experiments for 32-bit, 64-bit and 128-bit data
buses. In all our experimental results, we are able to achieve
a healthy reduction in total area and power consumption.

Experiments were conducted using a 45-nm PTM [24]
process, assuming that wires are driven on Metal4. The clock
frequency was assumed to be 3GHz for all simulations in
this paper. Simulations were performed using HSPICE [23].
Actual process feature dimensions and parasitic values are
reported in Table II. In future processing generations, the
increasing complexity and die sizes of DSP and multimedia
ICs would require the wires on higher metal layer wires to be
heavily pipelined as well, making our technique more useful
in the future.

1This occurs because we require that the final inverter of the buffer chain
be stable before CLK goes high, in order to make the design variation
tolerant.

Parameter Value

Metal4 width 0.14 µm

Metal4 space 0.14 µm

Metal4 thickness 0.28 µm

Metal4 R/l 0.5634 Ω/µm
Metal4 C/l 1.41e−16F /µm

TABLE II

PARAMETERS AND THEIR VALUES

We require that each driven signal, at the inputs of
its adjacent receiving coding units, achieve a 90% signal
swing within a guardband adjusted timing constraint. This
guardband adjusted time is 90% of the time allocated (which
is T/2 in our case, where T is the clock period utilized). This
provides a modest 10% guardband to account for process
variations. If this guardband is increased or decreased, the
results do not exhibit any qualitative change (in terms of the
power and area gains achieved by our approach). Also, we
assume that a worst-case capacitive cross-talk exists between
neighboring wires in the bus being simulated. Finally, our re-
sults account for the delay incurred due to an extra inversion
in every alternate coding unit.

Note that the solution to the traditional buffer insertion
problem finds the optimal number and optimal size of buffers
to minimize the delay of a signal from signal source to
destination. However, the problem being solved here is –
given a guardband adjusted timing constraint we need to
find the optimal number and optimal driver size of coding
units to minimize a cost function (either area or power).

Table III reports the results comparing total area (wire
area plus active area), dynamic and leakage power for both
our approach and the traditional buffer insertion approach,
for a 64-bit bus. Table III also reports the ratios of our data
to that of the traditional method. This ratio is presented as
a percentage in braces next to the data of coding buffers.
All absolute area numbers are in µm2, while power numbers
are in mW. All results are iso-throughput. By this we mean
that for our approach as well as the traditional approach, the
transfer throughput is same which is 6× 64 = 384 Gb/sec
for each entry of Table III. All tables present both the area
optimal as well as the power optimal solutions. In Table III ,
a ’-’ indicates that a solution does not exist for our approach.

In Table III, we present solutions from both approaches,
for varying latencies. Note that the latency of our approach
includes the delay of coding units. For example, the 4th

row of any table compares the optimal solution for both
traditional buffer insertion and our approach, with a latency
of 4 clock cycles. The 5th row compares solutions with a
latency of 5 clock cycles and so on. These results have
been gathered from HSPICE simulations, in which we swept
the number and size of the drivers. Note that as mentioned
earlier, the number of coding units required by our approach
is typically larger than the number of pipeline stages required
for buffer insertion. This is observed in the table. Also, for
each value of latency where a solution exists for both our
approach as well as the traditional approach, we notice that
our approach has a systematically lower power consumption
(by as much as 45%) for the 64-bit bus. The leakage of
our approach is slightly higher when the latency is low, but
is comparable to the traditional approach for high latencies
(heavily pipelined systems). When the latency is low, the
drivers in our coding units are larger, hence resulting in
increased leakage.

The total area numbers in Tables III represent the active
plus the wiring area. The wiring area for our approach
was 2100 µm2, while that of the traditional buffer insertion
approach was 4200 µm2. From this information, and from the
area numbers in Table III, the active area numbers can be

135



0.75 cm Optimal Area Solutions Optimal Power Solution

Standard Buffers Coding Buffers Standard Buffers Coding Buffers

Stages Area Leakage Dyn. Power Area Leakage Dyn. Power Area Leakage Dyn. Power Area Leakage Dyn. Power

(µm2) (mW) (mW) (µm2) (mW) (mW) (µm2) (mW) (mW) (µm2) (mW) (mW)

1 - - - - - - - - - - - -

2 4201.85 0.06 2.89 - - - 4201.85 0.06 2.89 - - -

3 4201.73 0.08 3.36 - - - 4201.8 0.08 2.82 - - -

4 4202 0.1 3.18 2109.62 (50.21%) 0.13 (130%) 2.52 (79.25%) 4202 0.1 3.18 2109.94 (50.21%) 0.1 (100%) 2.28 (71.7%)

5 4201.99 0.13 3.59 2108.47 (50.18%) 0.15 (115.38%) 2.61 (72.7%) 4201.99 0.13 3.59 2109.36 (50.2%) 0.19 (146.15%) 2.29 (63.79%)

6 4202.39 0.16 3.93 2108.11 (50.16%) 0.16 (100%) 2.5 (63.61%) 4202.39 0.16 3.93 2108.81 (50.18%) 0.18 (112.5%) 2.31 (58.78%)

7 4202.79 0.18 4.12 2107.99 (50.16%) 0.18 (100%) 2.46 (59.71%) 4202.79 0.18 4.12 2108.7 (50.17%) 0.2 (111.11%) 2.33 (56.55%)

8 4203.19 0.2 4.25 2108.08 (50.15%) 0.22 (110%) 2.46 (57.88%) 4203.19 0.2 4.25 2108.99 (50.18%) 0.21 (105%) 2.4 (56.47%)

9 4203.59 0.2 4.35 2108.12 (50.15%) 0.22 (110%) 2.46 (56.55%) 4203.59 0.2 4.35 2109.02 (50.17%) 0.23 (115%) 2.43 (55.86%)

10 4202.77 0.25 3.2 2108.49 (50.17%) 0.23 (92%) 2.5 (78.13%) 4202.77 0.25 3.2 2109.27 (50.19%) 0.25 (100%) 2.49 (77.81%)

11 4203.04 0.27 3.34 2108.75 (50.17%) 0.24 (88.89%) 2.55 (76.35%) 4203.04 0.27 3.34 2109.72 (50.2%) 0.29 (107.41%) 2.54 (76.05%)

12 4203.32 0.29 3.48 2108.88 (50.17%) 0.27 (93.1%) 2.58 (74.14%) 4203.32 0.29 3.48 2108.88 (50.17%) 0.27 (93.1%) 2.58 (74.14%)

13 4203.54 0.32 3.64 2109.27 (50.18%) 0.32 (100%) 2.61 (71.7%) 4203.54 0.32 3.64 2109.27 (50.18%) 0.32 (100%) 2.61 (71.7%)

14 4203.07 0.34 3.71 2109.6 (50.19%) 0.36 (105.88%) 2.66 (71.7%) 4203.07 0.34 3.71 2109.6 (50.19%) 0.36 (105.88%) 2.66 (71.7%)

15 4203.29 0.36 4.05 2109.87 (50.2%) 0.38 (105.56%) 2.7 (66.67%) 4203.29 0.36 4.05 2109.87 (50.2%) 0.38 (105.56%) 2.7 (66.67%)

16 4203.51 0.35 4.38 2110.08 (50.2%) 0.39 (111.43%) 2.74 (62.56%) 4203.51 0.35 4.38 2110.08 (50.2%) 0.39 (111.43%) 2.74 (62.56%)

17 4203.73 0.43 4.6 2110.23 (50.2%) 0.41 (95.35%) 2.78 (60.43%) 4203.73 0.43 4.6 2110.23 (50.2%) 0.41 (95.35%) 2.78 (60.43%)

18 4203.95 0.47 4.79 2109.84 (50.19%) 0.44 (93.62%) 2.81 (58.66%) 4203.95 0.47 4.79 2109.84 (50.19%) 0.44 (93.62%) 2.81 (58.66%)

19 4204.17 0.48 4.94 2110.4 (50.2%) 0.46 (95.83%) 2.86 (57.89%) 4204.17 0.48 4.94 2110.4 (50.2%) 0.46 (95.83%) 2.86 (57.89%)

20 4204.39 0.48 5.1 2110.42 (50.2%) 0.47 (97.92%) 2.9 (56.86%) 4204.39 0.48 5.1 2110.42 (50.2%) 0.47 (97.92%) 2.9 (56.86%)

TABLE III

OPTIMAL BUFFER INSERTION COMPARISON FOR 0.75cm WIRE

inferred. Although our approach requires a greater active area
in general, the total area savings overshadow this increase
in active area, and also helps reduce wiring congestion.
The area numbers exhibit a minimum value for 7 stages in
Table III. This is because when there are few stages, the
drivers in the coding units are large, yielding a larger total
area. When there are a large number of stages, the drivers
of the coding units are small, but large in number, again
yielding a larger total area. Hence there is an optimum value
of the number of stages (7 for Table III). A similar behavior
is observed for dynamic as well as total power, with the same
explanation.

Note that our approach typically exhibits a ∼ 49% reduced
total area utilization for the 64-bit bus. We also performed
experiments for a 32-bit and a 128-bit data bus as well. We
also conducted experiments for 1.0 cm and 1.5 cm busses.
We found that these results (the area and power ratio of
the solutions from both approaches) are very similar to the
results obtained for the 64-bit data bus for any number of
stages (or for any row of Table III). Therefore, the results
for the 32-bit and 128-bit data buses are not reported for
brevity. Note that our approach performs bidirectional data
transfer on wires between coding units therefore, there are
no traditional buffers on these wires.

V. CONCLUSIONS

In this paper, we describe a low-area reduced-power
on-chip point-to-point bidirectional communication scheme
for heavily pipelined systems. Our communication scheme
uses a single wire for bidirectional data transfer, borrowing
from the emerging area of network coding (in the field of
communication). Utilizing coding units, which also serve the
purpose of buffering the signals along the wire between the
two endpoints, we are able to achieve the same throughput as
a traditional approach. Thus reduces the total area utilization
by about 49%, and the power consumption by about 11%.
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