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Abstract— Modern superscalar processors implement reg-
ister renaming by using either RAM or CAM tables. The
design of these structures should address their access time and
misprediction recovery penalty. While direct-mapped RAMs
provide faster access times, CAMs are more appropriate to
avoid recovery penalties. Although they are more complex and
slower, CAMs usually match the processor cycle in current
designs. However, they do not scale with the number of physical
registers and the pipeline width.

In this paper we present a new hybrid RAM-CAM register
renaming scheme, which combines the best of both approaches.
In a steady state, a RAM provides the current mappings
quickly; on mispeculation, a low-complexity CAM enables
immediate recovery and further register renaming. Compared
to an ideal CAM in a 4-way state-of-the-art superscalar micro-
processor, and for almost the same performance (1% slowdown)
and area (95% of the ideal CAM size), the proposed scheme
consumes about 90% less dynamic energy.

I. INTRODUCTION

High performance microprocessors implement out-of-

order and speculative execution to increase performance. In

this context, many mechanisms have been devised aimed at

enhancing the amount of instructions executing concurrently.

These microarchitectural mechanisms require register renam-

ing techniques in order to overcome write after read (WaR)

and write after write (WaW) data hazards.

Register renaming techniques distinguish two kinds of reg-

isters: logical and physical registers. Logical or architected

registers refer to those used by the compiler, while physical

registers are those actually implemented in the machine.

Typically, the number of physical registers is quite larger

than the number of logical registers. When an instruction that

produces a result is decoded, the renaming logic allocates a

free physical register. Then, the destination logical register

is said to be mapped to that physical register. After that,

subsequent data dependent instructions rename their source

logical registers to access this physical register. In addition,

to deal with program execution correctness, the register

renaming circuitry must also recover the register mapping

table on mispeculation and release the physical registers

allocated to mispeculated instructions. To this end, some

microprocessors perform checkpoints of the renaming table

[1][2][3].

Two types of memory structures have been traditionally

used for register renaming: static RAMs or CAMs. Both of

them present advantages and shortcomings, and the industry

does not show a predominant trend for either of them.

For example, the MIPS R10000 [1] and the Pentium4 [4]

TABLE I

RECOVERY CYCLES IN A TYPICAL RAM-BASED APPROACH.

Triggered at SpecInt SpecFP Average

Commit stage 12.4 53.5 33.0
Writeback stage 3.8 29.4 16.6

use the RAM approach, while the Power4 [3] and the

Alpha 21264 [2] include a CAM with a large number of

checkpoints.

To rename a source logical register, its identifier is used to

obtain the current mapping. This function is performed faster

and more efficiently in terms of energy by a RAM structure.

The reason is that RAMs are organized as direct-mapped

structures, while CAMs are fully associative tables. This

means that the RAM table is directly indexed by a source

logical register, whereas this register is compared against all

current mappings in the CAM. The associative search is a

major concern in CAM-based approaches, not only because

of the long access time it involves, but also because it hinders

scalability with the number of physical registers [5].

Concerning renaming of destination logical registers,

RAM-based approaches require at least two major structures:

the renaming table to keep current mappings, and the free

register queue, which is used to track the set of free physical

registers. In contrast, CAM-based approaches have the proper

layout to easily allocate new mappings without additional

assistant structures [6][7].

Regardless of the approach used, checkpoints allow quick

recovery of the correct mappings after mispeculation. Thus,

checkpoints of the renaming tables are implemented in both

RAM-based [1] and CAM-based [2][3] processors. How-

ever, when the number of checkpoints surpasses a certain

limit, CAM checkpointing becomes faster and more energy-

efficient than RAM checkpointing [5]. In addition, only a

CAM is able to perform in constant time the reclamation of

registers previously allocated by mispeculated instructions

(see Section II-B).

Alternatively, in RAM-based approaches the reclamation

of these registers is performed by either waiting for the

offending instruction to reach the reorder buffer (ROB) head

[4] or scan the ROB when a misprediction is raised at the

writeback stage [1]. Table I shows the recovery penalty

time (in processor cycles) in a RAM-based state-of-the

art microprocessor1. As observed, the penalty of triggering

1These results were obtained with the baseline processor configuration
described in Section IV
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recovery at commit is, on average, twice as large as doing

it at the writeback stage. But even in the latter case, the

amount of cycles is not negligible.

In this paper, we propose a new scheme that tries to

take the best of each implementation, that is, fast register

renaming, fast register reclamation, and fast recovery. To this

end, we propose a hybrid approach that uses both a RAM

and a CAM. During correct path execution, the RAM is in

charge of providing most of the mappings, and can be seen

as a cache of the CAM. The CAM is checkpointed whenever

a branch is decoded, enabling quick mispeculation recovery,

which is followed by an invalidation of the RAM contents.

After recovery, the RAM is progressively refilled with correct

mappings while new instructions enter the pipeline.

The advantages of the hybrid design come from two main

facts. On one hand, processors work in a non-speculative

mode in the common case, so RAM invalidations are un-

usual. On the other hand, frequently executed instructions

(e.g., loops) only use a small subset of the architected register

file, so only few RAM updates suffice to recover the steady

state. Thus a reduction of the CAM complexity in terms

of number of ports is possible without hurting performance,

causing lower power consumption, area, and access time.

This makes the proposed mechanism more scalable with

the number of physical registers than typical CAM-based

approaches.

Experimental results show that the hybrid scheme achieves

almost the same performance than a CAM-based approach in

a 4-way state-of-the-art superscalar processor, while reducing

the number of CAM searches by about 95%. Consequently,

the dynamic energy consumption drops by about 90%. Like-

wise, the area is reduced by between 5% and 37%, depending

on the hybrid configuration.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses typical renaming mechanisms. Section 3 de-

scribes the hybrid RAM-CAM approach. Section 4 presents

experimental results. Section 5 discusses some related work.

Finally, Section 6 draws some concluding remarks.

II. BACKGROUND

Renaming techniques involve renaming source and desti-

nation logical registers. Renaming source registers is straight-

forwardly performed by looking up the current mapping.

Renaming a destination logical register requires allocating

a free physical register and updating this mapping in the

renaming table. Below, we describe how these mappings are

tracked in both purely RAM- and CAM-based mechanisms.

A. RAM approach

Let us see how a typical RAM-based approach works

through a working example. Figure 1(a) shows a code

consisting of five instructions, which rename three logical

registers (r5–r7) to four physical registers (p10–p13).

Figure 1(b) shows the RAM contents involved at the time

instruction E enters the rename stage. At this point, its source

logical registers are renamed to p10 and p11 (contents of

entries r5 and r6, respectively). In addition, a free physical

register (p13) is allocated to the destination register r7, and

this entry is updated accordingly (as the arrow indicates).

A addi r5,r0,1 | r5->p10

B addi r6,r0,2 | r6->p11

C addi r7,r0,3 | r7->p12

D beq r7,r0,E

E add r7,r5,r6 | r7->p13

a) Code example

Logical Physical
Register Register
· · · · · ·

r5 p10
r6 p11
r7 p12→p13
· · · · · ·

b) RAM table excerpt

Fig. 1. RAM working example.

To allocate a free physical register, RAM approaches use an

additional free fegister queue (FRQ), that is, a FIFO structure

tracking the identifiers of the physical registers that are not

being used by instructions in flight. A free register is obtained

from the FRQ each time a producer instruction enters the

rename stage [6]. After that, subsequent instructions having

a data dependence with r7 will be renamed to p13. The

direct-mapped memory organization allows the mappings to

be rapidly performed while taking up small area. Later, at

the commit stage, physical registers are released by placing

their identifiers back into the FRQ.

Since the RAM table is updated at rename, it can be

updated by either non-speculative or speculative instructions.

On mispeculation, those changes performed by mispeculated

instructions must be canceled. That is, the RAM state must

be restored to its previous state at the time the offending

instruction (e.g., a mispredicted branch) entered the rename

stage. In addition, registers allocated to mispeculated instruc-

tions must be placed back into the FRQ.

The simplest way to do this is to wait until the mispre-

dicted branch reaches the Reorder Buffer (ROB) head. The

ROB is a FIFO structure where instruction metadata is stored

in program order in the corresponding entry until retirement.

Among this information, ROB entries contain the previous

mapping (e.g., p12 for instruction E). On mispeculation, the

correct RAM state can be restored by scanning the ROB once

the offending instruction reaches the ROB head. From now

on, we will refer to this technique, depicted in Figure 2(a),

as recover at commit.

Recover at commit incurs a penalty with two main com-

ponents: i) the time elapsed since the misprediction is known

until the mispredicted instruction reaches the commit stage,

a) Recover at commit b) Recover at writeback
from tail to head

c) Recover at writeback
from head to tail

Fig. 2. Recovery schemes.
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and ii) the time required to restore the correct mappings.

The second component can be reduced by using two RAMs,

a front-end RAM (FRAM) and a retirement RAM (RRAM),

as implemented in some modern microprocessors [4]. The

FRAM is updated at rename, as usual, while the RRAM is

updated as non-speculative instructions leave the ROB. Thus,

the RRAM contains a delayed validated copy of the FRAM.

In this context, a simple way to implement the recovery

mechanism is waiting until the offending instruction reaches

the ROB head, and then copying the RRAM contents into

the FRAM. The main shortcoming of this implementation is

that the first component of the penalty time is not reduced

at all. Performance is adversely impacted, for instance, if

the mispredicted instruction is preceded by a long latency

instruction, such as an L2 miss.

To reduce this component, recovery should be triggered

before the commit stage. This can be done by recovering

the renaming table as soon as the misprediction is known,

i.e., at the writeback stage. This approach will be referred

to as recover at writeback. In this case, the overall penalty

time is reduced with respect to recover at commit, since

recovery starts immediately and only a fraction of the ROB

needs to be walked. In this context, if two RAMs are

implemented, the renaming table can be restored by walking

the ROB either from its tail towards the offending instruction

(see Figure 2(b)), or from its head towards the offending

instruction (see Figure 2(c)).

Although it is possible to perform checkpoints of the

FRAM to accelerate recovery, there are two important rea-

sons for not using them extensively. First, the ROB still

needs to be walked in order to release registers allocated by

mispeculated instructions. Second, RAM tables scale worse

than CAM tables as the number of checkpoints increases [5].

As a matter of fact, RAM-based commercial implementations

support a small number of checkpoints. For instance, the

MIPS R10000 [1] only supports 4 checkpoints, while the

Pentium4 [4] does not implement checkpoints at all.

B. CAM approach

CAM structures have as many rows as the number of phys-

ical registers. Each row maintains information for renaming,

recovery and register reclamation as shown in Figure 3. The

first two columns are involved in the renaming process. The

first one indicates the mapped logical register, whereas the

second column specifies whether this mapping is or is not

the current one. Physical registers not mapped to any logical

register have the current mapping bit clear.

Assume a simple processor where register mappings are

checkpointed every time a branch instruction is decoded,

Physical Logical Current Branch
Register Register Mapping Checkpoint Free
· · · · · ·

P10 R5 1 1 0
P11 R6 1 1 0
P12 R7 1→0 1 0
P13 R7 0→1 0 1→0
P14 – 0 0 1
· · · · · ·

Fig. 3. CAM table excerpt.

and just one unresolved branch is allowed to be in flight.

Figure 3 shows an excerpt of a CAM table containing

the current mappings and one branch checkpoint. The state

corresponds to the code studied above (Figure 1(a)) at the

time instruction E enters the rename stage. Again, arrows in

the table represent content transitions.

The source registers of E (r5 and r6) are renamed to p10

and p11, respectively, by searching the current mappings in

the CAM. In addition, the destination logical register r7,

previously mapped to p12, is remapped to p13, which is

obtained by means of a priority encoder (PE) connected to

column free. Then, this mapping is updated in the corre-

sponding entries (logical register and current mapping) of

the CAM. At the same time, the current mapping entry of

p12 must be reset. Finally, the branch checkpoint keeps a

copy of the current mapping column performed at the time

branch D was decoded. Depending on the implementation, a

checkpoint can be performed either for each instruction [2]

or just for some of them, such as low-confidence branches

[8][9]. To this aim, only the current mapping column needs

to be copied, which is a fast and unexpensive process.

Let us analyze how this organization provides fast register

reclamation and recovery. Regarding register reclamation,

a physical register is assumed to be free when its current

mapping bit is clear and it is not used in any checkpoint. In

the example, p10, p11, and p13 are currently mapped, so

they cannot be released. Also, although p12 is not currently

mapped, it cannot be released until the checkpointed branch

instruction D is resolved and known to be non-speculative,

since p12 could become the current mapping for r7 again

if speculation for D fails. Finally, p14 is free because it

was not mapped before branch D. Thus, free registers can

be straightforwardly obtained by simply nor-ing the current

mapping and the branch checkpoint bits. In practice, the

same behavior can be accomplished with lower hardware

cost when a checkpoint is released, by testing if it is the last

checkpoint including a given physical register [7]. The latter

technique has a constant complexity independent of the the

number of checkpoints.

To recover the processor state on misprediction, it suffices

to copy the branch checkpoint column into the current

mapping column in order to return the CAM to its state at

the time the branch was decoded. This can be done as soon

as the misprediction is resolved, i.e. at the writeback stage.

In the example, p13 would be automatically released, since

the restored column has its corresponding entry clear. In

summary, the CAM approach returns to a previous machine

state by just copying a bit column.

The cited advantages make checkpoints much more ap-

pealing in CAM-based implementations than in RAM-based

ones. For example, the Alpha 21264 [2] and the Power4 [3]

implement 80 and 20 checkpoints, respectively. Moreover,

supporting a high number of checkpoints offers significant

performance gains, especially for large instruction windows,

because execution can be recovered with a small penalty

from any of its intermediate states.
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III. HYBRID RAM-CAM

The proposed mechanism combines the advantages of both

approaches described above. On one hand, it provides fast

register renaming with direct-mapped lookups as done in

the pure RAM scheme; on the other hand, it allows fast

recovery on mispeculation, as provided by pure CAM-based

implementations. The hybrid scheme uses two tables: i) a

CAM containing all register mappings up to date, and ii) a

RAM acting as a cache of the CAM, which contains a subset

of the renaming information stored in the CAM. The CAM

table can be indexed both directly by a physical register or

associatively by a logical register, while the RAM is indexed

by a logical register. Unlike typical RAMs, an entry may or

may not contain a valid copy of the current mapping, which

is indicated by an additional valid bit attached to each entry.

If this bit is clear for a given entry, a RAM miss is said to

occur when this entry is accessed.

Register renaming is performed by just accessing the RAM

as long as valid entries are hit. On a RAM miss, the CAM

is used to retrieve the current mappings. On mispeculation,

the RAM contents are invalidated and progressively restored

each time a register mapping is obtained from the CAM.

A complete invalidation of the RAM is overconservative,

since the mappings performed by instructions previous to the

offending one are correct. Nevertheless, the slight impact on

performance shown in our experiments allows us to avoid a

(probably more complex) selective RAM invalidation.

Let us see how the previous working example behaves

in the hybrid RAM-CAM proposal. As instructions in Fig-

ure 1(a) enter the rename stage, destination registers are

mapped to physical registers allocated by the PE both in

the RAM and the CAM. Thus, when instruction E is being

renamed the RAM and CAM tables are in the state shown in

Figure 1(b) and Figure 3, respectively. The source registers

are renamed by means of the RAM because its mappings are

valid.

In this scenario, assume that branch D is resolved as

mispredicted. Instruction E becomes then mispeculated, and

consequently the transition of entry r7 from p12 to p13 must

be undone. In addition, p13 must be deallocated. Recovery in

the hybrid RAM-CAM approach works as follows. First, the

contents of the RAM are completely invalidated by resetting

all valid bits in the RAM entries. Second, the CAM is

recovered by simply restoring the current mapping column to

the branch checkpoint performed when the branch instruction

D was decoded. Notice that both operations are simple and

only involve updating a bit column in each table. Figure 4

presents this CAM transition. In this way, p12 becomes again

the current mapping of r7, but this information (in fact, all

the renaming information) is only available in the CAM.

Physical Logical Current Branch
Register Register Mapping Checkpoint Free
· · · · · ·

P10 R5 1 1 0
P11 R6 1 1 0
P12 R7 0→1 1 0
P13 R7 1→0 0 0→1
· · · · · ·

Fig. 4. CAM mispeculation recovery.

In addition, the checkpoint restoration automatically frees

register p13, since its entry in the free column is set.

Immediately after recovery, renaming source registers will

likely cause RAM misses, because all entries are initially

invalid. However, both CAM lookups and new register allo-

cations from the PE will cause the RAM to be progressively

updated, hence quickly reducing the probability of subse-

quent RAM misses.

A. Implementation

Figure 5 depicts a pipelined implementation of the hybrid

scheme, where each box represents a table lookup. Lookups

in the RAM are always direct mapped (d.m.), while CAM

lookups can be both direct mapped or associative searches.

The criterion to separate circuit stages is that no pair of

table lookups are performed sequentially in a single stage.

This causes our proposal to be pipelined in three stages,

though only two of them are on the critical path towards the

instruction queues and the ROB.

Advanced circuit layouts may affect the criterion above

[3][5] —e.g., by allowing two sequential table lookups in a

single stage—, but the physical implementation of the hybrid

RAM-CAM is out of the scope of this work. Nevertheless,

the access time results obtained from the models devised in

section IV-B limit the clock frequency to a reasonable 2Ghz

bound. For lower frequencies (e.g., 1Ghz) the number of

stages in the critical path can be reduced to 1.

The hybrid scheme representation is horizontally divided

into three parts. The lower part shows the source register

renaming, while the rest of them deal with destination

registers. Specifically, the upper third of the figure illustrates

the clearing of previous destination mappings, while the

central portion represents the allocation of new mappings.

Each of these parts are detailed next.

Clearing of previous destination mappings. CAM en-

tries corresponding to the previous destination mappings are

cleared. In the first stage, all previous destination mappings

are looked up in the RAM. For those RAM entries in a valid

state, physical register identifiers are obtained, which are then

used in the second stage to directly index the CAM and clear

the current mapping entries. In contrast, RAM misses cause

previous mappings to be associatively cleared.

Fig. 5. Hybrid RAM-CAM renaming stages.
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Destination register renaming. Free physical registers

are mapped to destination registers. To this aim, the PE

provides physical register identifiers from a set of free entries

in the CAM. These identifiers are used to directly index the

CAM and set the new mappings. The new mappings are also

updated in the RAM, which is indexed with the identifiers

of the destination logical registers.

Source register renaming. Mapped physical register iden-

tifiers are obtained for source registers. In the first stage,

the RAM is accessed for valid mappings. On a hit, physical

registers are available right away. Otherwise, an associative

CAM search is performed in the second stage. Finally, those

mappings retrieved from the CAM are updated in the RAM

in the third stage to avoid future RAM misses.

Notice that previous mappings are cleared in the CAM

in the second stage, while new mappings are set in the

first stage. Thus a hazard arises when an associative CAM

lookup in the second stage for a given instruction accesses a

mapping allocated by the same instruction in the first stage.

This hazard can be avoided by flagging the new mapping

entries at the end of the first stage in an additional single bit

column in the CAM. The flags are reset at the end of the

second stage.

IV. EXPERIMENTAL EVALUATION

A performance evaluation has been carried out on top of

the SimpleScalar toolset [10], which has been extensively

modified to model the hybrid proposal and typical RAM-

and CAM-based register renaming approaches. A baseline

out-of-order 4-way superscalar processor has been modeled

with the architectural parameters summarized in Table II,

and results have been obtained from the execution of the

entire SPEC2000 benchmark suite including both integer

and floating-point benchmarks. For evaluation purposes five

schemes have been studied, referred to as follows: Commit)

RAM-based approach that triggers recovery at commit,

Writeback) RAM-based approach that triggers recovery

at writeback from head to tail, Writeback-fwalk) RAM-

based approach that triggers recovery at writeback from

tail to head, Ideal CAM ) pure CAM-based approach, and

Hybrid) proposed approach. In addition, we will apply the

suffix -Iw to the Ideal CAM and Hybrid schemes that, in

order to reduce CAM complexity, constrain to I the number

of instructions that can be renamed each cycle.

For purely RAM- or CAM-based approaches, register

renaming has been assumed to take one pipeline stage.

On the contrary, register renaming in the Hybrid proposal

is pipelined in three stages, as detailed above. The num-

ber of cycles incurred by misprediction recovery has been

accurately modeled, taking into account the ROB position

of the mispredicted instruction and the number of pipeline

stages. Finally, notice that Ideal CAM imposes an upper

performance bound for the remaining models, since it takes

just one processor cycle for both register renaming and

misprediction recovery.

A. Analyzing CAM Requirements

The Hybrid approach associatively searches the CAM only

on RAM misses. Therefore, the CAM complexity (which is a

TABLE II

MACHINE PARAMETERS.

Microprocessor core

Issue policy Out of order
Fetch, issue, commit bandwidth 4 instructions/cycle
Pipeline depth 7 stages (RAM- and CAM-based)

9 stages (Hybrid)
Branch predictor type gShare/bimodal:

Gshare has 16-bit global history
plus 64K 2-bit counters.
Bimodal has 2K 2-bit counters.
Choice predictor has 1K 2-bit counters.

# of Integer ALU’s, 4
# of multiplier/dividers 1
# of FP ALU’s 2
# of FP multiplier/dividers 1

Memory hierarchy

Memory ports available (to CPU) 2
L1 data cache 32KB, 4 way, 64 byte-line
L1 data cache hit latency 2 cycles
L2 data cache 512KB, 8 ways, 64 byte-line
L2 data cache hit latency 10 cycles
Memory access latency 100 cycles

major concern for CAM-based approaches) can be sensibly

reduced. This section explores the impact on performance

of reducing the CAM complexity in the Hybrid approach.

Figure 6(a) shows the performance slowdown of the stud-

ied renaming schemes with respect to an Ideal CAM -

4w. For instance, a bar height of 0.2 denotes a scheme

performing 20% more slowly than the ideal CAM. Three

configurations of the Hybrid approach with different number

of CAM ports have been evaluated. Results show that, on

average, the hybrid approach slows down the ideal CAM

by just about 1.2%, 1.6%, and 4.2% for 4-, 2-, and 1-way

CAMs, respectively. The Hybrid-4w scheme incurs some

slowdown because it has a longer pipeline than the ideal

CAM. As observed, the other designs perform worse than

the hybrid approaches. Writeback and Writeback-fwalk

behave differently for integer and floating-point benchmarks.

The reason is that the position of the mispredicted branch

inside the ROB is usually farther away from the ROB

head for floating-point benchmarks than for integer ones.

The Commit design performs worse, on average, since its

recovery penalty is usually higher. Finally, for comparison

purposes, a 2-way CAM-based design (Ideal CAM -2w) is

Fig. 6. Performance of recovery mechanisms.
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TABLE III

RELATIVE CAM ACCESSES FOR HYBRID SCHEMES.

SpecInt SpecFP Average

Hybrid-1w 7.2% 2.7% 5%
Hybrid-2w 7.6% 2.6% 5.1%
Hybrid-4w 7.8% 2.5% 5.1%

included in the figure to show the impact on performance

of reducing the CAM complexity by blindly halving the

renaming bandwidth.

The lower the number of ways in the Hybrid approach

the worse performance is achieved. The main reason is that a

higher number of ways incurs a higher number of associative

searches in the CAM. This metric is represented in Table III

as a percentage of the number of searches performed in a

pure 4-way CAM. On average, this value lies around 5%. It

is especially low for floating-point benchmarks (below 3%),

which means that stalls due to lacking CAM ports occur less

often. This drastic reduction of associative CAM lookups

makes it worth comparing the hybrid scheme with the high-

performance, power-hungry pure CAM approach in terms of

energy (Section IV-C).

Figure 6(b) presents the total execution time of integer

and floating-point benchmarks. The plotted bars include a

grey portion that represents the amount of time the rename

stage was stalled due to a lack of free ports in the CAM.

As observed, this time is higher in integer benchmarks. On

average, the total bar heights for Hybrid-2w and Hybrid-4w

are very similar, which means that stalled renaming cycles

for Hybrid-2w are scarce enough to prevent performance

from dropping.

Finally, Figure 7 shows performance results for individual

benchmarks. This plot compares the Commit, Writeback,

Hybrid-2w, and Ideal CAM -4w schemes. For most bench-

marks, an ascendent performance trend can be observed in

the mentioned order. In some of them (facerec, fma3d,

Fig. 7. Detailed IPCs for individual benchmarks.

TABLE IV

HARDWARE COMPLEXITY.

or wupwise), performance is especially affected by mispre-

diction latencies, and a clear difference shows up between

Commit or Writeback designs and Hybrid-2w or Ideal

CAM -4w approaches. The latter two provide mostly a

similar performance.

B. Hardware Complexity

The hardware used in the evaluated renaming schemes is

represented in Table IV, where rows correspond to different

models, and columns represent hardware components. In

case a component is present in a renaming scheme, a given

cell contains the number of read (r), write (w), and read-

write (rw) ports it requires for the baseline 4-way processor.

For CAM components, the number of direct-mapped (d.m.)

ports is also shown. The area values (in mm2) in the last

column of the table are obtained by adding the areas of the

individual constituting components. Both area and energy

results have been calculated by means of the Cacti tool [11]

for a 65nm technology.

Let us explore the hybrid design based on the implemen-

tation shown in Figure 5 from a complexity point of view. In

the first stage, the corresponding RAM table entries are read

for previous destination mappings, while the PE allocates

new mappings at the same entries (4rw RAM ports). Source

operands are renamed by also accessing the RAM (8r RAM

ports). Finally, the RAM is updated in the third stage with

those source registers involved in previous RAM misses (2w,

4w, and 8w RAM ports for Hybrid-1w, Hybrid-2w, and

Hybrid-4w, respectively).

Associative CAM ports in the hybrid designs are used in

the second stage to rename sources (2r, 4r, or 8r CAM

ports) and to clear previous destination mappings (1w, 2w,

or 4w CAM ports) that missed in the RAM. However,

if the physical register indexes are correctly provided by

the RAM, clearing previous destinations can be performed

with a direct-mapped access. Furthermore, d.m. ports are

much less complex than associative ports, so different hybrid

configurations keep a constant number of them (4w d.m.

CAM ports). The remaining 4w d.m. ports (overall 8 d.m.

CAM ports) are used in the first stage to allocate the new

mappings provided by the PE.

Regarding the ideal CAM design, free physical registers

are also provided by the PE. Therefore, as in the hybrid

design, the CAM is indexed by means of direct-mapped ports

to allocate new destinations (4w d.m. CAM ports). On the

other hand, the CAM is associatively searched to rename
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source registers and clear previous destination mappings

(overall 8r+4w associative CAM ports).

RAM-based designs (i.e., Commit, Writeback, and

Writeback-fwalk) use the RAM to rename source registers

(8r RAM ports), as well as to look up previous destination

mappings and update them with new values (4rw RAM

ports). In addition, Commit and Writeback use an RRAM

(4w ports) where destination mappings are updated when in-

structions commit. This table is superfluous for Writeback-

fwalk, since it recovers from the RAM, instead of the

RRAM.

Finally, all RAM-based designs use an FRQ to allocate (4r

FRQ ports) and release (4w FRQ ports) physical registers.

Notice that even if a PE is used instead of an FRQ, the ports

are still needed to update the free bit column read by the PE,

since unlike checkpointed CAMs, RAMs cannot provide an

updated version of the free bit column at any time.

C. Energy

Figure 8 shows the total dynamic energy budget used

for register renaming, and details the fraction spent by

accesses to each individual hardware component (FRQ,

RAM, RRAM, direct-mapped CAM lookups, and associative

CAM searches). Only dynamic energy is shown because the

memory structures are small and frequently accessed, so it

becomes the dominant fraction of the total spent energy.

The Ideal CAM design consumes about one order of

magnitude more than the other schemes, since the CAM is

associatively accessed for all mappings in every cycle. As

also discussed in previous works [12], the main drawback

of CAM-based approaches is their high power consumption,

which makes Ideal CAM stand out from the rest as far as

energy is concerned.

Energy dissipation is drastically alleviated by the hybrid

designs. Besides providing a performance close to Ideal

CAM , some of their configurations can consume even less

than RAM-based designs (e.g., Hybrid-1w and Hybrid-2w

for SpecFP). In general, an increase of the CAM width in

hybrid designs causes better performance and higher energy

cost. The reason is that the number stalls due to limited CAM

bandwidth is reduced, but this also implies a higher number

of useless accesses to the CAM when speculative execution

Fig. 8. Dynamic energy spent by each renaming scheme.

takes place, and a higher cost per access due to more costly

RAM and CAM structures.

As the used tool does not provide with an accurate model

of the PE, its energy has not been included in the overall con-

sumption of the CAM designs. However, this limitation does

not degrade the comparison —the consumption of the PE is a

negligible fraction of the total CAM consumption [13]—, nor

it changes the main conclusion of this experiment. Namely,

the hybrid designs reduce the power consumption of a purely

CAM-based approach by an order of magnitude, closing the

gap with the implementations that consume less but perform

worse.

V. RELATED WORK

The complexity of the memory structures (RAM or CAM)

used to tackle register renaming in superscalar processors is

a major concern because of the large amount of read/write

ports required to support the high decode bandwidth. For

instance, in a 4-way processor, up to 12 logical register

mappings can be looked up in a single clock cycle. Therefore,

many research works have aimed at reducing renaming com-

plexity, renaming performance, or both. Existing proposals

can be classified in two categories according to the memory

structure they use: RAM- and CAM-based approaches.

Regarding the RAM approach, Moshovos [14] proposes

to reduce the number of ports in the front-end RAM by

detecting those instructions that do not use the maximum

number of source and destination register operands. Along

the same line, Kucuk et al. [15] further reduce the number

of accesses to the front-end RAM by forwarding results of

previous accesses performed by nearby instructions.

Some research works have addressed the reduction of the

recovery penalty time incurred by RAM-based schemes. In

[9], Moshovos proposes an out-of-order release checkpoint

mechanism which reduces the number of RAM checkpoints

to about one third. In [16], Akl et al. propose a ROB-like

structure to accelerate checkpoint recovery. Such structure

allows mispeculation recovery from specific branches. Sim-

ilarly, a selective checkpoint mechanism to recover mispre-

dictions and support large instruction windows is proposed

in [17].

In a closely related work [18], Zhou et al. propose a mech-

anism which enables instructions to be renamed immediately

after a misprediction detection, without restoring the front-

end RAM table. This RAM-based approach differs from the

one proposed in this work in three main aspects. First, it does

not deal with register reclamation. Second, this mechanism

needs additional logic to correctly manage branch checkpoint

queues, instruction queues, and the issue stage. Finally, to

obtain correct mappings, it relies on either waiting for the

branch instruction to reach the commit stage or scanning the

ROB. In contrast, the hybrid RAM-CAM approach proposed

in this paper is a simpler mechanism that relies on well

known microarchitecture components and does not require

any kind of ROB scanning.

Although the RAM approach, which requires one or two

renaming tables and a free register queue, has been used

in many commercial processors [1][4], the CAM approach

has also been used in aggressive designs [3], since it only
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requires a single memory structure that supports fast recovery

and a large number of checkpoints [5]. Thus, it becomes a

major research concern to reduce the access time incurred by

CAMs. In this sense, Buti et al. [3] detail how this problem

is addressed in the case of the IBM Power4 processor from

a technological point of view. In addition, Liu and Lu [19]

explore the effect of circuit-level speculation to speed up the

response of a CAM renaming table.

In a recent work [5], Safi et al. compare the energy and

latency of RAM and CAM approaches. They conclude that,

when the number of checkpoints exceeds a given bound,

CAM approaches become more efficient and faster. They

also propose to selectively disable CAM entries in order to

optimize CAM energy consumption.

Finally, although the implementation and goals are quite

different and do not affect the novelty of this work, Wallace

and Bagherzadeh also propose a hybrid RAM-CAM design

[20]. Their goal is to reduce the RAM complexity and access

time in RAM-based renaming schemes. To this end, they

implement a small ROB-like FIFO queue located before the

RAM which is also associatively addressable by a logical

register identifier. This table reduces the number of required

RAM ports (much like our design reduces the number of

required CAM ports, which are more costly), and allows

recovery of the correct mappings in one cycle only when

mispredicted instructions have not updated the RAM. How-

ever, register release, pipelining, and other complexity issues

are not tackled. In addition, since this is a proposal focused

on reducing RAM complexity, it is perfectly compatible with

the present work.

VI. CONCLUSIONS

Current superscalar microprocessors rename registers ag-

gressively by using either a RAM or a CAM-based approach.

Each approach presents some advantages and shortcomings.

For instance, RAM-based approaches rename registers in a

fast and efficient way but they incur a higher performance

penalty during recovery. On the contrary, CAM-based ap-

proaches have higher access time and energy consumption,

but provide fast recovery regardless of the number of check-

points. Any of these approaches has been implemented in

commercial microprocessors, depending on the design goals.

In this paper, we have presented a hybrid renaming

mechanism consisting of a RAM table and a low-complexity

CAM table. Experimental results show that a 2-way hybrid

approach presents small performance slowdowns (about 2%

and 1% for integer and floating-point benchmarks, respec-

tively) with respect to a 4-way CAM-based renaming mech-

anism that is able to recover in one clock cycle. In contrast,

a RAM-based renaming mechanism triggering recover at

commit presents higher slowdowns than the hybrid approach

(about 13% and 19%), while recovering at writeback only

reduces the relative slowdowns to 4% and 10%.

The small slowdowns of the hybrid approach are accom-

plished by performing only 8% and 3% of the original

associative searches carried out in the CAM-based approach.

This reduces the dynamic energy to 13% and 9%, relative

to the original CAM consumption, and it does not affect

the occupied area. Thus, the hybrid approach closes the

dynamic energy consumption gap between CAM and RAM

approaches, and can even consume less than the simplest,

not checkpointed RAM approach for some configurations.
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