
Fault-Tolerant Synthesis using Non-Uniform Redundancy

Keven L. Woo, Matthew R. Guthaus
Department of CE, University of California Santa Cruz, Santa Cruz, CA 95064

{kwoo,mrg}@soe.ucsc.edu

Abstract— As process technologies continue to scale into the
nanometer regime, devices are becoming significantly more
unreliable. Many forms of unreliability manifest as transient
faults and can cause intermittent random logic upsets. These
logic upsets are often caused by natural radiation (neutrons
and alpha particles) or on-chip noise (cross-coupling, supply
drop, or flicker noise). This research improves reliability by
using non-uniform redundancy. Specifically, we present a dy-
namic programming algorithm that considers many possible
topological redundancies, yet maintains a linear run-time due
to efficient pruning of suboptimal solutions. Our algorithm
provides designers with a Pareto-optimal set of solutions that
trade reliability for area. Compared to existing Triple Modular
Redundancy (TMR), we see similar reliability with only 35%
area overhead instead of 326%.

I. INTRODUCTION

One of the biggest challenges in continued device scaling
is system reliability. As individual devices and voltages
shrink, sources of noise such as radiation (neutrons and alpha
particles) become more significant. These sources of noise,
however, are transient and only occur sporadically.

Computing pioneer von Neumann developed the preem-
inent theory in the area of fault-tolerant synthesis back in
the 1950’s when he proposed to build reliable computers out
of unreliable components (vacuum tubes) [1]. He laid the
theoretical framework, then called NAND multiplexing, for
a vast array of works that proposed to use redundancy to
create reliable devices. His theory is well developed, but the
applicability to real circuits is troublesome. Von Neumann’s
original proposal required redundancy of many thousand
times in order to obtain reliable computers. Obviously, this
is not practical because of the significant increase in area.

Many practical works have focused on system or block-
level design and have proposed Triple Modular Redundancy
(TMR) [1], N-tuple Modular Redundancy (NMR) [2], Cas-
caded TMR (CTMR) [3], and Recursive Triple Modular
Redundancy (RTMR) [4]. Other recent works examined
the granularity (e.g. gate-level and module-level) at which
redundancy should be applied [5].

Several works have examined input-dependent fault anal-
ysis [6]–[8], but they have not proposed algorithms for
redundancy insertion that considers input-dependence. Some
works in the area of radiation-tolerant circuit design have
considered input-dependence. These works included sizing a
logic gate [9] and adding shadow logic to detect faults [10],
but they did not consider non-uniform redundancy.

This paper proposes two enhancements to improve the
reliability of circuits. First, redundancy can occur at many

granularities. These granularities should not be restricted to
the gate or module-level. Thus, any sub-circuit could be
made redundant. Second, redundancy can be non-uniform
to account for input-dependent behavior and variations in
device vulnerability.

Our paper is organized as follows: Section II provides
an overview of our approach; Section III describes our
core dynamic programming algorithm; Section IV describes
the corresponding design and experimental methodology;
Section V presents our experimental results; and Section VI
makes our conclusions.

II. APPROACH

Our methodology produces reliable designs in unreliable
technologies by adding non-uniform redundancy. The goal
of our approach is to find a better use of redundancy than
the traditional TMR, NMR, or RTMR methods. From a
cost perspective, if a large sub-circuit is made redundant,
the duplication cost of TMR is high, but the cost of the
majority gate is amortized. However, if the sub-circuit is
small, the duplication cost is low, but the relative cost
of the majority gate is large. In addition, a majority gate
itself can be susceptible to transient errors. We leverage
that circuits have non-uniform vulnerability and non-uniform
observability when selecting sub-circuits to make redundant.

For our fault model, we assume that the probability of
a fault is an independent, constant value per unit of area
since gate area is approximately equal to the risk exposure
of a gate to radiation sources. A larger gate will have more
surface area and, therefore, is more likely to be struck with
a neutron or an alpha particle. Unless otherwise mentioned,
the probability of a fault is 1× 10−4 per µm2. This means
that a small (X1) inverter with an area of 0.532µm2 has a
probability of 5.32×10−5 of having a faulty output; this is
the vulnerability. We study the impact of this vulnerability
number in our later studies. Sub-circuits with a high vulner-
ability are good candidates for redundancy.

A faulty value, however, is not always visible at the
outputs of the circuit due to logical masking in the circuit.
In addition to the probability of an error occurring (vulnera-
bility), circuit reliability is also dependent on the error prop-
agating through a circuit to the outputs (observability). The
observability of a fault can be computed using Monte Carlo
fault simulations or static methods [6]–[8]. The observability
of a fault depends on the logic switching characteristics of a
given circuit. In general, gates that are closer to the outputs

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 213

Often "1"

M
ajority

Vulnerable

Often
Unobservable

High Fanout
Influences Other Logic

M
ajority

Non-uniform Redundancy
on Critical Logic

0

1

Often Observable
Logic

0

1

Fig. 1. Example of non-uniform redundancy.

and gates with large fan-out cones are more observable. Sub-
circuits with highly observable outputs are good candidates
for redundancy.

The capabilities of our algorithm are best exemplified by
Figure 1, where a mux typically selects a single input due to
a frequent select input of 1. The frequent operating behavior
renders half of the logic virtually unobservable. If one portion
of a circuit is extremely vulnerable, observable, or both, that
portion should be made redundant. This is exemplified by
the high-fanout multiplexor, which has a large fanout and is
therefore more observable than the other logic. For the fan-in
cone of a multiplexor, it is sufficient to make only half of
the fan-in logic redundant due to the rare observability of the
other logic. This can result in significant area savings with
almost no impact on reliability.

Given these observations on vulnerability and observabil-
ity, we can conclude that in order for a gate to have a reliable
output, its inputs must also be reliable. In addition, we cannot
judge the reliability of a gate until we know the observability
and reliability of its fan-out cone and the other fan-ins to
the outputs. Together, these characteristics make an ideal
argument for a dynamic programming algorithm which we
will now present.

III. NON-UNIFORM REDUNDANCY USING DYNAMIC
PROGRAMMING

Our core algorithm optimizes a single output and its fan-in
logic cone. In our approach, the logic circuit is decomposed
into a set of trees with each primary output as a tree root
similar to traditional technology mapping [11]. In Section IV,
we explicitly describe our decomposition methodology for
general multi-output circuits.

Our algorithm performs a bottom-up enumeration of all
possible redundancies at every topological level. Figure 2(a)
shows a simple example of how our dynamic programming
algorithm would calculate the redundancy for a three gate
circuit (a NOR and an INV feeding into an OR gate). The
dynamic programming traverses the tree in a bottom-up
manner constructing potential redundancy implementations
of the sub-trees. This starts by making NOR and INV
solutions with and without redundancy. A single majority
gate is added in the case of redundancy. Each of these
solutions has a different area versus error probability trade-
off as shown by each corresponding plot.

Majority Majority

Area

E
rr

or
 P

ro
b.

E
rr

or
 P

ro
b.

Area

E
rr

or
 P

ro
b.

Area

(a) Example of bottom-up solutions and prun-
ing for redundancy.

(b) Example of all the possible combina-
tions of the child sub-trees enumerated with
an OR gate

Majority

L R RRRL L LRL

Majority

(c) Example of the same circuit with no redundancy (left), SGR
(middle) and NUTMR (right).

Fig. 2. Dynamic programming implementation of selective redundancy.

At each higher node in the tree, such as the OR gate,
all possible combinations of the child sub-trees enumerated
as shown in Figure 2(b). In our example, there would be
four candidate combinations since each sub-tree has two
solutions.

For each of the candidate combinations, there are three
ways to combine them in our approach. Figure 2(c) explicitly
shows the three methods to combine two child sub-trees, L
and R, with a root gate:

1) The simplest way is to simply add the root gate to
the children candidates with no additional redundancy.
Note that the L and R sub-trees may already contain
redundancy at previous levels in the trees.

2) Another way is to make only the root gate, the OR,
redundant and add a majority gate. No additional re-
dundancy is added to the L and R sub-tree candidates,
however. We term this single gate redundancy (SGR).

3) The last alternative is to attach a single copy of the
root gate, but then perform traditional TMR on the
entire resulting solution. We call this non-uniform
TMR (NUTMR).

In addition to no redundancy, SGR and NUTMR, it is pos-
sible to implement redundancy candidates of varying depths
between SGR and NUTMR or to add different amounts of
redundancy (NMR), but we leave this for future work. Two
extreme final solutions are shown in Figure 3 for brevity: one
with no redundancy and one with NUTMR at all possible
levels.

The overview of the dynamic programming function is

214

MajorityMajority MajorityMajority MajorityMajority

Majority

Fig. 3. Two extreme solutions of no redundancy (top) or non-uniform
TMR at all levels (bottom).

shown in Algorithm 1. It first sorts the gates in the logic
cone by topological order and processes each gate from
the inputs to the output. At each level, it enumerates the
combinations of the left and right candidate sub-solutions and
adds solutions for the current level with no redundancy, SGR,
and NUTMR using the functions ADD NO MR, ADD SGR,
and ADD TMR, respectively. Once this is done, the resulting
candidate sub-solutions are pruned.

Algorithm 1 DP OPT(Cone)
Input: A Cone
Output: A set of Pareto-optimal solutions for that cone

SORT(Cone) // by bottom-up topological order
for each gate i ∈ Cone do

for each candidate l ∈ i.left.Candidates do
for each candidate r ∈ i.right.Candidates do

i.Candidates←{i.Candidates,ADD NO MR(i,l,r)}
i.Candidates←{i.Candidates,ADD SGR(i,l,r)}
i.Candidates←{i.Candidates,ADD TMR(i,l,r)}

end for
end for
i.Candidates← PRUNE(i.Candidates)

end for

We then prune many sub-optimal solutions after they are
generated during the bottom-up enumeration. Our dynamic
programming algorithm uses probabilistic error analysis to
generate an optimal trade-off curve of area versus the prob-
ability of a circuit error, Pe. The observability will be a
constant for any possible equivalent solution so we can safely
ignore this part of the reliability measurement.

For the time being, we compute Pe by running Monte
Carlo fault simulations on the sub-optimal candidates to
compute the observability. More specifically, input values
are randomly selected and the circuit is then simulated with
and without random faults. When a fault occurs in a gate, a
logical flip of the output is performed (e.g. 0→1 or 1→0). If
any of the outputs of the faulty simulation do not match the
correct simulation, it is considered an error. Pe is simply the
number of simulations with any errors divided by the number
of iterations. For speed improvement, 64-bit (a long int)
logical values are simulated in parallel. Any static method

such as [7] can reduce run-time. It is extremely important
that the fault analysis include switching correlation, however,
since each instance of internal redundancy adds reconver-
gent fanout which introduces correlated behavior. Ignoring
this correlation results in pessimistic Pe values and keeps
incorrect candidate solutions.

Since we do not know the reliability of other sibling sub-
tree solutions, we do not know how reliable to make our
current solution. If the sibling solutions are very unreliable,
we may waste area by making our current solution too reli-
able. If the sibling solutions are very reliable, we may restrict
the overall reliability of the circuit due to the unreliability of
the current sub-solution. Therefore, we keep all co-optimal
candidate solutions and postpone the decision of the best
candidates until the end of the bottom-up traversal.

Pruning the sub-optimal solutions is equivalent to finding
the co-optimal candidates. To find the co-optimal candidates,
we compare all pairs of solutions, A and B, and, if Pe(A)≥
Pe(B) and Area(A)≥ Area(B), solution A is considered sub-
optimal since it can easily be replaced by solution B in all
situations. This is shown in Figure 2(a) where three solutions
in the merged Pareto curve dominate all of the other solutions
in the gray areas. All the solutions in the gray areas are
pruned since they are unnecessary. Pruning limits the number
of solutions to a Pareto-optimal set and a roughly linear
number of items, thus, providing a more efficient algorithm.
The pruning algorithm itself, as shown in Algorithm 2, is
an O(n logn) algorithm. The candidates are first sorted by
increasing area and then a single pass over the sorted array
finds the non-dominated solutions in linear time.

Algorithm 2 PRUNE(Candidates)
Input: Candidates is an array of candidate implementa-
tions
Output: Solutions is an array of non-dominated candidates

SORT(Candidates) // by increasing area then Pe
i← 1
for j← 2 to length[Candidates] do

if AREA(Candidates[i]) < AREA(Candidates[j]) and
Pe(Candidates[i]) > Pe(Candidates[j]) then

Solutions←{Solutions,Candidates[i]}
i← j

end if
end for
Solutions←{Solutions,Candidates[i]}

IV. METHODOLOGY

Our methodology for multiple output circuits involves
three steps: dividing the circuit into logic cones, optimizing
each logic cone sequentially, and combining the logic cones.

A. Finding Cones

Since our dynamic programming algorithm can only deal
with single output circuits, we must first decompose multi-
output circuits into a set of single output logic cones. To do

215

P(err)=0.03 P(err)=0.01 P(err)=0.02

Cone 1 Cone 2Cone 3

INPUTS

OUTPUTS

Cut Net

Cut NetCut Net

Fig. 4. Example of cone decomposition, cut nets, and topological cone
ordering.

this, we perform an initial fault analysis and rank the outputs
in order of increasing probability of error, Pe. Figure 4 shows
an example of a general circuit that is decomposed into three
cones.

For each output, we traverse the transitive fan-in logic until
we reach a primary input or we reach a gate that has already
been claimed by another logic cone. When a gate is visited,
it is marked as belonging to a logic cone. After doing this for
each output, we are left with a collection of non-overlapping
cones. It is possible that cones have reconvergent fanout.

When splitting the logic cones, we mark any nets that fan
out from one cone to another as a “cut net” as shown in
Figure 4. These cut nets are treated as primary inputs of
the destination logic cone. They are not treated as a primary
outputs of the source logic cone, however, so they are not
directly optimized.

B. Cone Optimization

Once we have the logic gates divided into cones, we
optimize the cones in the order of the increasing output error
probability, Pe, using our dynamic programming algorithm in
Section III. This effectively optimizes the cones in bottom-up
topological order.

Whenever we encounter a cut net, the cone that drives
the net is already optimized so we select the worst Pe over
all candidate implementations and use this as the input to
the downstream logic cone. We do this, because we do not
know which implementation of the cone will be used until all
cones are solved. This provides a conservative estimate of Pe
on that input during the optimization of the cone. All primary
inputs are assumed to be error free, but this restriction can
be easily relaxed.

C. Combining the Cones

When all of the cones have been optimized, we are left
with a small number of Pareto-optimal implementations of
each cone (typically, 3-10). We then create the final solutions
of the entire circuit by picking an implementation of each
cone and pruning sub-optimal solutions as before.

Specifically, the pseudo-code of our algorithm is shown
in Algorithm 3. We start with an initial set of sub-solutions
by adding all the implementations of the first cone. The
algorithm then iteratively combines these sub-solutions with
the implementations of the next cone. The MERGE function
does this by enumerating all combinations of current sub-
solutions (Final) with each implementation j of Cone[i].

Algorithm 3 COMBINE(Cone)
Input: Cone is a 2D array of (cones × implementations)
Output: Final is an array of solutions of whole circuit

Final← Cone[1]
for i← 2 to length[Cone] do

for each implementation j ∈ Cone[i] do
Final←MERGE(Final, j)

end for
Final← PRUNE(Final)

end for

These new sub-solutions are collected and replace the last
set of sub-solutions. Even though the number of implemen-
tations of each cone is small, we must prune the final sub-
solutions before enumerating the combinations with the next
cone to prevent exponential run-time. In general, our pruning
algorithm removes up to 90% of the candidates during the
combination of each cone.

V. EXPERIMENTAL RESULTS

We implemented our tool in C++ using OpenAccess 2.2.6
and ran our experiments on AMD dual-core Operton 2218
processors with 8GB of memory. For our fault analysis, two
million iterations of Monte Carlo were used.

For our studies, we synthesized the ISCAS benchmarks
[12] using Synopsys Design Compiler and the Nangate 45nm
Open Cell library [13]. The synthesis target was for minimum
area given an input to output operating frequency of 200Mhz.
The timing constraints assume all the inputs come from flip-
flops and outputs are captured by flip-flops. The clock has
100ps skew.

Since the Nangate library does not include a majority gate,
we created one by using 40% of the area of a Full-Adder.
This corresponds to the approximate area percentage that the
majority portion of a mirror adder cell occupies.

A. Basic Results

In Table I, we show a comparison between the original, a
traditional TMR circuit, and our most reliable circuit, which
is a combination of our SGR and NUTMR methods. The
TMR circuit is the original circuit replicated three times
with a majority gate added to each of the outputs. The
area and Pe are normalized to the original circuit without
any redundancy. In most of the benchmarks, our results are
comparable to a TMR circuit in terms of reliability. However,
our results typically have 35% more area compared to the
original design whereas the TMR circuit uses 326% more
area on average. On average, our reliability is very similar
to TMR as shown by the 47% and 51% of the original error
rate. In some cases, our circuit attains better reliability (e.g.
c880, c2670) and in others it is slightly worse (e.g. c17, c432,
c1908). It should be noted that TMR actually makes c2670
more unreliable than the original circuit because c2670 has
many outputs and the many added majority gates decrease
the overall reliability.

216

TABLE I
COMPARISON OF ORIGINAL CIRCUIT, TRADITIONAL TMR AND OUR

ALGORITHM. AREA AND ERROR PROBABILITY ARE NORMALIZED TO

ORIGINAL CIRCUIT.

Original TMR Ours
Bench. Area (µm2) Area Pe Area Pe Area Pe

c17 5.6 1.0 1.0 3.68 0.86 1.63 0.92
c432 111.2 1.0 1.0 3.12 0.34 1.33 0.51
c499 229.6 1.0 1.0 3.27 0.52 1.72 0.52
c880 226.4 1.0 1.0 3.22 0.41 1.33 0.34

c1355 231.4 1.0 1.0 3.26 0.52 1.71 0.53
c1908 238.3 1.0 1.0 3.20 0.33 1.41 0.47
c2670 424.0 1.0 1.0 3.63 1.08 1.19 0.61
c3540 652.0 1.0 1.0 3.06 0.17 1.07 0.39
c5315 916.6 1.0 1.0 3.23 0.48 1.29 0.41
c7552 1122.3 1.0 1.0 3.18 0.37 1.15 0.48
c6288 1672.6 1.0 1.0 3.04 0.04 1.06 0.43
Avg. 530.0 1.0 1.0 3.26 0.47 1.35 0.51

We obtained more area savings compared to a TMR
circuit because our algorithm implements redundancy on the
most vulnerable and observable areas of the circuit. Upon
examining the final solutions, it is evident that high-fanout
sub-trees and gates closer to the outputs are made redundant.

In Figure 6, the line labeled “SGR” and “NUTMR”
presents an example of a Pareto curve of benchmark c880.
The Pareto curves of the other benchmarks show similar
trends. Most of the circuits achieve the best reliability within
a 30-60% increase in area. Beyond this, no improvement
in reliability is possible given our limited set of single-
gate and TMR redundancy operations during the dynamic
programming.

B. Error Rates

Exact error rates are often difficult to quantify. Radiation,
for example, depends on the elevation, solar flare activity,
nearby radioactive elements, etc. The error rate also has a
significant impact on, not only the reliability, but the structure
of non-uniformly redundant solutions.

Figure 5 shows a comparison of the Pareto curves for
different error rates on benchmark c432. The Pareto curves
show our method is more effective with higher error rates.
This is because the relative error rate of the majority gate
compared to a sub-tree is less significant. Therefore, adding
redundancy has more opportunity for improvement. With a
lower error rate, it takes considerably more redundancy to
make improvements to a circuit’s reliability. With an error
rate of 1×10−4 per µm2, there is only a small improvement
with a 50% increase in area. In contrast, there is nearly a
2× improvement in reliability for the same area increase
when the error rate is 1×10−2 per µm2. This means that for
highly unreliable technologies, this methodology will show
better results.

C. Single-Gate Redundancy (SGR) vs. Non-Uniform TMR
(NUTMR)

In Section III, we implemented two different redundancy
schemes: SGR and NUTMR. In this section, we study the
effectiveness of each scheme independently. Figure 6 is a
graph of benchmark c880 which shows three Pareto curves:

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

110 115 120 125 130 135 140 145 150 155 160

Pr
ob
ab
ili
ty
of
Er
ro
r(
Pe
)

Area (um2)

1e-2
7.5e-3
5e-3

2.5e-3
1e-3
5e-4
1e-4

Fig. 5. Pareto curve for c432 with different error rates.

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

200 250 300 350 400 450 500

P
ro
ba
bi
li
ty
of
E
rr
or
(P
e)

Area (um2)

SGR
NUTMR

SGRandNUTMR

Fig. 6. A graph of c880 comparing SGR, NUTMR and both.

using only SGR, NUTMR and both SGR and NUTMR
simultaneously. From the SGR and NUTMR curves, SGR
tends to create circuits that use less area than NUTMR
circuits. On the other hand, NUTMR redundancy has a
slightly better probability of error in the extreme.

Table II shows a comparison between the original circuit
and our most reliable circuit for SGR, NUTMR and both
SGR and NUTMR simultaneously. In all of benchmarks,
the SGR circuit has a much smaller area than the NUTMR
circuit. There is from 40 to 50% less area except in bench-
mark c1355. The SGR solution mainly made gates that are
closer to each output redundant, while NUTMR implemented
redundancy on internal high-fanout gates.

In addition, c1355 had very few high-fanout gates and
most of these were near the inputs. In most of the bench-
marks, except c1355, the best NUTMR circuit has a better
reliability than the best SGR circuit.

We also studied this comparison with higher error rates.
SGR and NUTMR showed similar trends in that our best
NUTMR circuits had better reliability, while our best SGR
circuits used much less area. Using a combination of these
methods may lead to improved results because SGR leans
towards using smaller area, while NUTMR tends to lower
Pe.

D. Run Time

The actual complexity of our algorithm depends on the
topology. This makes it difficult to formally quantify the ef-

217

TABLE II
COMPARISON OF ORIGINAL CIRCUIT, SGR ONLY, NUTMR ONLY AND

BOTH SGR AND NUTMR SIMULTANEOUSLY. AREA AND ERROR

PROBABILITY ARE NORMALIZED TO ORIGINAL CIRCUIT.

Orig. SGR NUTMR Both
Bench. Area Pe Area Pe Area Pe Area Pe

c17 1.0 1.0 1.63 0.96 2.77 0.91 1.63 0.92
c432 1.0 1.0 1.33 0.51 2.89 0.36 1.33 0.51
c499 1.0 1.0 1.71 0.53 3.31 0.53 1.72 0.52
c880 1.0 1.0 1.24 0.34 2.07 0.31 1.33 0.34

c1355 1.0 1.0 1.71 0.53 1.74 0.59 1.71 0.53
c1908 1.0 1.0 1.37 0.49 3.21 0.35 1.41 0.47
c2670 1.0 1.0 1.21 0.61 2.90 0.61 1.19 0.61
c3540 1.0 1.0 1.09 0.37 2.72 0.34 1.07 0.39
c5315 1.0 1.0 1.28 0.43 2.04 0.64 1.29 0.41
c7552 1.0 1.0 1.13 0.51 1.57 0.59 1.15 0.48
c6288 1.0 1.0 1.04 0.54 2.97 0.34 1.06 0.43
Avg. 1.0 1.0 1.34 0.53 2.56 0.51 1.35 0.51

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

D
P
O
pt
im
iz
at
io
n
Ti
m
e(
s)

Number of Gatesper Cone

of Gatesper Cone
0.86*x-21.9

(a) Empirical run-time for dynamic programming.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200 1400 1600 1800

D
P
O
pt
im
iz
at
io
n
Ti
m
e
(s
)

Number of Gatesper Circuit

of Gates for EntireDesign
x2-150

(b) Empirical run-time for overall algorithm.

Fig. 7. Empirical run-times of our dynamic and overall algorithm.

fect of pruning during our algorithm. Figure 7(a) shows a plot
of the number of gates and the amount of time to optimize
a single cone using our dynamic programming algorithm in
Section III for a variety of cones in the benchmarks. This
shows empirically that our run-time is linear with the number
of gates per cone. The run-time shown does not include the
time spent in Monte Carlo fault analysis since we plan to
replace that with a static fault analyzer.

Figure 7(b) shows the run-time of the overall algorithm
for all of the benchmarks. It is weakly quadratic due to the
enumeration during the combining of the cones. A better
algorithm will be presented in the future.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we presented a dynamic programming
algorithm and a framework that provides an alternative to
traditional redundancy methods. We offer similar reliabilities
to TMR with area overheads of only 35% compared to the
original circuit. In addition, we provide the designer with a
Pareto-optimal set of solutions which allows them to choose
the best solution for the application at hand.

Using our infrastructure, we showed that single-gate re-
dundancy, to our surprise, offers better reliability for a given
area than traditional TMR during our dynamic programming
algorithm. In the future, we plan to investigate other re-
dundancy methods such as k-level redundancy in the same
framework. In this method, we could perform TMR up
to k-levels deep in the subcircuit which will offer another
dimension to our algorithm. In addition, we can also easily
incorporate n-tuple modular redundancy (NMR), cascaded
TMR (CTMR) and Recursive TMR (RTMR) into our algo-
rithm. Arbitrarily adding more variants to our algorithm may
or may not provide significantly improved results. This is to
be determined.

In the future, we plan to consider performance in addition
to reliability and area. Currently, we do not buffer signals
and do not consider the effect of fanout on our circuit’s
performance. We also plan to integrate a static fault analyzer
rather than use Monte Carlo. In addition, we plan to compare
our results to other redundant methods such as NMR, CTMR
and RTMR. These tasks are left as future work.

REFERENCES

[1] J. von Neumann, “Probabilistic logic and the synthesis of reliable
organisms from unreliable components,” Automata Studies, pp. 43–
98, 1956.

[2] F. P. Mathur and A. Avizienis, “Reliability analysis and architecture
of a hybrid redundant system: Generalized triple module redundancy
with self-repair,” in AFIPS, vol. 36, 1970, pp. 375–383.

[3] K. Nikolic, A. Sadek, and M. Forshaw, “Architectures for reliable
computing with unreliable nanodevices,” in Nanotech, 2001, pp. 254–
259.

[4] D. D. Thaker, R. Amirtharajah, F. Impens, I. L. Chuang, and F. T.
Chong, “Recursive TMR: Scaling fault tolerance in the nanoscale era,”
IEEE Design and Test, pp. 298–305, 2005.

[5] D. Bhaduri and S. K. Shukla, “NANOPRISM: A tool for evaluating
granularity vs. reliability trade-offs in nano architectures,” in GLSVLSI,
2004, pp. 109–112.

[6] K. N. Patel, I. L. Markov, and J. P. Hayes, “Evaluating circuit
reliability under probabilistic gate-level fault models,” in IWLS, 2003.

[7] M. R. Choudhury and K. Mohanram, “Reliability analysis of logic
circuits,” TCAD, vol. 28, no. 3, pp. 392–405, March 2009.

[8] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes,
“Signature-based SER analysis and design of logic circuits,” TCAD,
vol. 28, no. 1, pp. 74–86, Jan. 2009.

[9] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combi-
national logic,” TCAD, vol. 25, no. 1, pp. 155–166, 2006.

[10] R. Garg, N. Jayakumar, S. P. Khatri, and G. Choi, “A design approach
for radiation-hard digital electronics,” in DAC, 2006, pp. 773–778.

[11] K. Keutzer, “Dagon: technology binding and local optimization by dag
matching,” in DAC, 1987, pp. 341–347.

[12] M. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,” IEEE Design and
Test, vol. 16, no. 3, pp. 72–80, 1999.

[13] http://www.opencelllibrary.org, 2008.

218

