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†Barcelona Supercomputing Center. ‡Intel R© Corporation.

{opaloma,juanjo}@ac.upc.edu, toni.juan@intel.com

Abstract—The complex and powerful out-of-order issue logic
dismisses the repetitive nature of the code, unlike what caches
or branch predictors do. We show that 90% of the cycles,
the group of instructions selected by the issue logic belongs to
just 13% of the total different groups issued: the issue logic
of an out-of-order processor is constantly re-discovering what
it has already found. To benefit from the repetitive nature of
instruction issue, we move the scheduling logic after the commit
stage, out of the critical path of execution. The schedules created
there are cached and reused to feed a simple in-order issue logic,
that could result in a higher frequency design. We present the
complete design of our ReLaSch processor, that achieves the
same average IPC than a conventional out-of-order processor,
and a 1.56 speed-up over the IPC of an in-order processor. We
actually surpass the out-of-order IPC in 23 out of 40 SPEC
benchmarks, mainly because the broader vision of the code
after the commit stage allows creating better schedules.

I. INTRODUCTION

The out-of-order processing logic allows to achieve high

IPC but has serious impact in the achievable frequency. For

throughput oriented and server workloads, simpler in-order

processors that allow more cores per die and higher design

frequencies are becoming the preferred choice (Power6 [1],

Niagara 2 [2]). However, there are many workloads where it

is still important to get good single thread performance. Our

ReLaSch processor aims to enable high IPC cores capable

of running at high clock frequencies by processing the

instructions in an in-order issue logic and caching instruction

groups that are dynamically scheduled out of the critical path

and only when really needed.

A. Repeated issue in the out-of-order processors

Programs use functions and loops, so most of the time the

out-of-order issue logic processes a limited amount of differ-

ent instructions and many cycles it ends up issuing together

the same group of independent instructions. Eventually, the

schedule adapts to new situations such as a cache miss.

The issue logic is designed to extract as much ILP as

possible each cycle, ignoring the parallelism found before. It

does not benefit from the repetitive behavior of code, unlike

other processor elements, i.e. caches or branch predictors,

that indeed rely on this characteristic of the programs to

perform as expected.

To show that the issue logic repeats most of its work,

we have captured the issue-groups (an issue-group is the

set of instructions issued in the same cycle) created by an
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Fig. 1. Amount of repeated work done by the conventional out-of-order
issue logic.

out-of-order processor on 100-Minstruction simulations of

each SPECcpu2000 benchmark. Experimental environment

is detailed in section IV. Fig. 1 shows the percentage of

different issue-groups that add up to 90% of the cycles. From

this data, a 90/10-like rule of thumb can be postulated: 13%

of the issue-groups appear 90% of the cycles. Regrettably,

the issue logic is constantly creating the same issue-groups

in the critical path of execution.

B. Proposal: in-order issue and post-commit scheduling

We present a complete processor, named ReLaSch after

Reused Late Schedules, in which the creation of issue-groups

is removed from the critical path of execution. ReLaSch uses

a simple and small in-order issue logic, because it just wakes-

up and selects the instructions of a single issue-group each

cycle instead of a whole issue window, which is much larger

than one issue-group.

A new logic at the end of the conventional pipeline

schedules the committed instructions into rgroups (which

are sequences of issue-groups). R means Reuse, as in other

elements of ReLaSch that are prefixed with an R.

The rgroups are stored in a cache. Whenever is possible,

an rgroup is read and its instructions executed: the schedules

are reused, lowering the pressure on the scheduling logic.

The conventional out-of-order processors use branch pre-

diction and memory aliasing speculation to find more avail-

able instructions. Besides, their issue logic adapts to variable

latency instructions. The ReLaSch processor predicts the

branch targets, memory aliases and latencies at schedule

time, out of the critical path. Average branch misprediction

rate is higher in ReLaSch than that of a conventional branch

predictor, though ReLaSch predicts better in some cases.

A conventional branch predictor is used when no rgroup is

found the cache.
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The out-of-order issue logic is able to react immediately

to changes in code behavior. ReLaSch relies on the repetitive

nature of code, so on a change the schedule mispredicts or

stalls due to an unexpected latency. To reduce the wasted

cycles, it replaces the rgroups that repeatedly fail.

The ReLaSch processor takes some techniques and ele-

ments from the conventional out-of-order processors. It has

a Reorder Buffer (ROB) and a Commit stage to retire the

instructions in-order and provide precise interruptions. It also

allows to commit the correct part of an rgroup when it

includes a misprediction. Besides, the registers are renamed

to eliminate false dependences. Since the instructions in an

issue-group are independent by construction, the renaming

logic can process all the instructions in the issue-group in

parallel, so it is simpler than in a traditional out-of-order

processor, that must detect the dependences between the

instructions renamed in the same cycle.

Our ReLaSch processor is able to outperform the IPC

of a conventional out-of-order processor, because the post-

commit scheduler has a broader vision of the code. Our

scheduler can place two independent but distant instructions

in the same issue-group when it creates the schedule. Nev-

ertheless, a conventional out-of-order processor fetches the

instructions and inserts them in the issue-window in-order

and for instructions that are distant in the code, the fetch,

decode and rename width prevent them to be present at the

same time in the issue window.

There is previous work that proposes moving the schedul-

ing logic out of the critical path and/or try to reuse the

schedules [3], [4], [5], [6], [7]. In section VI the main

differences and similarities are highlighted.

C. Summary of results and scope

Our experiments (see details in section V) show that

ReLaSch achieves the same average IPC as our reference

out-of-order processor and is clearly better than the reference

in-order processor (1.56 IPC speed-up). In all cases it outper-

forms the in-order processor, and in 23 SPEC benchmarks

out of 40 it outperforms the out-of-order processor.

The results presented in this paper assume that all the

processors use the same frequency and just evaluate IPC.

However, it would be reasonable to assume that the in-order

processor and our proposed ReLaSch processor can achieve

a higher frequency.1 This would translate into a performance

speed-up over the out-of-order processor higher than the IPC

speed-up shown here. However, in this paper we do not

evaluate cycle time but describe the microarchitecture and

compare the IPC.

Also, note that in our approach the power-hungry schedul-

ing logic of a conventional OoO processor, which is active

all the time, is replaced by a scheduling logic that is out

of the critical path that is only active a small fraction of

the time (30% of the cycles in average). In the out-of-order

Alpha 21264, the issue units use 18% of the power budget,

1Using a technology independent model, the in-order Power6 processor
doubles the frequency of the out-of-order Power5 [1].

a)

b)

c)

Fig. 2. The pipeline of the (a) OoO, (b) IO and (c) ReLaSch processors.

only surpassed by the clock network (32%) [8]. However, in

this paper we do not measure power.

II. GENERAL DESCRIPTION

Fig. 2.a shows the pipeline of an improved out-of-order

processor (OoO) based on the 21264 Alpha [9], enhanced

with better memory alias detection and branch target predic-

tion. The Fetch stage reads the instructions from the Icache

and accesses the branch predictor. The next stage completes

the branch prediction and decodes the instructions. The Map

stage renames the registers and inserts the instructions in

the ROB and the issue window. The Issue stage wakes-up

and selects the available instructions in the issue window, up

to 4 integer and 2 floating point. The registers are read in

the next stage, and execution happens in the corresponding

functional unit afterwards. The registers are written and the

Dcache accessed in the WriteBack stage. Finally, instructions

are retired in-order in the Commit stage.

Fig. 2.b shows the pipeline of the in-order processor (IO)

we use as reference. Although based on the 21264 Alpha,

it has an in-order Issue stage. It also does not rename the

instructions nor uses a ROB, so the Map stage is eliminated.

The Decode stage simply puts the instructions in a buffer

(the issue buffer).

The pipeline of the ReLaSch processor is shown in fig. 2.c.

The Fetch, Decode and Map stages of the OoO processor

form the Ifront-end and are prefixed with an I in the

figure. They are coupled with additional logic to process

the rgroups: Rfetch, Rdecode and Rmap (that forms the

Rfront-end). Also, there is a new sequence of stages after

the Commit stage: the Rcreate logic. Besides, the Rcache is

added to the processor.

Fig. 3 shows a diagram of the main blocks of the ReLaSch

processor, including the execution pipeline, the different

elements of the Rcreate logic and the caches. The diagram

also indicates the number of entries of the tables and queues,

and the size of the different caches used in our experiments

(see section IV).

The Rcreate logic schedules the committed instructions

into rgroups. Our baseline uses 256-instruction rgroups, with

issue-groups of 4 integer and 2 floating point instructions.

The proposed scheduling is a simple list-based one. However,

a complex one could be used if it improves performance.

Rcreate also makes predictions based on the last execution

and partially renames the registers. The resulting rgroups are

stored in the Rcache. The Rfetch logic accesses the Rcache

and the Rdecode logic decodes the instructions. However,
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Fig. 3. Block diagram of the ReLaSch processor.

they don’t access the branch predictor. The Rmap logic

completes the renaming and inserts the instructions in the

ROB and the issue buffer.

Unlike the 21264 Alpha and the OoO processors, that

use a shared pool of physical registers, ReLaSch uses a

register file that has a fixed set of physical registers for

each logical register, based on the Flywheel’s register file

[5]. The registers within a set are always assigned in the

same order, which eases the renaming process. We use the

Flywheel register file because a ReLaSch processor modified

to use a conventional register file has shown: a) to yield a

slightly lower IPC than the baseline ReLaSch; b) that its

Rmap renaming logic and Rcreate stages are more complex;

and c) the Rcache requires storing more bits per instruction.

A. Execution modes

ReLaSch has two execution modes: the Icache mode, when

the Ifront-end is used; and the Rcache mode, when the

scheduled instructions are fetched from the Rcache and are

processed by the Rfront-end.

When the processor is in the Icache mode, each cycle it

accesses with the PC the Icache and the Rcache in parallel.

On an Rcache hit (an rgroup begins with this instruction),

the processor changes to the Rcache mode. After an rgroup

has been completely fetched, another one is read from the

Rcache if possible. Otherwise, the processor changes to the

Icache mode. The identifier of the next rgroup is stored with

the current rgroup in the Rcache.

Regardless of the mode, when the pipeline is flushed (on

a branch misprediction or a memory order violation), the

Rcache is accessed with the recovery PC. On a hit the

processor executes the instructions in the Rcache mode, and

in the Icache mode otherwise.

Besides, the Rcreate logic can be in one of two modes: in

the Schedule mode or in the Idle mode. It creates new rgroups

only in the Schedule mode. The instructions executed in the

Icache mode are always processed in the Schedule mode. On

a change to the Rcache mode, Rcreate changes to the Idle

mode, but first it completes the current rgroup. It changes

back to the Schedule mode: a) when it finds an instruction

executed in the Icache mode; and b) to re-schedule Rcache-

mode instructions of an rgroup that frequently aborts its

execution. Each rgroup in the Rcache has a saturating counter

(5 bits) to detect this kind of rgroups.

B. ReLaSch processor operation principle

In the Schedule mode, the Rcreate logic places each

instruction in the issue-group in which its source registers

will be available and assigns its destination physical register.

During execution, the Rmap logic needs to adjust this renam-

ing to the actual registers used by the previous rgroup. So

Rmap will complete the renaming, by simply adding an offset

to the identifier of the physical registers. Besides, Rmap

checks if the destination physical register is free, while the

Issue stage checks if the source physical registers are ready.

Rcreate assigns to each instruction its identifier in the ROB

and the LQ (Load Queue) or the SQ (Store Queue). The

Rmap logic adds an offset to these identifiers and checks

their availability; it also inserts the instructions in-order in

the issue buffer. Rcreate tracks in which issue-group each

ROB entry can be reused to avoid the possible deadlocks,

as shown in section III-A.1. The Issue stage checks if the

functional unit needed for each instruction is available, while

Rcreate tracks the usage of the functional units in the issue-

groups of the schedule.

Rcreate uses saturating counters to predict the latency of

the memory instructions, using either the L1 hit latency or

the latency of the last execution. The last addresses accessed

are used to predict whether the memory instructions will

alias and to schedule them accordingly. If a predicted aliased

store-load pair cannot forward the data from the SQ (due to

different access-size), the load saves a copy of the store’s

identifier. Rmap adds the offset to this identifier, and the

Issue stage blocks the load until the store actually commits.

The Writeback stage checks the memory order violations,

and the Commit stage replays the offending instruction.

In Rcreate, each dynamic branch scheduled in an rgroup

is predicted to repeat its outcome, although an rgroup can

contain several copies of the same static branch, each one

predicted independently. This prediction implicitly uses the

whole rgroup as path, so it can capture complex patterns.

The Commit stage checks that the prediction is correct. Our

experiments show that 8% of all dynamic branches were

predicted by Rcreate to change from their previous behavior

in the schedule. 84% of them are predicted correctly, while

a PC-indexed 1-bit predictor would have mispredicted all

them.

III. IMPLEMENTATION DETAILS

A. The Rcreate logic

The Rcreate logic uses a table to schedule the instruc-

tions. Each entry corresponds to one issue-group. The logic

schedules the instructions in the earliest possible issue-group,

according to the dependences, the latencies of the FUs and
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Code:

A: MUL R5, R4, R3; ROB[0]

B: ADD R3, R2, R1; ROB[1]

C: ADD R4, R2, R6; ROB[2]

D: ADD R6, R7, R7; ROB[3]

E: ADD R1, R8, R8; ROB[0]

F: ADD R7, R2, R2; ROB[1]

G: ADD R4, R5, R5; ROB[2]

Rgroup
(deadlock)

0: A C

1: D G

2: -

3: B

4: E F

ROB-safe:

id: 0 1 2 3

safe: 1 4 4 0

Rgroup (ok)

0: A C

1: D

2: -

3: B

4: E F

5: G

Fig. 4. Example of a deadlock using a 4-entry ROB and 2-instruction issue-
width. Latencies: MUL 3 cycles, ADD 1 cycle. From left to right, and top
to bottom: the original code, the rgroup with a deadlock, the ROB-safe table
after C is scheduled, and the correctly scheduled rgroup.

the availability of the resources. The Rcreate logic must deal

with the following problems:

1) Deadlocks: When creating an rgroup, Rcreate assigns

in order the identifiers in the ROB, beginning with identifier

0. But, at execution time instructions are inserted in the ROB

out-of-order by the Rmap logic, and committed in-order. A

careless schedule, such as that in fig. 4, creates a deadlock:

when Rmap processes the issue-group 0, both instructions A

and C occupy the ROB identifiers 0 and 2. The next cycle,

D is Rmapped, but G stalls since its ROB identifier is still

in use by C. The stall prevents B to execute, so the identifier

is never freed since C cannot commit before B.

To prevent deadlocks, Rcreate records the safe issue-group

for all the resources it assigns (physical registers and ROB,

LQ and SQ identifiers). The safe issue-group, in which a

resource can be reused, is the highest issue-group where

an instruction is scheduled just after the assignment of the

resource. In the example, after the ROB identifier 2 is

assigned to C, it can be reused in the issue-group 3, where B

is scheduled. Actually, the number of cycles until B commits

is added, to avoid stalling the instruction that reuses the

resource. Just one cycle is added in the example, so G should

be scheduled in the issue-group 4; since it is full, G is placed

in the issue-group 5.

2) Registers and dependences: Rcreate uses the register-

info table to record: a) the last physical register assigned

to each logical register, b) in which issue-group is the data

available and c) the safe issue-group of the physical registers.

Rx.y denotes the physical register y of the logical register

x. A source register Rx not yet scheduled as destination

within the rgroup reads the physical register Rx.0. The

example in fig. 5 shows how the table is used to schedule an

instruction: the logical registers are renamed to R3.7, R2.3

and R1.0. The instruction is scheduled in the issue-group

17, which is the maximum of 15 (Read), 17 (Read) and

10 (Safe[Phy+1]). The destination register’s entry is updated

after the instruction is scheduled. The example assumes there

is a previously scheduled instruction in the issue-group 19,

so the new safe[Phy] is 20.

Fig. 5. An example of use of the register-info table. It provides the physical
registers (phy) and the issue-groups (ig). The example assumes a register
file with 8 physical registers per each logical register.

3) Closing rules: An rgroup is closed if: a) it is full

(256 instructions is the maximum in our experiments); b)

the issue-group for an instruction is beyond the schedule

table (512 in our experiments); c) the table of indirect branch

targets is full (10 in our experiments); or d) a system call

instruction is scheduled. Then the compacting logic reads the

rgroup from the schedule table, skipping the empty issue-

groups and slots, placing all the instructions contiguously, in

the Rcache format.

4) Branch prediction: The Rcreate logic always schedules

from the stream of committed instructions: it predicts that the

branches will repeat the behavior of its last execution. The

instructions of any other path are not available. An option

would be to close the rgroup after the branch, creating shorter

rgroups, but this results in lower IPC.

To detect during execution the mispredicted branches, the

conditional branches record a taken/not-taken bit, and the in-

direct branches store the predicted target PC (separated from

the instructions). Patterns in multi-target indirect branches

can also be captured with more precision than a conventional

BTB does since history is implicitly taken into account. The

reference OoO processor uses an enhanced BTB to cope with

multi-target indirect branches.

5) Latency of the memory accesses: The scheduler pre-

dicts a latency for each load instruction to schedule the

dependent instructions. If the load is predicted to hit and it

actually misses, the first dependent instruction stalls at Issue.

If a miss is predicted and at execution the L1 cache hits, no

instruction stalls, but the dependent instructions execute later

than necessary, decreasing the IPC.

Rcreate tries to detect the biased loads, with a PC-indexed

table of 1-bit saturating counters. Counters are increased on

an L1 hit, and decreased on an L1 miss. If the counter is

set, the scheduler uses the L1-hit latency, and the latency of

the last execution otherwise. Loads that frequently miss in

the L2 cache are more likely to benefit from re-scheduling,

so when a load executed in the Rcache mode misses in the

L2, the rgroup’s counter in the Rcache is decremented.

6) Memory aliasing prediction: The last addresses ac-

cessed are used to predict whether two memory instructions

will alias. Unaliased instructions are freely reordered. Two

aliased loads cannot be reordered at execution, so they

are scheduled in the same issue-group. An aliased store-
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Fig. 6. The information of an rgroup stored in an Rcache line.

load pair is scheduled in consecutive issue-groups to allow

data forwarding. When forwarding is impossible, the load is

scheduled in the issue-group where the store commits, and it

records the store’s identifier in the SQ. The store instructions

access the memory in-order and can be scheduled anywhere.

The scheduler remembers the addresses of the last sched-

uled memory instructions, that can be in the LQ and SQ when

the current load is executed. The safe issue-group is retrieved

with a CAM-access with the load’s address, masking the

lower bits according to the size of the access. This method

eliminates most load replays.

B. The Rcache

The Rcache stores one rgroup per line. Fig. 6 details the

information stored per rgroup, divided into control informa-

tion, indirect branch targets and instructions. It uses 60 bits

per instruction and 46 per indirect target. With 8-target 256-

instruction rgroups, the total adds up 1,974 bytes per rgroup,

including 58 control bits.

Rcache lines are longer than usual cache lines. However,

a line is processed sequentially, one issue-group per cycle,

and there can be no random access in the middle of the line,

so a low-bandwidth sequential access fetches the content.

The Rcache is indexed with the lower bits of the PC, the

rest of the PC bits are the tag, matched with the PC of the

first instruction of each rgroup in the Rcache set.

Each Rcache line has a saturating counter, increased if all

the instructions in the rgroup commit, and decreased if the

execution aborts or on a L2 miss. When an rgroup is fetched

and its counter is 0, the rgroup’s instructions are marked, and

later re-scheduled in Rcreate.

Like the Trace cache [10], the Rcache usually contains

duplicated instructions, i.e. several instances of a loop dy-

namically unrolled by the scheduler. Though not desirable,

it is needed to create good rgroups.

C. The Rmap logic

To complete the renaming, an offset is added to the

physical registers’ identifiers. The offset of a logical register

is the physical register of its last use as destination before the

rgroup. The offsets are constant during the execution of an

rgroup. To rename the instructions executed after an rgroup,

the Rmap logic counts the uses as destination of each logical

register (modulo the number of physical registers). Fig. 7

shows an example of an instruction renamed by Rmap. The

final registers are R3.3, R2.2, R1.7. The Next counter of R1

is incremented (modulo 8).

Fig. 7. An example of how the Rmap logic completes the renaming.

Similarly, there is an ROB-offset, an LQ-offset and an SQ-

offset, that are added to the corresponding identifiers. The

offsets are updated when an rgroup begins execution, from

the first free identifier in the ROB and the queues.

The logic checks, for each instruction, that its destination

physical register and its identifier in the ROB, the LQ and

the SQ are free. The instruction is inserted in the issue buffer.

The Rmap logic is similar in complexity to the Map stage

of a conventional OoO processor, that also access a table

indexed with the logical registers. The Rmap logic has also

the offset-adders, but it removes the feedback loop.

D. The Issue stage

The ReLaSch processor uses two issue buffers: int and fp.

Float-stores and float-to-integer instructions use both buffers,

while loads and integer-to-float only use the int buffer.

The Issue stage processes each buffer in-order but indepen-

dently, unless an instruction is present in both buffers. Only

the first issue-width instructions of each buffer are processed.

For each instruction, the issue logic checks that: a) the source

registers are ready; b) the FU is available; c) the new-ig

flag, that indicates the beginning of a new issue-group is

cleared (except for the older instruction in the buffer); d) the

aliased store has committed (only for some loads) and e) all

older instructions in the buffer have been issued. When an

instruction is present in the two buffers, both entries must

be ready to issue it.

The new-ig flag is checked to avoid issuing together

instructions of different issue-groups. When they are inde-

pendent it is correct to issue them in parallel, improving

IPC. However, this allows that an aliased store-load pair that

is scheduled in consecutive issue-groups is issued simultane-

ously. In this case the data cannot be forwarded, so the load

is replayed. Since our experiments show that the increase

in load replays overweights the IPC gain, the issue-group

boundaries are respected.

IV. EXPERIMENTAL SET-UP

We have modified the sim-alpha simulator [11] to model

the ReLaSch and the reference OoO and IO processors.

Sim-alpha is based on Simplescalar and was configured and

validated against a real Alpha machine. Our reference IO and

OoO processors are much like an Alpha 21264 [9], enhanced

with Store Sets [12] and an improved BTB, similar to the

Intel Pentium M processor’s target predictor [13], using path

instead of history since it works better with our benchmarks
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TABLE I

MAIN SIMULATION PARAMETERS FOR OOO, IO AND RELASCH.

OoO IO ReLaSch
Issue width: 4 Int, 2 FP * * *
Issue queue: 20 Int, 15 FP *
ROB: 80, Ld: 32, St: 32 * *
FUs: 4 ialu, 4 imul, 1 fpalu, 1 fpmul * * *
DL1 & IL1: 2-way 64KB 3-cycle hit lat * * *
L2: 2MB 13-cycle hit, 84-cycle miss lat

(extra cycles if bus contention) * * *
DTLB: 128 entries, ITLB 128 ent. * * *
Bpred: 4Kx2 choice, 4Kx2 global vs

2-level local (1Kx10 hist, 1Kx3 count.) * * *
BTB: 1024-ent. 4-way pc-indexed, 32-ent. RAS * * *
multi-target BTB: 1024-ent. path-indexed * *
Store Sets: 4K-ent. SSIT 128-ent. LFST, 7-bit id * *
StWait: 1024 1-bit table *
41 int, 41 fp shared physical registers

+ 31 int, 31 fp arch. registers *
8 physical reg. per logical reg. *
Rgroup: 256 inst, 8 indirect branches *
Rcreate: 1 inst per cycle, 256 1-bit load lat pred

schedule table of 512 issue-groups *
Rcache: 4 ways, 32 sets, 1974B per rgroup

5-bit counter per line
read 1st issue-group: 3 cycles-lat
1 issue-group/cycle afterwards *

[14]. The ReLaSch processor doesn’t require the Store Sets

and the improved BTB, since the rgroups already solve the

same problems. So ReLaSch uses the simpler original Alpha

BTB and StWait bits.

Table I shows the main simulation parameters. Any other

parameter maintains the default sim-alpha/21264 value [11].

We use most of the SPECcpu2000 benchmarks, the 8 miss-

ing ones had compilation problems. The benchmarks were

compiled with -O3 or -O4. For each benchmark, a 100M-

instruction segment is simulated. SimPoint [15] was used

to find the most representative segment of each benchmark.

The simulator is not trace-driven, but fetches the instructions

from the binary, even after mispredicted branches. Average

IPC stands for harmonic mean.

V. EXPERIMENTAL RESULTS

Fig. 8 shows the speed-up of the IPC obtained by the

ReLaSch processor over the OoO processor, ordered by

increasing speed-up and separating the FP and the INT

benchmarks. Each bar starts at 1.0 speed-up. Speed-up lower

than 1.0 indicates a performance loss.

The ReLaSch IPC is higher than the OoO IPC in 18 out

of 28 INT benchmarks and in 5 out of 12 FP benchmarks. It

has a 0.99 speed-up over the average INT OoO IPC, a 1.02

over FP and has the same average IPC when both FP and

INT benchmarks are considered.

Fig. 9 shows the speed-up of ReLaSch over the IO

processor. ReLaSch IPC is much higher than IO in all cases.

It has a 1.51 speed-up over the average INT IO IPC, a 1.64

over FP and a 1.56 overall (INT and FP).

To outperform the OoO processor, several conditions are

needed: a) that the scheduler frequently finds independent

instructions that are distant in the code (instructions that usu-

ally the out-of-order issue logic doesn’t schedule together);

b) execute most of the instructions in Rcache mode; and c)

have a low misprediction rate.

The first condition depends on each benchmark; the second

is true for all the evaluated benchmarks: the average rate of

committed instructions executed in Rcache mode is 94.3%

(INT) and 99.3% (FP); the lowest is 82% (gcc-sci and crafty).

Branch prediction of ReLaSch can be more accurate than

in the OoO processor: e.g. with a high number of branches

in an rgroup, it can capture patterns that are longer than the

history length of the 21264. However, branches correlated

with local history are perfectly predicted by the baseline

tournament predictor, but if the history is longer than the

schedule, the rgroups misses them.

A. Rcache size

The branch misprediction rate is closely related to the

number of rgroups that can be stored in the Rcache. Highly

regular benchmarks just create a few rgroups that are usually

completely executed, and fit in a small Rcache, but bench-

marks that follow many different paths create more rgroups.

Table II shows how the misprediction rate decreases when

the Rcache size grows.

Table III summarizes the average speed-up for several

Rcache sizes. Most FP benchmarks (and some INT bench-

marks) are very regular and, creating few rgroups that fit in

a small Rcache, they reach their top IPC with ReLaSch. On

the other hand, many INT benchmarks create more rgroups

and improve a lot with bigger Rcaches. However, some

benchmarks with branches that are harder to predict using

rgroups (bzip-src has a 16% miss-rate in ReLaSch vs. a 10%

miss-rate in OoO) do not benefit from bigger Rcaches. The

ReLaSch processor with a 4-4 Rcache (that stores 16 256-

instruction rgroups and occupies 31KB) has a 1.33 (INT)

and a 1.58 (FP) speed-up over the average IO IPC, and

0.87 (INT) and 0.98 (FP) over the OoO IPC. The actual

optimal Rcache size depends also on the power consumption

constraints, which are not evaluated in this paper.

TABLE II

AVERAGE BRANCH MISPREDICTION RATE (IN %).

sets-ways

OoO 4-4 8-4 16-4 32-4 64-4 128-4 256-4

INT 5.05 7.49 7.34 6.97 6.6 6.26 5.97 5.78

FP 1.70 3.54 3.17 2.88 2.45 2.33 2.18 2.08

ALL 4.00 6.24 6.02 5.67 5.27 5.00 4.74 4.58

TABLE III

AVERAGE SPEED-UP OF RELASCH OVER THE OOO PROCESSOR

FOR DIFFERENT RCACHE SIZES.

sets 4 8 16 32 64 128 256

FP 0.98 1.00 1.01 1.02 1.02 1.02 1.02

INT 0.87 0.91 0.96 0.99 1.01 1.03 1.04

ALL 0.90 0.94 0.97 1.00 1.02 1.03 1.04
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Fig. 8. IPC speed-up of the ReLaSch processor over the OoO processor.

TABLE IV

AVERAGE SPEED-UP OF RELASCH OVER THE OOO PROCESSOR

FOR DIFFERENT RGROUP SIZES.

inst-sets 64-128 128-64 256-32 512-16 1024-8

FP 0.90 0.97 1.02 1.03 1.04

INT 0.92 0.98 0.99 0.97 0.92

ALL 0.92 0.97 1.00 0.99 0.96

B. Instructions per rgroup

With more instructions per rgroup the scheduler is able

to extract more ILP. But for a given Rcache size, doubling

the rgroup size halves the number of rgroups, which lowers

the IPC of benchmarks that create more rgroups. Table IV

shows the ReLaSch average speed-up using several rgroup

sizes with a 247KB Rcache.

In general, FP benchmarks benefit from larger rgroups

while INT need more rgroups. With 64-instruction rgroups,

the scheduler’s reordering capability is too limited (less than

the ROB size) and the reduced ILP is not compensated by the

higher number of rgroups available: all the benchmarks per-

form worse than with 128-instruction rgroups. The baseline

256/32-configuration maximizes the overall performance.

C. Rcreate stages

All the results presented in this section assume that Rcreate

is pipelined in 10 stages to schedule an instruction. Our

experiments show that using more stages (i.e. 20) does not

reduce performance.

VI. RELATED WORK

There are other proposed processors that schedule in-

structions outside the critical path of execution, and cache

the schedules to feed the pipeline later. We present the

differences in the approach and the objectives of those more

similar to our work, followed by other related work that

doesn’t cache the schedules.

A. Caching proposals

DIF [3] creates VLIW schedules from RISC instructions.

It has two cores: VLIW and in-order. It schedules instructions
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Fig. 9. IPC speed-up of the ReLaSch processor over the IO processor.

committed in the in-order core to feed the VLIW core. The

in-order core is used when there isn’t an available VLIW

schedule. Each logical register has a fixed set of physical

registers, but each physical register can be written just once

in a schedule. Although this leads to use smaller schedules,

write-once registers are combined with atomic committing of

a schedule (either none or all its instructions commit), thus

simplifying the commit logic.

rePLay [4] is mainly focused on trace optimization to

reduce execution time. It has a conventional out-of-order

pipeline and an optimizer of the committed instructions.

Traces commit atomically to allow more aggressive optimiza-

tions, requiring that useful instructions are re-executed after

a mispredicted branch. The out-of-order pipeline schedules

and renames the instructions. However, there is an in-order

rePLay [16], where the instructions in a trace are scheduled

and renamed after optimization, and executed in an in-order

pipeline. It uses a conventional register file, and a trace needs

to record its live-in and live-out registers.

Flywheel [5], [17] reduces the energy consumed by the

processor’s front-end, by capturing what the Issue logic pro-

duces and caching the resulting traces. It has a conventional

out-of-order pipeline. The cache substitutes the processor’s

front-end, that is switched off to save energy. The ReLaSch

register file is based on the Flywheel proposal. The traces

commit gradually, and their size varies depending on the

branch misprediction rate. It has an out-of-order pipeline, so

its performance usually degrades when the traces are used.

CTS [6] uses an in-order pipeline and schedules committed

instructions. It is focused on dynamically analyzing the code

to optimize it, using loop-unrolling and software pipelining.

CTS caches only a subset of the schedules, that are stored

in dedicated virtual memory pages. It filters the traces to

schedule only the hottest parts of the code, so less instruc-

tions are scheduled, but it lowers pressure on the cache and

the scheduler. CTS commits each loop iteration atomically,

so it only needs to re-execute useful instructions on a load

replay. It has several register windows, each one linked to

a specific loop iteration and with a register for each logical

register. The control instructions are not reordered, to ease
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code analysis and register window identification.

The Incremental Commit Groups proposal [7] improves a

Transmeta-like processor [18] by allowing partial commit of

the traces. It translates instructions to another language and

does not compare with a conventional OoO processor.

Among this proposals, only the in-order rePLay has an

in-order issue-logic and compares its performance with a

conventional out-of-order processor. Although it doesn’t out-

perform the out-of-order IPC in any benchmark, it is close in

some cases. CTS, that also has an in-order issue logic, yields

1.16 speed-up over an in-order conventional processor.

B. Non-caching proposals

Other proposals [19] [20] [21] don’t cache schedules but

reuse the instructions directly from the issue window or the

ROB, to save energy in the front-end. They benefit from

small loops that fit in these structures.

Prescheduling [22] uses a Preschedule window formed by

lines, consumed in-order to feed an out-of-order issue logic.

It allows to reduce the size of the issue window without

degrading IPC. The preschedule logic processes the decoded

instructions at execution time. It just takes into account

the data dependences and does not deal with renaming

or resource assignment, since the out-of-order issue logic

performs all these tasks. The preschedule logic assumes an

L1-hit latency for all the load instructions.

Cyclone [23] is a different way to simplify the OoO

issue logic. It uses a simple in-order issue logic combined

with latency prediction, replaying the instructions when the

desired operand is not available. However, it is not able to

achieve better IPC than a conventional OoO processor.

Runahead [24] proposes to increase the performance of an

in-order processor by pre-executing instructions on a cache

miss. We consider that this technique is orthogonal to our

proposal and could be implemented in it.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that the out-of-order issue logic is con-

stantly creating the same schedules, and that its complexity

and capacity to find a high level of ILP is only seldom

exploited. With the proposal of the ReLaSch processor, we

have also shown that the scheduling-logic can be moved

after the commit stage, out of the critical path, and achieve

similar IPC than a conventional out-of-order processor with a

simple in-order issue-logic and a cache of schedules. Placed

after commit, the latency of the scheduler does not affect

the performance of the processor and the scheduler has a

broader vision of the code, sometimes finding more ILP than

the out-of-order issue logic. Besides, the schedules capture

the behavior of most control and memory instructions.

Our experiments show that, using a cache of 128 schedules

(256 instructions each), we achieve an IPC similar to that of

a conventional out-of-order processor: 0.99 INT and 1.02 FP

speed-up, outperforming the out-of-order processor in many

cases. Compared with a conventional in-order processor,

ReLaSch offers a 1.52 INT and 1.65 FP speed-up.

There is room to continue improving the scheduler and

create better schedules that would yield in higher IPC. For

instance, the addresses accessed by the memory instructions

can be used to predict their latency. On the other hand,

the good IPC results obtained by ReLaSch encourage us to

perform a detailed analysis of frequency and power.
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