
1

SHIELDSTRAP: Making Secure Processors Truly Secure
Siddhartha Chhabra and Brian Rogers and Yan Solihin

North Carolina State University
{schhabr, bmrogers, solihin}@ncsu.edu

Abstract— Many systems may have security requirements
such as protecting the privacy of data and code stored in the
system, ensuring integrity of computations, or preventing the
execution of unauthorized code. It is becoming increasingly
difficult to ensure such protections as hardware-based attacks,
in addition to software attacks, become more widespread and
feasible. Many of these attacks target a system during booting
before any employed security measures can take effect. In
this paper, we propose SHIELDSTRAP, a security architecture
capable of booting a system securely in the face of hardware
and software attacks targeting the boot phase. SHIELDSTRAP
bridges the gap between the vulnerable initialization of the
system and the secure steady state execution environment
provided by the secure processor. We present an analysis of
the security of SHIELDSTRAP against several common boot
time attacks. We also show that SHIELDSTRAP requires an
on-chip area overhead of only 0.012% and incurs negligible
boot time overhead of 0.37 seconds.

I. INTRODUCTION

As computing systems become more distributed, it is
increasingly more difficult to guard systems against unau-
thorized physical tampering by attackers. One example is
companies that have mobile computers (e.g., laptops, PDAs)
which contain sensitive data, and employees are allowed to
carry them at will. The laptops may be stolen by attackers,
or even tampered with by the employees themselves without
the knowledge of the companies. Another example is game
consoles in which the owners may try to circumvent the
copyright protection mechanisms. In addition, the damage
that can result from a successful attack is also increasing:
loss of revenues from game sales and theft of valuable
company or consumer secrets (credit card numbers, product
information, etc.).

Compared to traditional, software-based security attacks,
physical tampering is unique in that it can be used to bypass
software protections in the system. Even systems that store
their files encrypted on the disk still keep the data in plaintext
form in main memory. Through physical tampering, attackers
can dump the content of the memory, attach a bus snooper
between the processor and the main memory in order to
snoop plaintext data, or even alter the values stored in
the main memory or communicated between the processor
and main memory. Some examples of physical attacks that
have been documented in detail include mod-chips, which
are widely available for popular video game consoles [1],
[2], [3], [4], [5], [6], and attacks on processors used for
ATM machines [7]. These attacks demonstrate the feasibility
and surprising ease of bypassing security protection through
physical tampering.

Recognizing both the increased opportunity and motiva-
tion for attackers to compromise the privacy and integrity

of data and computation, researchers have proposed secure
processor architectures [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]. These architectures assume
that the processor die provides a reasonable security bound-
ary. Thus they protect any data stored off-die (including the
main memory) with encryption and integrity verification.
Unfortunately, these studies describe such mechanisms for
steady state execution after the system is up and running.
They do not address the threat of physical attacks during
system boot. In this paper, we address the problem of how
to securely boot a secure processor system.

The goal of secure bootstrapping is to ensure that the
system has booted using valid boot components including the
basic input output system (BIOS) and operating system (OS).
Recognizing the vulnerability of the bootstrapping process
to the overall security of systems, prior work has proposed
various secure bootstrapping mechanisms, such as AEGIS
by Arbaugh et al. [21], Trusted Computing Platform [22],
and others [23]. These approaches all follow a chained
integrity verification approach where each layer in the boot
process verifies the integrity of the next layer before passing
control to it. However for each approach the root of trust
is the BIOS code, which in most computer systems is
located off-chip. Hence, they cannot ensure the integrity
of the bootstrapping process if physical tampering of the
BIOS code is a possibility. Thus, they are inappropriate for
implementation on a secure processor.

There have also been proposed solutions which do assume
that physical attacks to off-chip components are possible.
For example, in ARM TrustZone [24], security extensions
to the ARM architecture, the entire boot code is moved
on chip, eliminating the possibility of physical tampering
to alter the boot code. Additionally, any application that
needs to be secured must be kept on-chip in a secure RAM.
While this solution is secure against the physical attacks we
consider, it is too heavyweight for use in many systems.
Especially for more general-purpose systems such as PCs
and gaming systems, the cost in terms of die area of keeping
the entire BIOS on-chip (which can be as large as 1MB) as
well as the code and data of applications (possibly several
MBs) is prohibitive. For this wide range of systems, a more
lightweight and robust solution is needed.

It is clear that the root of trust for a secure bootstrapping
solution should be located on-chip to provide strong security.
However, an on-chip root of trust does not alone guarantee
secure bootstrapping. We find that a class of attacks which
we classify as a type of Time-Of-Check To Time-Of-Use
(TOCTTOU) attacks are still possible. The main idea is that
after a boot component has been verified, an attacker with
physical access to the system can tamper with the component

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 289

2

before it is actually fetched and executed by the processor.
Hence, the processor will now execute an image that is differ-
ent from the image that was originally verified. Therefore,
as another requirement, a secure bootstrapping mechanism
should enforce that a boot component cannot be modified
(without detection) after it is initially verified during secure
boot and before it is executed by the processor. AEGIS
by Arbaugh et al. and TCG do not meet this requirement
and hence are susceptible to such TOCTTOU attacks. ARM
TrustZone, on the other hand, meets this requirement since
verified components never leave the processor chip, however
again this is an expensive solution that is infeasible for
many systems. As a result, the currently existing solutions
to secure booting are inappropriate for implementation on
secure processors.

Contributions. In this paper, we propose SHIELDSTRAP,
an architecture for protecting the integrity of the boot-
strapping process of secure processors. SHIELDSTRAP is
designed with three principle design goals: security, com-
plexity and flexibility
Security: SHIELDSTRAP is designed to provide protection
from sophisticated hardware-based attacks during system
booting. Our solution to secure booting is based on the
observation that any component off of the processor chip is
relatively easy to compromise with hardware-based attacks.
Whereas on-chip components are significantly more difficult
to attack and can be made more difficult by various manu-
facturing techniques such as special coating [25]. Hence, the
root of trust for the booting process should be located on the
processor chip. We further motivate this security model in
Section III. SHIELDSTRAP uses a two-phased approach to
boot the system to a trusted state: a verification phase and
a booting phase. In the verification phase, SHIELDSTRAP
verifies the integrity of the BIOS using on-chip components
(our root of trust) before passing control to the BIOS to start
the actual booting phase. In the booting phase, we also follow
a chained integrity verification approach where each layer
verifies the integrity of the next layer in the boot chain before
passing control to it. A failure at any point will prevent the
system from booting. SHIELDSTRAP offers distinct security
advantages over the previously proposed approaches for
secure booting. First, SHIELDSTRAP protects systems from
even sophisticated hardware attacks during booting. Hard-
ware attacks against a boot component will be detected since
that component’s integrity verification during our secure boot
process will fail. This is accomplished with only lightweight
additions to the processor and small changes to the boot
procedure. On a reset (hard/soft), the processor instead of
directly executing the BIOS, jumps to code stored in an
on-chip memory which we call the SHIELDSTRAP ROM
(ST-ROM). The ST-ROM is responsible for carrying out
the verification phase to establish the integrity of the BIOS
before handing over control to the BIOS to start the booting
phase. This is the first work to bridge the gap between the
vulnerable initialization of a system to the secure steady state
execution environment provided by secure processors.

Secondly, SHIELDSTRAP leverages secure processor sup-
port to prevent TOCTTOU-style attacks during booting.
After the integrity of a boot component is verified, integrity
information about that component is retained on-chip such

that any subsequent tampering with the component will be
detected when the component is executed by the processor
at a later time. Lastly, similar to current solutions, SHIELD-
STRAP continues to provide protection against the most
widespread software attacks that target the boot components.
We provide a security analysis of SHIELDSTRAP to moti-
vate its security against several known boot-time attacks.

Complexity: We show how our SHIELDSTRAP mecha-
nisms can be combined with typical memory encryption and
authentication mechanisms provided by a secure processor
to protect a system and the programs it executes all the way
from power-on to steady-state application execution. In addi-
tion to enhancing the overall system security, this novel use
of memory encryption and authentication for implementing a
secure boot mechanism significantly reduces its complexity
with respect to the on-chip storage overheads. The boot
components can now be safely evicted to off-chip memory
where they automatically come under the protection of the
memory encryption and authentication mechanisms. This
enables SHIELDSTRAP to have a very small on-chip area
overhead making it suitable for use in both embedded and
general-purpose systems. Our work explores the interaction
of secure memory with a secure booting mechanism. We
present a detailed analysis of the complexity and overheads
of a secure booting mechanism with and without secure
memory support. We also provide an area estimation for the
amount of on-chip hardware that is required for SHIELD-
STRAP and we find that this overhead is reasonable at less
than 0.1% of the chip area. We also provide an evaluation
to show that SHIELDSTRAP adds a negligible overhead of
0.37 seconds during system booting (which is not typically
a latency-critical process), compared to a base system with
no secure booting.

Flexibility: Finally, SHIELDSTRAP is flexible, allowing
for hardware and software reconfiguration without requiring
changes for the end-user. For example, the user can install a
new operating system (software reconfiguration) or install a
new expansion card, such as a graphics card (hardware recon-
figuration), without causing boot failures. We also explore
the use of a group signature scheme, Direct Anonymous
Attestation [26], to allow the system to use the BIOS from
various vendors while ensuring the integrity of the secure
booting mechanism, thereby preventing tying the processor
manufacturer to specific BIOS manufacturers. However, our
scheme places some requirements on the boot components
designed to run on a secure system using the SHIELDSTRAP
architecture. In particular, SHIELDSTRAP requires the boot
components to be signed by their respective manufacturers
before installation on the system. We discuss the particular
requirements of each component in section IV.

The rest of the paper is organized as follows. Section II
discusses the related work on secure booting, Section III de-
scribes our assumed attack model. Section IV describes our
proposed SHIELDSTRAP architecture in detail. To evaluate
SHIELDSTRAP, we first present a qualitative security dis-
cussion in Section V-A. Then we present quantitative results
to summarize the area overheads and boot-time performance
overheads of SHIELDSTRAP in Section V-B. Finally, we
conclude in Section VI.

290

3

II. RELATED WORK

Despite the growing importance of the problem, current
solutions suffer from critical limitations in terms of security,
cost, and flexibility. We categorize the related works in to
three categories.

In Category 1, we have solutions that have a low complex-
ity but do not provide complete security. This is due to the
fact, that these solutions rely on an off-chip component like
BIOS to from the root of trust for the booting process [21],
[23] which makes them vulnerable to hardware attacks. MIT
AEGIS [17], on the other hand, proposes a secure boot
mechanism where the public key of the security kernel
manufacturer is embedded on the processor chip, and is
used to authenticate the OS when entering trusted execution
mode. Other components involved in the boot process (e.g.
BIOS, expansion ROMs) are not verified and thus are vulner-
able to boot-time attacks. In particular, MIT AEGIS cannot
provide defense against boot attacks targeting the BIOS
(e.g. Modchip attacks), the expansion ROMs and MBR (e.g.
rootkits persisted in expansion ROMs and MBR [27]). In
essence, the attack model for MIT AEGIS does not consider
hardware attacks on boot components to be a possibility.
MIT AEGIS also lacks flexibility because the embedded OS-
vendor public key prevents installing OSes from different
vendors. In comparison, SHIELDSTRAP places the root of
trust on-chip and verifies all components during the bootstrap
process to protect the secure bootstrap process against even
hardware attacks targeting any of the boot components.
In addition, SHIELDSTRAP is also flexible in allowing
hardware and software upgrades by decoupling the secure
bootstrap mechanism from the system configuration.

In Category 2, we have solutions that offer low security
and in addition have high complexity in terms of the hard-
ware required. TCG [22] and Microsoft Microsoft’s Next-
Generation Secure Computing Base (NGSCB) fall in this
category. TCG still relies on the BIOS to establish the root
of trust and is optional for end users and NGSCB despite
reducing the reliance on off-chip components continues to
be optional for the end users allowing adversaries to by-
pass the security mechanisms. In addition, these approaches
are hardware and software intensive, for example, NGSCB
requires changes to the CPU, chipset, USB I/O and GPU
components, in addition to requiring a new OS component
called the nexus. SHIELDSTRAP requires much more sim-
ple hardware and software changes and is an architectural
mechanism which cannot be bypassed by users. IBM Cell BE
architecture [28] supports the Runtime Secure Boot feature,
which is used to check the integrity of application code as it
is loaded or as it runs, but not the bootstrap of the system.
The Cell security model, hence, does not protect against
boot time hardware attacks. Modchips for Sony Playstation
3 using an IBM Cell processor will soon be available [29].

In Category 3, we have solutions that provide defense
against hardware attacks but are hardware intensive and even
infeasible to be used for general purpose systems. ARM
TrustZone [24] falls in this category. In TrustZone, a new
processor mode is introduced, called the Secure Monitor
Mode, which is supported by the introduction of a new secu-
rity bit (S-bit). The caches, TLB and MMU are tagged with
the S-bit and partitioned to provide isolation between secure

and non-secure applications. A secure application is exe-
cuted from the on-chip Secure RAM and cannot be evicted
from the chip to provide protection against TOCTTOU-
style attacks. TrustZone also moves the root of trust on-chip
into a ROM which stores the first level boot loader. This
solution targets consumer products such as mobile phones
and PDAs with small boot code requirements (8-16 KB) and
applications with small code footprints. However, general
purpose and gaming systems have typical BIOS sizes of
256KB and 1MB respectively, and generally execute much
larger applications. The TrustZone approach is impractical
for these types of systems, while SHIELDSTRAP requires
much more lightweight on-chip storage overheads of less
than 0.1% on-chip area overhead.

We also note that there have been a variety of studies
on secure processor architectures [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], which consist
of hardware-based solutions for ensuring the confidentiality
and integrity of computations even in the face of relatively
sophisticated hardware attacks. While the proposed secure
processor architectures enforce the confidentiality and in-
tegrity of computations at run-time, it is assumed that the
system has been booted and initialized securely by including
the booting process in the Trusted Computing Base (TCB).
This assumption however can render the system vulnerable
unless a secure booting mechanism is in place which is
resistant to even hardware-based attacks as SHIELDSTRAP
is.

The following figure summarizes the solutions to secure
booting in terms of security and cost, and we show where
SHIELDSTRAP fits.

�� �
�
���
� �	�

�

��
�
� �
� �	�

�

������������� �����! "�������

#%$'&)(+*-,.#0/�1+243 57698:.;=<?>A@CBED%F�G

H�IKJ'L�MONPH�QCRTSVUVWYX
Z\[SY]�^�_H�IKJ'L�M7N`M0UVX Za[Sb]c^�_

:+d4egf
hiekj�dml!f�nol 8dpG�qrq?lps

Fig. 1. Comparison of Secure Booting mechanisms with SHIELD-
STRAP

III. ATTACK MODEL AND ASSUMPTIONS

As in all prior studies on secure processor architectures
which consider hardware attacks, our attack model identifies
two regions of a system. The secure region consists of the
processor chip itself. We assume that the attackers cannot
tamper with code or data stored on-chip (e.g. in registers
or caches). The non-secure region consists of all off-chip
structures including the buses, memory, disk, BIOS and
expansion cards. Any data or code stored in any of these
structures can be observed and modified by the attackers.

In this paper, we focus on attack scenarios where the
attacker has physical access to the system and can perform

291

4

hardware-based attacks, including the attack scenarios where
the owner of the system is the attacker itself. For instance,
this is the case in gaming systems where the owners hack
the system to bypass the security mechanisms used by the
manufacturers to enforce Digital Rights Management. This
enables the owners to use the system beyond the intended
purposes for which the system was originally designed. Our
proposed technique, however, is not restricted in application
to gaming systems and is equally applicable to other embed-
ded or general purpose systems. Finally, we also consider
software boot attacks to be equally likely and continue to
defend against them similar to prior solutions.

IV. SHIELDSTRAP ARCHITECTURE

A. SHIELDSTRAP

In light of the problems with current approaches to secure
bootstrapping and the growing need for such a mechanism,
we propose our solution to secure booting, SHIELDSTRAP.
SHIELDSTRAP is specifically designed to provide protec-
tion against hardware attacks and continues to provide effec-
tive defense against software attacks that target the boot com-
ponents. SHIELDSTRAP uses an on-chip memory, which
we call the SHIELDSTRAP ROM (ST-ROM) as the core root
of trust to start our bootstrap verification process. We make
no assumptions about the integrity of any of the off-chip
components (including the BIOS). The proposed solution is
based on the observation that the security attacks in prior
solutions were made feasible because off-chip components,
namely the BIOS, were included in the TCB. Moving the root
of trust on-chip into the ST-ROM addresses this vulnerability.
The proposed architecture necessitates several changes to
the current boot process, and we discuss these later in this
section.

The booting process with the SHIELDSTRAP architecture
consists of two phases, the verification phase and the booting
phase. On a hard or soft system reset, the verification phase
is started where the ST-ROM reads the BIOS from an off-
chip ROM and verifies its integrity by checking its signature.
If the signature is verified successfully, the system transitions
to the booting phase where control is passed to the BIOS to
start the booting process. In the booting phase, we follow
a chained integrity verification where each layer verifies
the integrity of the next layer in the boot sequence before
passing execution control to it. This requires each component
involved in booting, namely the BIOS, the expansion ROMs,
the primary and secondary boot blocks and the OS image to
be signed by their respective manufacturers. An exception
to this requirement is the BIOS, which can either be signed
by the manufacturer itself or by the processor manufacturer
depending on the type of system in question as discussed
later in this section. Figure 2 outlines the SHIELDSTRAP
approach to secure booting.

Secure processors are equipped with hardware memory
encryption and authentication mechanisms. Memory encryp-
tion provides protection against passive attacks, where the
attacker tries to observe data communicated in plaintext
between the processor and main memory. This is done by
encrypting and decrypting data and code as it moves on and
off the processor chip. Memory authentication is achieved

�������
�	��
�������������������������������
 ��!"�
 ���$#%�&��

'�(*)+���$#,�����
-��/./#

�0�1
�����������2���3�����$�4�������
 �3!"�
 ���$#%�5�6

78�9�:�,;<�>=<?

7@�A�8�B;<�DCE?

78�9�:�,;<�4F,?

GH
��JIK��
MLN�O�<���
PQ!��<�SR

�T�3�����S�3��
ULVP+�<�W�
PQ!��<�SR

�X)���
8����Y�$;
#�LS#%�:��I

�	��
�������$��������K���$���S�����
8��!Z��
8���S#[�&��

�0��
\�]�2�����������������$�4�������2
:��!"�
 ���S#��5��

78�9�:�,;*�N^�PW?
�0��
������_�S��������`�3�$�a�������2
 ��!Z��
 ���$#%�:��

78�9�:�,;*�N^b�B?

�9c1de-��/.
75cOfg�6?

Gh
:���$�V�8�V���5� �*��Ri#

jk#�#+l,IK�<�VcAfg�
GH
 �<�E�Q#�#$��

fk��
:�

�9�3�Bl<
����mL>�A��l*�$�3��
ML

�nl<
�jo#$#,l+I/�Q�
�T�3�Wl<
����UL`�O��l<�S�3��
ML

Fig. 2. SHIELDSTRAP: Secure bootstrap mechanism

by building a tree of MAC (Message Authentication Code)
values over the memory (called a Merkle tree). The root of
the tree is stored securely in an on-chip register and never
goes off-chip. A block loaded from memory is verified for
integrity by checking it against the chain of MAC values up
to the root. SHIELDSTRAP leverages these mechanisms to
significantly reduce the design and storage complexity of the
secure booting solution. The boot components do not have
to be retained on-chip for verification or execution and can
be safely evicted to the main memory where they automati-
cally come under the integrity and confidentiality protection
provided by the secure processor. In effect, SHIELDSTRAP
effectively eliminates the window between the verification
and start of execution of a boot component vulnerability
window , where an attacker with physical access to the
system can change the boot component, thereby eliminating
any possibility of TOCTTOU attacks. However, processors
have the ability to read directly from the BIOS ROM chip
allowing the code to bypass the memory hierarchy and
thereby bypass the secure processor protection. Hence, we
propose to make it mandatory to shadow the BIOS ROM and
not provide it as an option. With shadowing always enabled,
the BIOS will first be copied to the main memory before it
can be executed by the processor to boot the system. This
will ensure that the BIOS always comes under the integrity
protection mechanism of the secure processor substrate used
by SHIELDSTRAP. Most systems use this optimization to
speed up accessing the ROMs and it is recommended to
set this option on anyway. Hence, this requirement does not
restrict the design of a system in any way. We describe one
TOCTTOU attack in section V-B and show how SHIELD-
STRAP defends against such attacks. We next discuss the
requirements for each of the boot components.

1) SHIELDSTRAP-ROM (ST-ROM): SHIELDSTRAP
uses on-chip storage, the ST-ROM, as the root for
establishing trust. The ST-ROM lies inside the security
boundary of the processor chip. In this section, we highlight
the requirements and operation of the ST-ROM.

The ST-ROM stores the following components:
• Public key of the BIOS or processor manufacturer

292

5

• RSA [30] and SHA [31] implementations
• ST-code

Public key of the BIOS or processor manufacturer
One may assume that we would want to authenticate the
BIOS by having the ST-ROM verify the BIOS signature
using the public key <e,n> of the BIOS manufacturer which
is stored on the BIOS itself and is signed with the private
key of a Certificate Authority (CA). The public key of the
CA would be stored on the ST-ROM. However, we note
that simply proving that the BIOS is an authentic one that
has been signed by the CA may not be the most desirable
solution. The reason is that the CA will likely sign a large
variety of software, and which software is signed is not under
the control of any particular manufacturer. Thus, a modding
attack, where the modchip is equipped with another BIOS
that has been signed by the same CA, could be used to supply
a BIOS to the processor that will pass the verification check
of the ST-ROM, but does not contain the correct code to
verify the rest of the components in the boot sequence.

Instead we propose that the ST-ROM should directly
store the public key that will be used for establishing the
authenticity of the BIOS. This ensures that when the ST-
ROM loads and verifies the BIOS against its digital signature,
the BIOS is guaranteed to be one which was intended to
run on the system and which contains the necessary code to
verify the next components in the booting. An obvious choice
is to store the public key of the BIOS manufacturer in the
ST-ROM. This public key can then be used to authenticate
the BIOS signed by its manufacturer. We believe storing the
public key of the BIOS on-chip will be suitable for systems
where the system manufacturer also manufactures the BIOS.
For example, in gaming systems the system manufacturers
produce the BIOS as well, since the BIOS is used for
specialized tasks such as DRM enforcement. However, for
other secure systems, requiring the public key of the BIOS
manufacturer to be stored in the on-chip ST-ROM will
reduce the flexibility of the system by tying the processor
manufacturer to a particular BIOS manufacturer. In order
to not trade flexibility for security, we propose using the
processor manufacturer’s key to verify the authenticity of the
BIOS. This in-turn would require the BIOS manufacturers
to send their code to the processor manufacturer for signing
before it could be used by the system. At boot time the
processor’s public key stored in the ST-ROM will be used
to verify the digital signature off the BIOS. We believe that
this requirement is reasonable as processor manufacturers
implementing a secure boot mechanism would anyways want
to have some form of control over the system configuration.
A similar model is currently being employed by the Windows
Logo Program [32], where the driver manufacturers are
required to get a certification from Microsoft before the
driver could be installed on the operating system without
warnings.

Group Signature scheme : In order to further decouple
the processor manufacturers from the BIOS manufacturers,
we explore the use of a Group signature scheme like Direct
Anonymous Attestation (DAA) [26] for verifying the authen-
ticity of the BIOS. In DAA, a single group public key can
correspond to multiple private keys, that is, a single group
public key can be used to verify signatures signed by multiple

private keys. For our purposes, the processor manufacturer
can embed the group public key in the ST-ROM and each
of the BIOS manufacturer, desiring to be compatible with
the processor, can obtain a private key from the processor
manufacturer to sign the BIOS code. This scheme retains
the flexibility advantage of the scheme where the processor
manufacturer’s public key is used to verify the BIOS, but at
the same time, it also avoids the extra indirection, where the
BIOS manufacturers need to get their BIOS signed by the
processor manufacturers.

RSA and SHA implementations
We propose to verify the signatures of the boot components
using software stored on the ST-ROM. This requires the ST-
ROM to store an implementation of a digital signature algo-
rithm. We use RSA for signature verification with the SHA
algorithm used for generating the hash of the component.
Our choice of RSA over Digital Signature Standard [33] was
driven primarily by two factors: storage and speed. As we
propose storing software implementations of the algorithms
on-chip, the algorithm chosen should be space efficient. Also,
it is desirable that the algorithm is faster for the verifier than
for the signer. Since each boot component is only signed
once by the manufacturer, but the signature is verified on
each boot attempt, this helps to lower the execution time
overheads due to our secure bootstrapping mechanisms. RSA
with SHA compares favorably to DSS with SHA in terms
of both storage and verification speed, hence our choice
of RSA plus SHA. Performing the signature verification
in software minimizes additional hardware needed for the
proposed SHIELDSTRAP architecture, but at the same time
will be slower than a corresponding hardware implementa-
tion. However,we show in our results that using a software
approach adds an insignificant performance overhead to the
boot time compared to a base system with an unprotected
boot process.

ST-Code
On a system reset, the processor jumps to execute the ST-
ROM code. The ST-ROM code which we call the SHIELD-
STRAP Code (ST-Code) is a simple algorithm that carries
out the verification phase. The ST-Code starts by reading
the signature of the BIOS. A digital signature is generally
not computed over the entire range of code/data itself, but
instead a much smaller representative form of the code/data
is signed. The representative form we use is the running
hash of the code/data. This means that a hash should first
be computed on the BIOS code and this hash must then be
signed with the private key of either the BIOS manufacturer
or the processor manufacturer depending on the flexibility
requirements of the system as discussed above. The ST-
Code will read the BIOS location by location and compute
a running hash on it. Once the hash for the BIOS code
is obtained, the ST-Code proceeds to verify the computed
running hash. The ST-Code uses the public key stored in
the ST-ROM to get the expected hash from the signature. If
the running hash matches the expected hash, the ST-Code
concludes that the BIOS has been verified successfully, and
control is passed to the BIOS to start the booting phase. The
operations carried out for verifying the BIOS signature can
be summarized as follows:

293

6

public key ⇐ < e, n >

expected hash ⇐ bios signatureemod n

running hash ⇐ HASH(BIOS code)
running hash ? = expected hash

where, <e,n> is the public key stored in the ST-ROM,
expected hash is the hash obtained from the signature of the
BIOS using the public key and running hash is the hash
computed by ST-Code over the BIOS that is being verified.

In the event of an integrity failure at any layer, the boot-
strap process is halted. We note that preventing the system
from booting up in the event of failure and not recovering (as
in [21]) may lead to denial of service. However, for the attack
model we consider where the attacker has physical access to
the system, causing a boot failure on integrity check failures
will prevent the attack from being successful. This forces
the attacker (the user/owner) to restore the original hardware
configuration of the system, thereby preventing the system
from being used for purposes other than those intended.

Figure 3 shows the minimal architectural modifications
required for SHIELDSTRAP. Over a secure processor ar-
chitecture, we only need to add an on-chip memory, the ST-
ROM, which forms the root of trust for the bootstrap process.

������� �	��
�����

������� �������

�����

���! #"%$'&
(*)%+-,.)0/

� /2143 � /65 �7& 1�/#8�8 &��

Fig. 3. SHIELDSTRAP: Architecture changes

2) SHIELDSTRAP: Boot component requirements : Re-
quirements of BIOS manufacturer
SHIELDSTRAP requires either the BIOS or the processor
manufacturer to sign the BIOS code using their private key.
Additionally all further BIOS upgrades should also be signed
by the BIOS or processor manufacturer. Signed upgrades
are necessary to ensure the system boots up properly on
legitimate BIOS upgrades. The ST-ROM will store the corre-
sponding public key of the BIOS or processor manufacturer
and verify the digital signature of the BIOS before handing
over control to the BIOS to start the normal booting process
of the system.
Requirements of other boot components
The other components involved in the booting chain include
the expansion ROMs, the primary boot block, the boot loader
(in multi-boot systems) and the OS image. SHIELDSTRAP
requires the manufacturers of these boot components to
sign their components and include their public key signed
by a certificate authority with the component. The boot
components involved in verifying other components should

also include the public key of the certificate authority to
verify the signed public key of the next component in the
boot chain. We chose this approach as opposed to requiring
the boot components in one layer of the boot chain to store
the public keys of the components in the next layer to favor
flexibility without sacrificing security. If a boot component
stores the public key of the next layer’s components, it
limits the flexibility of the system, as a user cannot add
new software or hardware components without requiring the
lower layer component to be upgraded as well to include the
public key of the new component manufacturer.

V. EVALUATION

We present a qualitative and quantitative evaluation of
SHIELDSTRAP in this section. The primary evaluation
of a secure bootstrap mechanism is the ability to defend
against boot time attacks, which can either be hardware or
software attacks. Hence, we first analyze SHIELDSTRAP
qualitatively, by presenting a detailed security analysis of
the proposed SHIELDSTRAP secure boot architecture in
section V-A.

SHIELDSTRAP adds an on-chip ST-ROM that forms the
root of trust for the booting process. Hence, it is critically
important for the on-chip area overhead to be within rea-
sonable limits for the proposed scheme to be practical for
implementation. Also, despite the fact that booting is not
a time critical process, it is desirable that the proposed
mechanism does not add an undue amount of time to the boot
process. Hence, we qualitatively analyze SHIELDSTRAP by
presenting an area and performance analysis in section V-B.

A. SHIELDSTRAP Security Analysis
Table I summarizes the main categories of attacks that can

be conducted by an attacker during boot time to subvert the
boot process and use the system for purposes for which it
was not intended. Since the verification phase checks the
BIOS against its signature using the trusted, on-chip ST-
ROM, the attacker cannot conduct any attacks before the
verification phase is complete, as it will result in a boot
failure due to a signature mismatch. Once the verification
phase is complete, control can be passed to the now trusted
BIOS which is executing under protection from the secure
processor. Thus, any attacks against the BIOS after this point
will be detected by the secure processor mechanisms. As
such, the BIOS can be trusted to verify the next components
in the boot process against their signatures, and subsequently
pass control to them as they are now verified and running
under the protection of the secure processor. This procedure
continues until all boot components have been verified and
executed and the OS has been loaded.

B. SHIELDSTRAP Area and Performance Evaluation
1) Area Overhead: To evaluate the on-chip area required

for the ST-ROM, we implemented SHA and RSA in software
with space efficiency as the primary goal. The object code
sizes for SHA and RSA that will be stored on the ST-ROM
measure 8266 bytes and 4894 bytes respectively. Along with
the implementations of these cryptographic algorithms, the
ST-ROM also needs to store the public key of the BIOS

294

7

TABLE I
SHIELDSTRAP: DEFENSE AGAINST POSSIBLE BOOT ATTACKS.

Type of Attack Description SHIELDSTRAP’s response
Pre-boot attacks (Hardware attacks) This category of attacks includes attacks where the

hardware boot components namely BIOS and expansion
cards are have been replaced prior to booting. (e.g.
modchips [1], [2], [3], [4], [5], [6])

Signature failure during the verification
phase. Action: Boot failure.

BIOS Flashing Attacks (Hardware attacks) This category of attacks include attacks where the
BIOS is flashed with an alternate BIOS, possibly from
a legitimate manufacturer (e.g. the Cromwell BIOS).
TSOP flashing attack conducted on earlier versions of
Xbox falls in this category. The BIOS was stored on a
chip called TSOP, whose write-access could be enabled
by soldering a few points on the motherboard.

Signature failure during the verification
phase. Any BIOS flashing other than a le-
gitimate upgrade from the BIOS manufac-
turer triggers a signature verification failure,
preventing the system from booting. Action:
Boot failure.

Vulnerability window attacks (TOCTTOU
attacks) (Hardware attacks)

The attack could be thought to proceed as follows. Ver-
ification phase completion is signalled by the processor
when it starts to execute the BIOS in the booting phase.
A snooping device attached on the control bus could
snoop this action from the processor, and at this time
redirect fetch requests from the processor to a modchip
containing an alternate BIOS. This attack would trick
the processor into executing a malicious BIOS, which
it thinks it has already verified as trusted.

Detected by the underlying secure processor
mechanisms as an integrity failure. Action:
System will halt and signal alert.

Software Attacks This category of attacks includes attacks where the boot
components are used to persist rootkit code. (e.g. PCI
rootkits [34], MBR rootkit [27], [35]

Signature failure during the booting phase.
Action: Boot failure.

which takes up another 1024 bits (128 bytes), and the ST-
Code which uses the above implementations to read in the
BIOS and carry out the verification phase. Hence, the total
area required for ST-ROM is at most 13288 bytes (13KB),
so we propose adding a 16KB on-chip ST-ROM.

The on-chip ROM can be implemented using either the
MOS NOR ROM implementation having a cell size of 9.5λ
x 7λ or the MOS NAND ROM implementation having a
cell size of 5λ x 6λ, where λ is 1/2 x feature size. The
dimensions for the two implementations have been taken
from [36]. We assume a MOS NOR ROM implementation
for ST-ROM to derive an upper-bound on the area overhead.
Using Mosis scalable CMOS rules [37], and a feature size of
90 nm, the area taken by the 16KB ST-ROM is 0.017 mm2.
On an Intel Pentium 4 with a die area of 143 mm2 [38],
this amounts to an on-chip area overhead of 0.012%. Hence,
SHIELDSTRAP requires minimal on-chip area overheads
and should be feasible to incorporate onto the processor chip.

2) Experimental Setup: We use SESC [39], a cycle accu-
rate, execution driven simulator, to model a secure processor
substrate for this research. The secure processor simulated
is based on counter mode encryption and Merkle tree au-
thentication mechanisms. We model a 2GHz, 3-issue, out-
of-order processor with split L1 data and instruction caches.
Both caches have a 32KB size, 2-way set associativity, and
2-cycle round-trip hit latency. The L2 cache is unified and
has a 1MB size, 8-way set associativity, and 10-cycle round-
trip hit latency. For counter mode encryption, the processor
includes a 32KB, 16-way set-associative counter cache at the
L2 cache level. All caches have 64B blocks and use LRU
replacement. We assume a 1GB main memory with an access
latency of 200 processor cycles. The encryption/decryption
engine simulated is a 128-bit AES engine with a 16-stage
pipeline and a total latency of 80 cycles, while the MAC

computation models HMAC [40] based on SHA-1 [31] with
80-cycle latency [41]. The default MAC size is 128 bits.

We simulate the cryptographic operations for SHIELD-
STRAP using an open source cryptographic library,
Crypto++ version 5.5.1 [42], which provides the imple-
mentation for RSA and SHA algorithms used for signature
verification. The RSA algorithm is based on Public-Key
Cryptographic Standards (PKCS) version 1.5 [30], which
defines the RSA encryption standard. The SHA algorithm is
implemented based on the standard published by NIST [31].
We use key lengths of 1024-bit for RSA and SHA-256
which generates a 256-bit authentication code used for sign-
ing purposes. As discussed previously, the choice of these
cryptographic algorithms was based on two factors other than
the proven security strengths of these algorithms: Storage and
speed.

3) Boot-Time Overhead: We modeled the SHIELD-
STRAP booting process using the Crypto++ cryptographic
library. We assume a system with a 256KB BIOS, two
expansion cards with 32KB of expansion ROM on each,
Master Boot Record of 512 bytes, a boot loader with a
size of 200KB (most common boot loaders have a a size
ranging from 150KB - 200KB), and an OS image of size
2MB (the compressed image size for linux kernel 2.6.9).
We implemented code to model the verification phase of
SHIELDSTRAP (e.g. reading the boot components, comput-
ing their running hash value, and verifying their signature),
and we have timed this process on an Intel Pentium 4
processor running at a frequency of 2GHz. The system has
split L1 data and instruction caches. Both caches have a size
of 32 KB. The L2 is unified and has a 1MB size. We find
that SHIELDSTRAP will add a negligible overhead of 0.37
seconds on average relative to the boot process on a system
with no protection.

295

8

Further, to approximate the impact of the interaction of
SHIELDSTRAP and a secure processor on the boot-time
overhead, we ran the code modeling SHIELDSTRAP under
SESC. SHIELDSTRAP adds an overhead of less than 0.8%
over AEGIS by Arbaugh et al. which primarily comes from
the secure processor overheads for memory encryption and
authentication.

We also analyzed the breakdown of these minimal over-
heads. As expected, the OS takes the most time for veri-
fication (up to 80% of the total verification time) since it
is the largest boot component. We believe that the already
insignificant overheads of our scheme will be even lower for
specialized systems like gaming and embedded systems as
they generally employ a significantly reduced version of the
operating system kernel compared to those used in general
purpose systems.

VI. CONCLUSIONS

Despite the increasing number of attacks which target
systems during the boot phase in order to subvert various
security mechanisms employed by the system, there have
been few studies on secure booting mechanisms. In addi-
tion, prior secure booting approaches are vulnerable in the
scenario where the user of the system is considered the at-
tacker and can conduct hardware-based attacks. We propose
SHIELDSTRAP, a novel secure booting mechanism that is
secure even against relatively sophisticated hardware attacks.
Our key insight in SHIELDSTRAP is that we move the root
of trust for verifying the integrity of all boot components onto
the processor chip which is our natural security boundary.
We analyze how SHIELDSTRAP is secure against common
boot attacks. We also show that SHIELDSTRAP requires an
acceptably small amount of on-chip hardware, and that it
adds an insignificant amount of execution time overhead to
the normal boot process.

REFERENCES

[1] americanxboxmodchips.com, http://www.americanxboxmodchips.com/.
[2] http://www.modchip.com, 2005.
[3] mod-chip.com, http://www.mod-chip.com/.
[4] modchipoutlet.com, http://www.modchipoutlet.com/.
[5] modchipstore.com, http://www.modchipstore.com/.
[6] wii-modchips.com, http://www.wii-modchips.com/.
[7] M. G. Kuhn, “Cipher Instruction Search Attack on the Bus-Encryption

Security Microcontroller DS5002FP,” IEEE Transactions on Comput-
ers, vol. Oct, no. 10, 1998.

[8] B. Gassend, G. Suh, D. Clarke, M. Dijk, and S. Devadas, “Caches
and Hash Trees for Efficient Memory Integrity Verification,” in Proc.
of the 9th International Symposium on High Performance Computer
Architecture, 2003.

[9] T. Gilmont, J.-D. Legat, and J.-J. Quisquater, “Enhancing the Security
in the Memory Management Unit,” in Proc. of the 25th EuroMicro
Conference, 1999.

[10] IBM, “IBM Extends Enhanced Data Security to Consumer Elec-
tronics Products,” http://domino.research.ibm.com/comm/pr.nsf/pages/
news.20060410 security.html, April 2006.

[11] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz, “Specifying and
Verifying Hardware for Tamper-Resistant Software,” in Proc. of the
2003 IEEE Symposium on Security and Privacy, 2003.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. MItchell,
and M. Horowitz, “Architectural Support for Copy and Tamper Re-
sistant Software,” in Proc. of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2000.

[13] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, “Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make
Secure Processors OS- and Performance-Friendly,” in Proc. of the
36th Annual International Symposium on Microarchitecture, 2007.

[14] W. Shi, H.-H. Lee, M. Ghosh, and C. Lu, “Architectural Support for
High Speed Protection of Memory Integrity and Confidentiality in
Multiprocessor Systems,” in Proc. of the 13th International Conference
on Parallel Architectures and Compilation Techniques, 2004.

[15] W. Shi, H.-H. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
Efficiency Counter Mode Security Architecture via Prediction and
Precomputation,” in Proc. of the 32nd International Symposium on
Computer Architecture, 2005.

[16] W. Shi, H.-H. Lee, C. Lu, and M. Ghosh, “Towards the Issues in
Architectural Support for Protection of Software Execution,” in Proc.
of the Workshop on Architectural Support for Security and Anti-virus,
2004.

[17] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing,” in
Proc. of the 17th International Conference on Supercomputing, 2003.

[18] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Efficient Memory Integrity Verification and Encryption for Secure
Processor,” in Proc. of the 36th Annual International Symposium on
Microarchitecture, 2003.

[19] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic,
“Improving Cost, Performance, and Security of Memory Encryption
and Authentication,” in Proc. of the International Symposium on
Computer Architecture, 2006.

[20] J. Yang, Y. Zhang, and L. Gao, “Fast Secure Processor for Inhibiting
Software Piracy and Tampering,” in Proc. of the 36th Annual Inter-
national Symposium on Microarchitecture, 2003.

[21] W. Arbaugh, D. J. Farber, and J. M. Smith, “A Secure and Reliable
Bootstrap Architecture,” in Proc. 1997 IEEE Symposium on Security
and Privacy, 1997.

[22] TCG, “TCG PC Client Specific Implementation Specification
For Conventional BIOS,” https://www.trustedcomputinggroup.org/
sspecs/PCClient/TCG PCClientImplementationforBIOS 1-20 100.pdf,
April 2006.

[23] N. Itoi, W. A. Arbaugh, S. Pollack, and D. M. Reeves, “Personal
Secure Booting,” in Proc. of the Sixth Australian Conference on
Information Security and Privacy, 2001.

[24] ARM, “ARM TrustZone,” http://www.arm.com/products/esd/trustzone
home.html, 2004.

[25] Maxim/Dallas Semiconductor, “DS5002FP Secure Microprocessor
Chip,” http://www.maxim-ic.com/quick view2.cfm/qv pk/2949, 2007
(last modification).

[26] E. Brickell, J. Camenisch, and L. Chen, “Direct Anonymous Attestat,”
in ACM Conference on Computer and Communications Security, 2004.

[27] PandaLabs, “Quarterly Report PandaLabs,” pandalabs.pandasecurity.-
com/blogs/images/PandaLabs/2008/04/01/Quarterly Report PandaL-
abs Q1 2008.pdf, 2008.

[28] IBM Corporation, “The Cell Broadband En-
gine processor security architecture,” http://www-
128.ibm.com/developerworks/power/library/pa-cellsecurity/, 2006.

[29] OZMODCHIPS, “Sony Playstation 3 modchips,”
http://www.ozmodchi- ps.com/ps3-playstation-3-modchip-p-68.html,
2008.

[30] FIPS Publication 197, “RSA Cryptography Standard,” http://www.rsa.
com/rsalabs/node.asp?id=2125, 1993.

[31] FIPS Publication 180-1, “Secure Hash Standard,” National Institute of
Standards and Technology, Federal Information Processing Standards,
1995.

[32] Microsoft, “Windows Logo Program,”
http://www.microsoft.com/whdc/ winlogo/default.mspx.

[33] FIPS Publication 186, “Digital Signature Standard (AES),” National
Institute of Standards and Technology, Federal Information Processing
Standards, 1994.

[34] John Heasman, “Implementing and Detecting a PCI Rootkit,”
http://www.ngssoftware.com/research/papers/Implementingi And De-
tect ing A PCI Rootkit.pdf, 2006.

[35] D. Soeder and R. Permeh, “eEye BootRoot,” http://research.eeye.com/
html/tools/RT20060801-7.html, 2005.

[36] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Cir-
cuits: A Desing Perspective. Prentice-Hall, 2002, vol. II.

[37] MOSIS, http://www.mosis.com/.
[38] K. Krewell, “Intel cancels pentium p4,” Microprocessor Report, 2004.
[39] J. Renau et al, “SESC,” http://sesc.sourceforge.net, 2004.
[40] H. Krawczyk and M. Bellare and R. Caneti, “HMAC: Keyed-hashing

for message authentication,” http://www.ietf.org/rfc/rfc2104.txt, 1997.
[41] T. Kgil, L. Falk, and T. Mudge, “ChipLock: Support for Secure

Microarchitectures,” in Proc. of the Workshop on Architectural Support
for Security and Anti-Virus, Oct. 2004.

[42] W. Dai, “Crypto++ version 5.5.1,” http://www.cryptopp.com/, 1995.

296

