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Abstract— Microfluidic chips are emerging as a powerful
platform for automating biology experiments. As it becomes
possible to integrate tens of thousands of components on a
single chip, researchers will require design automation tools to
push the scale and complexity of their designs to match the
capabilities of the substrate. However, to date such tools have
focused only on droplet-based devices, leaving out the popular
class of chips that are based on multilayer soft lithography.

In this paper, we develop design automation techniques
for microfluidic chips based on multilayer soft lithography.
We focus our attention on the control layer, which is driven
by pressure actuators to invoke the desired flows on chip.
We present a language in which designers can specify the
Instruction Set Architecture (ISA) of a microfluidic device.
Given an ISA, we automatically infer the locations of valves
needed to implement the ISA. We also present novel algorithms
for minimizing the number of control lines needed to drive
the valves, as well as for routing valves to control ports while
admitting sharing between the control lines.

To the microfluidic community, we offer a free computer-
aided design tool, Micado, which implements a subset of our
algorithms as a practical plug-in to AutoCAD. Micado is being
used successfully by microfluidic designers. We demonstrate its
performance on three realistic chips.

I. INTRODUCTION

Microfluidic chips are “lab-on-a-chip” systems that can
automate biology experiments by programmatically manip-
ulating small quantities of fluids [1], [2]. Microfluidics
is a diverse field, with many competing technologies for
implementing the chips themselves. In the design automation
community, most of the attention thus far has been placed on
droplet-based processors that manipulate fluids on an elec-
trode array [3], [4], [5]. However, a competing technology
that is popular amongst many scientists is that of multilayer
soft lithography, where fluids flow along predefined channels
and are controlled by pressurized pumps and valves [6], [7].
The technology for manufacturing microfluidic chips using
soft lithography has advanced faster than Moore’s Law [8];
today, there is a commercially-available chip that uses over
25,000 valves and about a million features to run 9,216
polymerase chain reactions in parallel [9], [10].

Despite these advances, the design methodology for mi-
crofluidic chips relies on many manual steps and represents
a serious barrier to scaling the design complexity to the
limits allowed by the underlying technology. Researchers
typically design chips by drawing them in AutoCAD, with
placement and routing done by hand. The control logic is
manually orchestrated to accomplish the steps needed to

perform an experiment, and graphical user interfaces (GUIs)
are re-constructed in a separate program (LabView) that
is disconnected from the chip layout. This manual design
process does not scale and is very brittle to design changes;
for example, adding a few valves often entails complete re-
routing of the chip and re-design of the GUI.

Our vision is to bring the same automation and disci-
pline to the microfluidic design process that electronic CAD
brought to circuit design. While researchers have developed
techniques to automate the mapping of biology experiments
to droplet-based fluidic processors [11], [12], [13], we are
unaware of any research on design automation for microflu-
idic chips based on multilayer soft lithography.

As a first step towards this vision, in this paper we address
the problem of generating the control layer on a microfluidic
chip. As depicted in Figure 1, a chip manufactured with
multilayer soft lithography consists of two layers: a flow
layer and a control layer. Channels on the flow layer carry
the biological fluids of interest, while channels on the control
layer are connected to external pressure actuators. Designing
the control layer requires three steps: 1) placing valves on
top of the flow layer, which restrict fluid flow upon being
pressurized; valve placement depends on the flow patterns
that are required by the biology experiment, 2) placing
control ports on the periphery of the chip, where external
pressure actuators are inserted, and 3) routing each valve to
a control port, via a control channel. The control layer is
one of the most tedious aspects for designers today, as it
requires careful reasoning and also needs to be repeated for
every change to the flow topology or logical chip operation.
The control layer is also a good target for automation, as it
is subject to a well-defined set of design rules.

We describe a tool called Micado that automates the
generation of the control layer on multilayer microfluidic
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Fig. 1. A simple microfluidic chip based on multilayer soft lithography.
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1. Control Inference. Given a drawing
of the flow layer and an annotation
of which flow paths are desired,
Micado automatically places valves
on the control layer to direct the
given flows. Valves are shared when
possible to decrease the number of
control lines. (Note: while flows are
annotated textually in the figure, they
are indicated graphically in Micado.)

Generate Control Logic

mix(

2. Routing. After the designer has
indicated the positions of external
control ports on the chip, Micado
automatically connects each control
line to a control port while respecting
the design rules. The total length of the
routes is minimized. Also, the number
of corners (changes of direction) of
control lines is reduced to yield an
aesthetic outcome for the designer.

Connect

3. GUI Generation. Micado exports a
graphical user interface for operating a
chip in the laboratory. In AutoCAD, the
user draws buttons (shown in green) and
graphically associates them with flows
of interest. When a button is clicked at
runtime, valves are toggled to enable
the associated flow. At right, the clicked
button routes fluids from the last input,
through the bottom of the mixer, to the
output. Open valves are shown in blue,
while closed valves are shown in red. Export to Java GUI

Fig. 2. Micado automates three key steps in the microfluidic design process: control inference, routing, and GUI generation.

chips. Implemented as an AutoCAD plugin and freely avail-
able online [14], the operation of Micado is illustrated by
example in Figure 2. First, Micado allows the designer to
specify the logical operation of a chip in the form of an
instruction set architecture (ISA). The ISA specifies which
combinations of flow channels should be active at a given
time. Based on the ISA, Micado infers the placement of
valves on the control layer. It also performs a novel analysis
that determines which valves can share the same control
line, which is important for reducing the number of external
control ports (a bottleneck to the scalability of microfluidic
chips). Next, Micado automatically routes each valve to a
control port, while allowing certain valves to share control
lines as derived previously. Finally, Micado generates a GUI

for the chip, enabling the designer to interactively activate
each desired flow pattern at runtime.

To summarize, this paper makes the following contribu-
tions:

• A language for specifying a fluidic ISA, the desired pat-
terns of flow activation on a microfluidic chip (Section
II).

• The first algorithm for inferring valve placement and
control logic needed to implement a fluidic ISA. We
prove that the general problem is NP-hard, giving rise
to the need for heuristics (Section III).

• The first polynomial-time routing algorithm that con-
nects each internal feature to one of many external ports
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Flow Language Input Point Output Point Constraints
ISA := F in(F) out(F) in(F) = source and out(F) = sink
F := P1→ P2 P1 P2 P1 6= P2

| F1→ F2 in(F1) out(F2) out(F1) = in(F2)
| F1∨F2 in(F1) out(F1) in(F1) = in(F2) and out(F1) = out(F2)
| F1∧F2 in(F1) out(F1) in(F1) = in(F2) and out(F1) = out(F2)
| F1∨mix(F2) in(F1) out(F1) in(F2) = out(F2)
| F1∧mix(F2) in(F1) out(F1) in(F2) = out(F2)
| pump(F) in(F) out(F)

Fig. 3. Language for specifying a microfluidic ISA. For each method of composing flows, the table indicates the input and
output points of the combined flow, as well as any constraints on the original flows.

while allowing configurable sharing between channels
(Section IV).

• An implementation of our algorithms (some of them
from an older version of this document [15]) as an
AutoCAD plugin, Micado (Section V).

• An evaluation of Micado on real microfluidic chips,
demonstrating that it is effective and useful in practice
(Section VI).

In the remainder of this paper, we describe our techniques
according to the outline above. We close by presenting
related work (Section VII) and our conclusions (Section
VIII).

II. SPECIFYING A MICROFLUIDIC ISA

Previous research has established the notion of a mi-
crofluidic instruction set architecture (ISA) as the primitive
set of operations supported by a microfluidic device [16],
[17]. While ISA’s for electronic chips are difficult to specify
graphically (as the 32-bit logical operations are difficult
to visualize), with microfluidics the instructions represent
logical flows that can be hierarchically constructed from the
graphical layout of the chip. We provide the first method
to define an ISA as a hierarchical composition of flows,
providing a simple methodology for specifying and analyzing
a chip’s functionality.

Our language for specifying the functionality of a chip
appears in Figure 3. Our system can express three basic func-
tions: the ability to flow fluids (in certain predefined patterns)
from one location to another, the ability to pump fluids along
a given path, and the ability to mix fluids (by pumping in
a given circular path). Though we present the language as a
context free grammar, in our implementation all primitives
are indicated graphically in a CAD environment.

To specify a flow, the user begins by identifying points of
interest on the flow layer of the microfluidic chip. Every flow
F has a single start point in(F) and a single end point out(F),
though the flow may split into many branches between the
start and end points. Flows can be constructed using four
primitives:

1) A simple flow P1 → P2 connects points P1 and P2
directly, using the shortest path between them.

2) A sequential flow, F1 → F2, connects two flows in
sequence. The endpoint of F1 must be the same as
the starting point of F2.

3) An OR-parallel flow, F1 ∨ F2, indicates that fluids
should pass through either F1 or F2 (but not both)
depending on the runtime configuration. The flows
must share the same starting point and ending point.

4) An AND-parallel flow, F1 ∧ F2, indicates that fluids
should pass through both F1 and F2 at the same time.
The flows must share the same starting point and
ending point.

In addition to points on the actual flow layer, each chip
contains an abstract source point and sink point which should
be considered to reside off-chip. While many intermediate
flows may be constructed by the user, only complete flows
from the source to the sink are considered as the ISA.

In addition to flows, the language allows one to specify
pumping and mixing functionality. The pump instruction
indicates that fluids should be actively transported along a
given flow via placement of peristaltic pumping valves. The
mix instruction applies pumping to a cyclic flow path, thereby
causing the contents of the path to mix. Mixing instructions
can be composed in either an AND or OR relationship with
other flows and mixers, in order to indicate that mixing
only happens in combination with other chip operations.
For example, the language can express the fact that a chip
either loads a mixer, performs mixing, or drains the mixer.
This information is important for minimizing the number of
control channels.

Example. Figure 2 provides an example of a flow network.
In this chip, the desired operation is to flow fluids from
exactly one of the inputs to the output, passing through either
the top left or the bottom right of the mixer. The mixer can
also be actuated. Using hierarchical annotations, this flow
can be expressed as:

(source→ in1→ x ∨ . . . ∨
source→ in8→ x)→ [flow from any input]
(x→ y1→ z ∨ x→ y2→ z)) ∨ [through either side of mixer]
mix(x→ y1→ y2→ x) [or actuate the mixer]

In our tool, the source and sink nodes are indicated
implicitly by designating certain points as inputs or outputs
(i.e., points that are adjacent to the source or sink). While our
tool utilizes a hierarchical description as shown above, this
description can also be flattened for the sake of presentation,
as shown in the top of Figure 2.
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III. GENERATING CONTROL LOGIC

After defining an ISA, the next step of the microfluidic
designer is to implement a control layer that induces the
desired flows. This is accomplished by placing control valves
at appropriate chip locations, including inputs, outputs, flow
junctions, and pumping and mixing paths.

We describe the first method to automatically generate the
control layer, including the placement of valves, the logic of
valve operation, the sharing of control lines across valves,
and the routing of valves to external control ports. We also
generate a graphical user interface (GUI) that allows the
user to operate the designed device, invoking each flow with
a single mouse click. We establish that certain aspects of
control generation are NP-hard, in which case we resort to
heuristics that are effective in practice.

A. Problem Definition

We assume that the source specified in the flow ISA
is pressurized, such that fluids will flow naturally in the
direction of the sink. Valves must be placed and actuated to
prevent the flow from progressing down unintended paths.

A formal description of the problem of generating control
logic appears in Problem Definition 1. Given the flow layer
and a description of the flow ISA, the problem is to generate
control valves that implement the ISA with the minimum
number of control channels. Usually there is one valve per
control channel; however, valves can also share the same
channel if they operate in unison across all of the specified
instructions. It is important to minimize the number of
control channels because each one requires a separate control
port, which requires expensive hardware off-chip and also
consumes space on the device.

B. Complexity of Control Minimization

The following theorem shows that it is NP-hard to min-
imize the number of control channels needed to implement
an arbitrary flow pattern.

Theorem 1: Given an instance of the control minimization
problem (Problem 1) for an ISA with N distinct points, it is
NP-hard to decide whether the flows can be invoked with k
or fewer control channels.

Proof. We reduce from an instance of the graph coloring
problem on a graph with N vertices. For each vertex v,
introduce points Pv and Qv and a flow Fv = source→ Pv→
Qv → sink. For each edge e = (v1,v2), introduce the flow
Fe = Fv1∨Fv2. Set the toplevel ISA to be F = Fe1 ∧ ... ∧ Fem,
where m denotes the number of edges in the graph.

A solution to the graph coloring problem is valid if and
only if for all edges e = (v1,v2), the vertices v1 and v2
do not share the same color. Likewise, a solution to the
constructed control inference problem is valid if an only if
for all OR-flows Fe = Fv1 ∨Fv2, the alternate flows Fv1 and
Fv2 do not share the same control line. If such flows did
share the same control line, then whenever that control line
is activated, it would block both Fv1 and Fv2 and thus violate
the requirements of Fe. This in turn would violate the ISA,
which requires Fe to always be active.

Problem Definition 1 Generation of Control Logic

Given:
• the flow layer (expressing the chip connectivity)
• the flow ISA (expressing which flows may be active at

a given time)
produce:
• placement of control valves sufficient to induce the

given flows
• table of control sharing (which valves can share the

same control channel, while executing the full ISA)
• table of control logic (which control channels should be

pressurized to induce each flow)
while minimizing the number of control channels.

Thus, the control inference problem can be solved with
k control lines if and only if the graph coloring problem
can be solved with k colors. The NP-hardness of control
minimization follows from that of graph coloring. �

C. Heuristic Solution

Due to the computational complexity of the problem, we
resort to heuristics when minimizing the number of control
channels in our tool. However, we are still able to guarantee
a valid solution, i.e., a placement of valves, control sharing,
and control logic that is sufficient to implement the desired
flows, whenever such a solution exists.

To make the problem tractable, we make four simplifica-
tions:

1) We expand the ISA into a set of directed acyclic
graphs, each flowing from the source to the sink,
and exactly one of which is active at a given time.
This is accomplished by lifting the disjunctions in
OR-parallel flows to the top level of the ISA. This
represents an assumption because in the worst case it
may not be manageable; nested OR-flows could lead
to an exponential expansion of the ISA.

2) We do not consider alternate ways of blocking the
inactive half of an OR-flow. (An OR-flow requires that
exactly one branch is enabled at once, implying that
the inactive branch must be blocked.) In most cases,
both branches share a link at the beginning and end,
such that enabling one branch automatically disables
the other. However, when this is not the case, there may
be several combinations of valves that are sufficient to
block the inactive path. We choose the blocking valves
arbitrarily rather than searching for the combination
that minimizes the number of control lines.

3) We reduce the control minimization problem to a graph
coloring problem, which itself is NP-hard. We rely
on heuristic solutions to graph coloring to enable a
heuristic solution to control minimization.

4) We do not attempt to share control lines between
pumps or mixers.

Using these heuristics, our technique for control min-
imization appears as Algorithm 1 (see Figure 4 for an
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in in1 o 2 o in3 o in4 o
v1 open closed
v2 closed open
v3 open closed
v4 closed open
v5 open open closed closed
v6 closed

(a)  Flow with ISA and valves (b)  State table (blank indicates “either”) (c)  Graph coloring (d)  Routing with sharing

closed open open

Fig. 4. Example of control inference. This example highlights the calculation of shared control lines; the valve placement steps are not shown.

Algorithm 1 Heuristic Generation of Control Logic

a) For every point P at the junction of three or more flow
segments, place a valve adjacent to P on each segment

b) Expand the ISA into a set of directed acyclic graphs
(DAGs), exactly one of which is active at a given time,
by lifting OR-flows to the toplevel

c) Build a STATE table that indicates, for each graph G and
valve v, whether v needs to be open, closed, or either
when G is activated. For each DAG G from Step (2):
i) For each valve v on the flow layer:

A) If G passes over v, set STATE(G, v) = open
B) Else if G passes through a point adjacent to v,

then set STATE(G, v) = closed
C) Else set STATE(G, v) = either

ii) For all other DAGs G′ 6= G in the ISA:
A) Select a set of valves V such that:

• closing all valves in V blocks all paths from
source to sink in G′

• ∀v ∈V , STATE(G, v) 6= open
B) For each v ∈V , set STATE(G, v) = closed

d) For each valve v: if 6 ∃G s.t. STATE(G, v) = closed, then
remove v from the flow layer

e) Map valves to control lines via a reduction to graph
coloring:
i) For each valve v, introduce a vertex Vert(v)

ii) For each pair of valves (v1,v2):
If ∃G s.t. STATE(G, v1) 6= either and

STATE(G, v2) 6= either and
STATE(G, v1) 6=STATE(G, v2)

then introduce edge between Vert(v1) and Vert(v2)
iii) Color the graph with a heuristic graph coloring algo-

rithm, minimizing the number of colors
iv) Map two valves to the same control line if and only

if the corresponding vertices have the same color

example). The algorithm consists of five steps. First, the
ISA is expanded into a set of graphs as described previously.
Then, valves are conservatively placed at the outlets of every
flow junction (any redundancy is removed later). Next, a state
table is calculated that determines the state of every valve
(open, closed, or either) when each flow graph is active.
Subsequently, redundant valves are eliminated from the flow

layer; they represent valves that never need to close for the
activation of any graph. Finally, the remaining valves are
assigned to control lines by reducing the problem to one of
graph coloring. Any number of graph coloring heuristics may
be used to arrive at an approximate solution (e.g., [18]).

We have also developed control inference algorithms that
utilize a looser notion of valve placement. Rather than
blocking a flow immediately at a junction, this convention
allows valves to be placed anywhere between the junction
and the sink. A key benefit of this policy is that it allows
multiplexers to be placed across parallel lines. Our tool
implements support for loose inference of multiplexers, as
demonstrated by example in Figure 2. More details are
available in an accompanying report [15].

IV. ROUTING CONTROL CHANNELS

Following the placement of valves on the control layer,
the next step in the microfluidic design process is to connect
the valves to external control ports by placing and routing
control channels.

We develop the first routing algorithm that is suitable
for control channels on microfluidic chips. Our algorithm
reduces the problem to one of routing on a grid, with a
specific grid size that is dictated by the design rules. Our
approach is grounded in an established min-cost max-flow
routing algorithm [19], which we extend in two ways to suite
the microfluidic context. First, while the previous algorithm
produces one line per feature, we introduce the capability
for lines to be shared amongst several valves. Our extension
requires the use of linear programming to arrive at a solution.

Second, we adjust the produced routes to satisfy aes-
thetic constraints, such as minimizing the number of corners
(changes in direction) of the routes. Such adjustments are
critical for the tool to be adopted in practice. Due to space
limitations, we refer readers to an accompanying report for
details on this step [15].

A. Problem Definition

A formal definition of the routing algorithm appears in
Problem Definition 2. The algorithm inputs the layouts of
the flow layer, the control ports, and the control valves, as
well as the sets of valves that are allowed to share a control
line. Optionally, the algorithm also inputs the positions of
established control features, such as manually designed or
previously-routed lines. The algorithm outputs routes for
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Problem Definition 2 Routing of Control Channels

Given:
• placement of flow channels
• placement of p control ports
• placement of n control valves (n≤ p)
• permissible sharing of valves amongst m control chan-

nels (m≤ n)
• (optional) placement of other control features (manually

designed or previously routed)
produce:
• routing of control channels from valves to control ports

while respecting:
• sharing constraints
• design constraints

and minimizing the total length of the control lines.

each control channel, thereby connecting each valve to a
control port (any control port). The routes must satisfy the
sharing constraints: if two valves are connected to the same
port, then they must be allowed to share the same line.

The routing is also subject to design constraints, which
are summarized in Figure 5. These constraints follow those
used in a standard microfluidic foundry [20], [21].

B. Mapping to a Grid

Our algorithm simplifies the general problem formulation
into one that operates on a grid. Each valve, control port,
and manually-designed control structure is mapped to one
or more contiguous points on the grid. The key assumption
made by our algorithm is that it is legal to route control lines
through all of the unmapped grid points, including points
that are adjacent to each other. This assumption places a
constraint on the grid size: grid lines must not be any closer
than the sum of the control line width and the minimum
control line separation. Otherwise, routing different control
channels through adjacent grid points would violate the
design constraints. (While it would be desirable to allow a
separation of more than one grid point between control lines,
our attempts to do so led to non-polynomial runtimes.)

There are two approaches to mapping the general design
problem into one that operates on a grid. The first approach
is to introduce the grid at the beginning of the design
process, constraining the designer to place the flow layer
along the grid. Using the design parameters from Figure 5, it
is possible (with a grid size of 70µm) to arrange flow lines,
valves, and control lines such that all features are aligned
to the grid while remaining separated by the minimum
allowable distance under the design rules. This guarantees
that our algorithm finds a feasible and optimal solution
(within the space of straight horizontal and vertical control
lines) whenever one exists. The second approach is to overlay
the grid on a more flexible flow layer, which might include
rounded corners and circular mixers that are unaligned with
the grid. In this case, we can conservatively approximate the

Parameter or constraint Suggested value
Width of flow channel 100µm
Width of control channel 30µm
Width of control valve 100µm
Minimum distance between control lines 40µm
Minimum distance between control ports 2000µm
Minimum distance between control port & line 400µm

Fig. 5. Microfluidic design rules.

coverage of each feature on the grid, but in so doing we may
over-constrain the routing and miss feasible solutions.

C. Routing Algorithm

Our routing algorithm follows closely from a min-cost
max-flow approach developed for electronic CAD [19]
(though our technique requires linear programming). The key
innovation in our technique is the ability to share channels
between valves that have compatible actuation patterns. Such
sharing is critical for reducing the number of control ports,
which often limit the scalability of today’s microfluidic chips.

Due to space constraints, we omit a complete mathemat-
ical formulation of our algorithm. Instead, we provide an
intuitive summary of the previous algorithm [19] and then
describe our extension.

The min-cost max-flow routing algorithm connects valves
to any available control ports in polynomial time [19]. It
works by placing the chip on a grid, which it considers as a
flow network. Each edge of the grid supports one unit of flow
in either direction; points of the grid are modeled as conduit
edges that also support one unit of flow. Each valve translates
to a source with unit flow, while each control port translates
to a sink. If there are pre-existing control features on the
chip, then they are treated as obstacles by removing the
corresponding grid points from the flow network. Routing is
accomplished by maximizing the flow through the network,
while minimizing the number of edges utilized (i.e., the cost).

We extend this algorithm in the following way. Rather than
modeling a single type of flow over the edges, we introduce
multiple flow types, one corresponding to each valve. In
the flow graph, each valve represents a unit source of the
corresponding flow type. The flow conservation equations are
unmodified – flows of each type are independently conserved
at all nodes. However, the capacity constraints are modified
in an important way: if two valves are allowed to share a
control line, then their flows are not both counted against
the capacity on an edge. Instead, only the maximum flow is
counted against the capacity. This allows the control lines
from two valves to coalesce without penalty in the case that
sharing is permitted.

For example, consider that there are three valves, and the
first two valves may share a control line. Then we model
three types of flow on each edge. A unit capacity constraint
is expressed as follows: max( f1, f2)+ f3 ≤ 1. In other words,
the edge can support either a unit flow for f3, or a unit flow
for both f1 and f2. This allows the control lines for valves
1 and 2 to both share the edge (if desired). Note that the
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Fig. 6. Cell culture chip with automatic routing. Fig. 7. Waveform generator with automatic routing. Fig. 8. Metabolite detector with automatic routing.

max function can be implemented as a linear constraint by
introducing a new variable fmax that is greater than or equal
to both f1 and f2. Thus, the modified flow network can be
solved as a linear program.

While our algorithm permits sharing between specified
control lines, it does not enforce that sharing. If it is cheaper
to route shared valves to different control ports, then the
algorithm will do so. This feature is important, as otherwise
the sharing of control lines may introduce undue congestion
that makes the routing problem infeasible.

V. IMPLEMENTATION

Micado is a working implementation of our ideas, struc-
tured as a plug-in to AutoCAD. Binaries and source code
are freely available online [14].

While Micado addresses all of the problems described in
this paper (including flow annotations, control inference, and
routing), the implementation lags slightly behind the latest
algorithms presented here. Minimization of control lines uses
a different heuristic, and routing does not connect shared
valves at the same time as routing valves to control ports.
The exact techniques implemented at the time of this writing
are described elsewhere [14], [15].

Micado supports iterative development at each stage. The
designer can readily switch back and forth between drawing
the flow, annotating the flow, generating the control logic,
and routing the channels. Micado also supports the param-
eterized construction of chips. All of the design rules in
Figure 5 are adjustable, including other parameters such as
the dimensions of valves and the preferred spacing around
flow lines. This allows the designer to easily change the
parameters without re-drawing the entire chip.

VI. EVALUATION

Micado has been used by at least three researchers as part
of their standard microfluidic design flow. We also provided
demonstrations and gathered feedback from 12 additional
researchers. Designers were particularly excited about the
automatic generation of the graphical user interface, which
is considerably more usable than their current design flow.

To evaluate the performance of Micado, we focus on
three real microfluidic chips that were developed by our
collaborators. The first chip (Figure 6) performs a cell
culture of a large embryonic cell, with a recirculation loop

and sample extraction [22]. The second chip (Figure 7)
generates a waveform of temporal stimulants to addressable
cell chambers [23]. The third chip (Figure 8) analyzes the
metabolites produced by preimplantation embryos [24].

In the figures shown, our routing algorithm is used to
connect each valve to a control port. (Valves sharing a control
line are connected to each other manually, as the current
implementation does not automate this step.) The figures
show that our routing algorithm works well in practice,
succeeding even in highly dense chips. After a setup phase of
5 seconds or less, all chips are routed in less than 1 second.

While we postpone a formal evaluation of our flow annota-
tion language and control inference algorithm, our design is
sufficient to encapsulate the features on the chips examined
– with two exceptions. First, on the waveform generator
chip, valves are needed to separate cell chambers to prevent
diffusion during culture. Since these valves act within a
stationary chamber, rather than directing the movement of
an active flow, they do not fall into our existing language.
Such “separation” primitives could be added in the future,
but currently require manual valve placement by the user.
The second limitation of our system is manifested elsewhere
on the waveform generator chip, where valves are toggled
rapidly on neighboring input ports (for example, to draw 30%
from one input and 70% from another). While Micado infers
the locations of these valves correctly, it is currently unable to
express the adjustable and high-frequency switching pattern
that is required during operation.

VII. RELATED WORK

Decades of work in electronic CAD [25] can be applied
to automate the design of microfluidic chips. However, there
are several differences between electronics and microfluidics
that will prompt new innovations in CAD tools. First, a
current bottleneck to the scalability of microfluidic chips
is the cost and complexity of external control ports. Thus,
techniques that minimize external ports over other factors are
demanded. This difference is reflected in the routing algo-
rithm developed in this paper. To the best of our knowledge,
our approach represents the first polynomial-time algorithm
that connects each internal feature to any one of the external
ports while allowing sharing between specified sets of lines.

A second difference between electronic CAD and mi-
crofluidic CAD is the fast turn-around time in manufacturing

8



microfluidic chips. Because microfluidic chips are easy to
fabricate (graduate students go through several fabrication
cycles in a week), the design is frequently modified and
refined. Thus we need interfaces and abstractions that support
iteration, as well as algorithms that are fast enough for real-
time usage. A third difference is that microfluidic chips rely
on non-rectangular features, such as circular mixers and
rounded channels, that do not fit into a grid abstraction.
Optimizing the layout of these chips may require reasoning
about curves, or may demand very fine or multi-resolution
grids to achieve good results.

Prior work in microfluidic CAD targets a different device
technology, based on the manipulation of fluids as droplets
on a grid [3], [4], [5]. While droplet-based chips are attractive
in their flexibility, it is unclear if these architectures can scale
to the small volumes offered by multilayer soft lithography
due to surface energy considerations. Chakrabarty and Zeng
provide an overview of design automation for droplet-based
microfluidics [11]. As droplet-based chips can route fluids in
any pattern on a grid, the CAD problem addresses how to
map a given experiment to the chip, rather than designing the
chip itself. Thus, our algorithms for automating the design
of the control layer do not have an immediate analog in
droplet-based microfluidics. Nonetheless, our routing algo-
rithm could be applied to place “virtual channels” for fluids
on a droplet grid, in the context of a given experiment.

Previously, our group [17] and others [16], [26] have
researched high-level programming abstractions to enable
users to easily write complex experiments for a given chip.
While these efforts also included a notion of a microfluidic
ISA, the ISA was designed for an existing chip, rather than
serving as a specification for the control logic of a new chip.

VIII. CONCLUSIONS

This paper formulates two new problems for microfluidics
CAD, and proposes the first known solution to each. The
first problem is the inference of control logic for a given
instruction set. We prove that minimizing the number of
control channels is NP-hard and offer a heuristic algorithm
that works well in practice. We also provide the first interface
for hierarchically specifying the instruction set of interest.
The second problem is the routing of control channels from
valves to control ports, while allowing sharing between cer-
tain sets of channels. We adapt an algorithm from electronic
CAD, deriving an appropriate grid size and extending it to
allow sharing, in order to arrive at a good solution.

We implemented a version of our algorithms [15] in an
AutoCAD plug-in, called Micado, which we have released
to the research community. To our knowledge, this tool is
the first to automate the design of multilayer microfluidic
chips. While such design tools have been in development
for droplet-based microfluidic processors, our work is the
first to target the broad class of soft-lithography chips. Such
automation will be critical if we are to fully exploit the
potential of building scalable and programmable microfluidic
chips with millions of independent parts.
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