
Efficient Binary Translation System with Low Hardware Cost

Weiwu Hu1, Qi Liu1,2, Jian Wang1, Songsong Cai1,2, Menghao Su1,2 and Xiaoyu Li1,2

1Key Laboratory of Computer System and Architecture

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2Graduate University of Chinese Academy of Sciences

{hww, liuqi, jw, caisongsong, sumenghao, lixy}@ict.ac.cn

Abstract—Binary translation is one of the most important
approaches for system migration. However, software binary
translation systems often suffer from the inefficiency and tradi-
tional hardware-software co-designed virtual machines require
the unavoidable re-design of the processor architecture. This
paper presents a novel hardware-software co-designed method
to accelerate the binary translation on an existing architecture.
The hardware supports for source-architecture-only functions,
partial decodes and binary translation system acceleration are
proposed. These hardware supports help the binary translation
system to achieve high performance and simplify the design of
the binary translation software. In the meantime, the hardware
cost is well controlled in a certain low level. These supports are
implemented in Godson-3 processors to speedup the x86 binary
translation to the native MIPS instruction set. Performance
evaluations on RTL simulation and FPGA emulation platforms
show that the proposed method can speedup most benchmark

programs by nearly 10 times compared to pure software-based
binary translation and achieves about 70% performance of the
native program execution. The chip is fabricated in ST 65nm
CMOS technology, and the physical design results show that
the chip area cost is less than 5%.

I. INTRODUCTION

Binary translation [1][2] is one of the most important

methods for the binary level compatibility. To accelerate the

binary translation, lots of software-based optimization meth-

ods [3][4][5][6] are proposed. However, the software-based

binary translator suffers from its complexity and inefficiency.

Traditional hardware-software co-designed virtual machines

[7][8] generally aim to performance, power efficiency and so

on, meanwhile, keep the compatibility for requirement. But

to accomplish those goals, the whole system including the

processor micro-architecture needs to be designed from top

to bottom. That will cause great design risks and verification

costs.

This paper presents a novel hardware-software co-

designed methodology on an existing superscalar RISC mi-

croprocessor to achieve high performance binary translation.

Our method is based on the knowledge that the difference

between source and target architecture in process-level (ABI)

is not so great as system-level (ISA) and the ABI gap can be

bridged by moderate hardware supports. With the extension

of process-level binary translation supporting, the binary

translation can be achieved with much more efficiency and

the design and implementation of the software are simplified.

In this paper, key factors to the quality of generated

target codes and the binary translator efficiency are identified

and the corresponding hardware support is designed and

implemented. Based on the quantitative profile and statistics,

it is found that some great semantic gaps between the source

and target architecture cause the poor quality of generated

target codes. To solve this problem, some target architecture

hardware supports for source-architecture-only functions and

partial decode unit are implemented. Besides, control transfer

in translated code cache and context switch are identified

as main contributors to the performance loss of binary

translation system. Corresponding hardware supports includ-

ing address mapping CAM, register saving and restoring

acceleration, etc. are also implemented.

To verify the thoughts, the XBAR (X86 Binary translation

Acceleration on RISC processors) system is designed and

implemented based on Godson [9][10], a MIPS64 compatible

processor. The hardware support for binary translation in

Godson processors makes the translation from x86 binary

to MIPS binary smooth, and significantly improves per-

formance with little silicon area overhead and design and

verification cost. Performance evaluations with the Godson-

3 RTL simulation/FPGA emulation platform show that these

proposed methods can speedup the benchmark programs by

nearly 10 times compared to pure software-based binary

translation and the system achieves about 70% native pro-

gram execution performance. The Godson-3 chip is fabri-

cated in ST 65nm CMOS technology, and the physical design

results show that the chip area cost is less than 5%. In the

meanwhile, the design and implementation complexity of the

software part of the binary translator is reduced with these

suitable hardware supports.

This paper makes the following contributions:

• A novel hardware-software co-designed method to ac-

celerate the binary translation on an existing ISA is

proposed. The method is suitable to be applied in the

binary translation of any source and target architecture.

• Several key factors to the performance of binary trans-

lation, most of which widely exist in the binary transla-

tion area, are found. Corresponding low-cost hardware

supports are proposed and implemented.

• The method is applied in real chips. The efficiency is

proven by experiments and analyzed.

The following sections are organized as follows. Section

II cites the related work. Section III gives the preliminary

analysis of key factors to the performance of binary trans-

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 305

lation system on superscalar RISC processors. Section IV

introduces hardware supports and software improvements

for the x86 binary translation based on an existing MIPS

architecture, the Godson architecture. Section V presents

the prototype implementation and preliminary performance

evaluation. Conclusion and future work are given in Section

VI.

II. RELATED WORK

Emulation is the most common method to achieve the

binary level compatibility. Since the compatibility is the

primary objective, the performance goal is typically mod-

erate. Hardware supports for better performance could be

hardly found on these systems [3][11][12][13]. To get accept-

able performance, lots of pure software-based optimization

methods are developed. For example, Intel IA-32 EL [3]

speculatively assumes that the TOS remains constant for all

entrances to the same block, and that no stack exception

occurs to solve the x86 FP stack emulation performance

problem. Many systems [14][4][5] implement a form of

software-based jump target prediction to save the table

lookup for the translation and execution of indirect jump.

Lazy evaluation [15][6] and dataflow analysis [3] are widely

used by software binary translators to eliminate redundant

x86 EFLAGS updates. Those methods greatly improve the

software binary translation performance in many aspects.

However, several problems exist in the software-based op-

timization methods. First, most of these methods solve the

performance problem from expediency, not from principle as

the hardware-based methods. They can not achieve excellent

performance as the hardware does. Second, these methods

(often based on the assumption, speculation or prediction

mechanism) will cause great performance loss in some

applications [16]. Besides, these methods greatly increase the

design and implementation complexity of the software binary

translator. So most of these systems need to be built with lots

of time and great efforts and are hard to be maintained and

debugged.

Currently most of hardware-software co-designed binary

translation systems [16] have different objectives from the

compatibility. The compatibility is a requirement but not the

objective. They are usually designed for performance, power

efficiency etc. To accomplish those goals, the whole system

including the micro-architecture is custom-designed from top

to bottom. So great costs will be paid on the hardware

design and verification. Transmeta Crusoe [8][17][18] and

IBM DAISY/BOA [7][4][19] are such systems.

III. PRELIMINARY EXPERIMENTS AND ANALYSIS

In binary translation system, the overall execution time

consists of the translated binary code execution time, the

binary translation system overhead and the cost of context

switch between translation and execution [20]. To analyze

the cost of binary translation, a pure software-based binary

translation system is built. The translator emulates the x86

architecture and runs on MIPS hardware. SPEC CPU2000

is compiled to x86 binaries with GCC -O3 and used as the

benchmarks with the ref input files. More detailed informa-

tion about the experiment environment could be found in

Section V. The breakdown of the overall execution time of

this software binary translator is illustrated in Fig. 1. The

execution time includes the translated binary code execution

time and the binary translation system cost. The context

switch overhead is distributed in the overall execution time

and hard to profile. The figure shows that most of SPEC

CPU2000 [21] FP applications spend more than 90% time on

the translated binary code execution, and the SPEC CPU2000

INT applications spend significant time (many of them take

nearly 20%) on the binary translation system cost. The

statistical data shows that both of the two parts are key factors

to the overall system performance and need to be optimized.

0

20

40

60

80

100

gzip(int)

m
cf(int)

crafty(int)

parser(int)

gap(int)

vortex(int)

bzip2(int)

tw
olf(int)

w
upw

ise(fp)

sw
im
(fp)

m
grid(fp)

applu(fp)

m
esa(fp)

art(fp)

equake(fp)

apsi(fp)

E
x
ec
.
T
im

e
(%

o
f
to
ta
l)

Tdbt Tnative

Fig. 1. Breakdown of Binary Translation Execution Time

First, it is obvious that the translated binary code execution

time is closely related to the quality of generated target

codes. To identify which kinds of instructions are key factors,

all the x86 instructions are classified [20] according to the

software binary translation method. The most frequently

executed instructions which need to be translated with com-

plicated software translation methods are recognized as the

key factors to the performance of translated binary code

execution.

Take the x86 floating point instructions translation as an

example, the x87 FPU (floating point unit) of x86 archi-

tecture operates in a very different way from the RISC

processors. The x86 FP instructions refer to eight 80-bit

registers in an FP stack. The address of the floating point

registers is relative to the register on the TOS (top of the

stack). And the TOS is stored in the 3-bit TOP field in

the x87 FPU status word. However, the MIPS processors

just use a flat register file of 32 64-bit registers as floating

point registers. Besides, the x87 has a 16-bit tag word to

indicate the status of the 8 registers in the x87 FP stack

(one 2-bit tag per register). The tag codes indicate whether a

register contains a valid number, zero, or a special floating-

point number, or whether it is empty. The x87 FPU uses the

tag values to detect stack overflow and underflow conditions.

This mechanism does not exist in MIPS processors either. As

shown in Table I, when using a software-based translator, two

simple x86 floating point instructions will be expanded to 22

306

MIPS instructions due to the FP stack and tags emulation.

TABLE I

X86 FP TRANSLATION EXAMPLE

1) FLDL (%eax) 1) LW T0, OFF TOP(Rbase)
2) FADDL 0xfffffff0(%eax) 2) ADDIU T0, T0, -1

3) ANDI T0, T0, 0x7
4) SLL T1, T0, 0x3
5) ADDU T1, T1, Rbase
6) LDL T2, 7(Reax)
7) LDR T2, 0(Reax)
8) DMTC1 T2, $FT0
9) ADDU T2, T0, Rbase
10) SDC1 $FT0, OFF ST0(T1)
11) SB $0, OFF TAG(T2)
12) SW T0, OFF TOP(Rbase)
13) ADDIU T0, Reax, 0xfff0
14) LDL T1, 7(T0)
15) LDR T1, 0(T0)
16) DMTC1 T1, $FT0
17) LW T0, OFF TOP(Rbase)
18) SLL T0, T0, 0x3
19) ADDU T0, T0, Rbase
20) LDC1 $FT1, OFF ST0(T0)
21) ADD.D $FT1, $FT1, $FT0
22) SDC1 $FT1, OFF ST0(T0)

The two x86 instructions in the example are parts of

the kernel loop of SPEC CPU2000 172.mgrid and will be

executed frequently. This program performs poor on the

binary translation system. And the result shows that it only

achieves 11.4% compared to the native execution speed.

These kinds of instructions take large parts in x86 floating

point applications and are hard to be translated with effective

software-based methods.

Besides, several other kinds of x86 instructions including

EFLAGS related instructions, MMX instructions, strings in-

structions and bytes operation instructions are also identified

as key factors to the performance with the same method.

Second, the binary translation system overhead includes

the source to target code translation cost (translation cost),

translated code control transfer cost (control transfer cost)

and system call and exception cost (system service cost) for

the process-level binary translation system. One of core con-

cepts of binary translation system [16] is that a code block is

translated once and it will be executed for a great lot of times

later for most application programs, so the translation cost

should be minimal. The profiling data of the software-based

binary translation system also confirms that. The system

service also costs little. However, in the pure software-based

binary translation system there is an obvious performance

cost [22][23] in the steady state because the dispatch table

for the source PC to target address is accessed every time

when there is a branch or jump from one translated block to

the next. Typically, this would require several instructions.

Fortunately, the translation and execution of direct branches

can be optimized by the software direct block chaining

technique [15] effectively. The translation and execution of

indirect branch instructions are much more difficult to be

optimized because the branch target register only includes the

address of x86 branch targets. According to the address of the

x86 branch targets, the binary translator has to look up the

corresponding translated MIPS target address dynamically

by some kinds of mapping mechanisms such as hash table

[15], and that will cost tens of MIPS instructions. And the

statistics in Fig. 2 show that 12.21% of branch target looking

up is caused by indirect branch instructions when running

SPEC CPU2006 programs. Since branch instructions are so

intensive, the binary translator will encounter the indirect

branch instruction within less than 100 x86 instructions

[20]. So the inefficient translation and execution of indirect

branches will cause significant performance loss.

0

20

40

60

80

100

bzip2-1(int)

bzip2-2(int)

bzip2-3(int)

gcc(int)
m
cf(int)

libquantum
(int)

om
netpp(int)

astar-1(int)
astar-2(int)
xalancbm

k(int)

gam
ess(fp)

m
ilc(fp)

grom
acs(fp)

cactusA
D
M
(fp)

nam
d(fp)

dealII(fp)
soplex-1(fp)

soplex-2(fp)

povray(fp)
calculix(fp)

G
em

sF
D
T
D
(fp)

T
O
TA

L

B
ra
n
ch

T
y
p
e
(%

o
f
to
ta
l)

Indirect Direct

Fig. 2. SPEC CPU2006 X86 Binary Branch Types

IV. HARDWARE SUPPORT FOR BINARY TRANSLATION

As stated in the previous section, several kinds of source-

architecture instructions including the x86 floating point

instructions, EFLAGS related instructions, etc. as well as

the control transfers are identified as the main contributors to

the overall binary translation overhead. For the x86 floating

point problem, the TOS and x87 tag hardware emulation

mechanism is proposed and implemented to accelerate the

x86 floating point emulation. And a partial x86 decode unit

can be used to handle the rest of the complicated instructions

emulation overhead. For the control transfer problem, a hard-

ware CAM is used to accelerate the indirect branch target

address lookup. Besides, the hardware optimization for the

context switch is also introduced to accelerate the emulation.

This section will detail the design and implementation of

these hardware supports.

A. X86 Floating Point Unit Support

For the stack emulation problem, the Godson processor

maintains a TOS value in hardware dynamically to solve

this problem. The TOS value is added to the floating point

register number in the decode stage [9]. The new register

number is then used as the logical register number to look

up the physical register number in the register renaming

stage. Some instructions are also defined to increase or

decrease the TOS value. The mechanism of restoring the

old TOP value is implemented in Godson when branch mis-

prediction or exception occurs. There are hardware flags in

307

the MIPS floating point registers to indicate whether the

register number of the floating point instruction is relative

to TOP or not. Only MIPS instructions translated from x86

instructions are affected by the TOP pointer, while normal

MIPS instructions are not affected by the TOS value. With

the TOS value modification and x86/MIPS FP mode switch

instructions, the software binary translator can maintain the

FP stack in a very simple way and with little cost. For the tag

emulation problem, the Godson processor provides dedicate

instructions to simulate the x87 tag with general purpose

registers and defines a new exception to reflect stack overflow

or underflow exception.

With the hardware support for the x86 floating point

emulation, the software binary translator only needs to deal

with some corner cases. These situations are hard to be

handled by hardware supports or need to be handled with

expensive hardware cost. With this hardware support, the

software binary translator is also simplified and can achieve

very good performance.

B. Partial X86 Decode Unit

Although the x86 architecture is a kind of CISC which

is very different from the RISC in instructions, they also

share certain similarity with each other. Lots of MIPS

instructions and function units share the same functions as

the x86 architecture in principle. However, they have small

differences in formats, functions and so on. With software-

based binary translation, the format transformation, corner

case processing etc. will cause the great performance loss.

To solve this problem, a partial x86 decode unit based on the

existing MIPS decode unit is implemented. This unit will

decode instructions which are closer to corresponding x86

instructions in formats and/or semantics. With this method,

little modification needs to be made on the function units.

The logic design work of the new x86 decode unit is also

easy to be done and verified. And fortunately most of the

performance limit factors which were identified earlier could

be eliminated by this method. For example, the EFLAGS

instructions, MMX instructions, strings related instructions

and bytes operation instructions can be optimized by this

hardware method. Furthermore, the partial decode unit mech-

anism could be used in the binary translation of any source

and target architecture.

Take the x86 EFLAGS as an example, Godson defines

the “EFLAGS counterpart” instruction for each fix-point

arithmetic instruction by adding a “SETFLAG” prefix to

the original instruction. For example, adding a “SETFLAG”

prefix to the “SUB R1, R2, R3” instruction turns the

SUB instruction to its “EFLAGS counterpart” which does

the same calculation as the original SUB instruction but

generates x86 EFLAGS instead of the difference of R2

and R3. Though the “SETFLAG” prefix does not consume

issue slots, it consumes instruction fetch slots as well as

instruction cache spaces. To further increase the execution

efficiency, Godson directly defines the “EFLAGS counter-

part” instructions for most frequently used instructions. For

example, a new instruction X86ADD is defined in Godson to

generate EFLAGS of the addition operation. The advantage

of the “EFLAGS counterpart” mechanism also lays on the

simplicity of its implementation. The mechanism can reuse

most data paths of the original instructions, such as the

register renaming logic, the reorder logic, the issue logic, the

write back logic, etc. Only the decode logic and execution

unit need to be minor adjusted.

C. Control Transfers Optimization

To optimize the control transfers caused by indirect branch

instructions, Godson implements a hardware-software co-

designed method to accelerate the mapping process. A CAM

(content associated memory) [24][22] which caches the map-

ping relationship between the source and target addresses is

implemented in the processor hardware. The CAM can be

managed and accessed by the software. The structure of the

CAM is shown in Fig. 3.

8 40 64

0

1

2

61

62

63

asid CAM_value RAM_value

Jump to the MIPS

target addr.

CAM miss

handling

hit miss

x86

source addr.

…
...

Fig. 3. Hardware-based Target Addresses Lookup Table

All fields of the CAM entry can be written by the

CAMWI instruction, and the RAM value part of each entry

can be read by the RAMRI instruction. The CAMPI and

CAMPV instruction probe the CAM. In the case of the

CAM hitting, CAM generates the index and value of the

hit entry respectively. When the software binary translator

comes across an indirect branch, the x86 address is fed to

the CAM to do the full associative search. If hit, the control

transfers to the corresponding MIPS target address. If not,

the CAM miss handling subroutine is called.

To get the suitable item number of CAM, the CAM

miss ratios with different CAM sizes are evaluated. The

experiments are performed on a fast Godson simulator and

the SPEC CPU2006 programs with the ref input files are

used as the benchmarks. The experiment results are shown

in Fig. 4.

The CAM with 64 items is implemented in the Godson

processor. The CAM with such size reaches a very good hit

ratio and is the result of tradeoff between the performance

308

0

20

40

60

80

100

bzip2-1(int)

bzip2-2(int)

bzip2-3(int)

gcc(int)
m
cf(int)

libquantum
(int)

om
netpp(int)

astar-1(int)
astar-2(int)
xalancbm

k(int)

gam
ess(fp)

m
ilc(fp)

grom
acs(fp)

cactusA
D
M
(fp)

nam
d(fp)

dealII(fp)
soplex-1(fp)

soplex-2(fp)

povray(fp)
calculix(fp)

G
em

sF
D
T
D
(fp)

A
V
E
R
A
G
E

M
is
s
R
at
io

(%
o
f
to
ta
l)

32-item

64-item

128-item

Fig. 4. Miss Ratio with Different CAM Sizes

and the physical design and cost. This co-designed method,

which optimizes the direct branch with software direct block

chaining method and optimizes the indirect branch by hard-

ware and software, significantly reduces the control transfer

overhead to a considerable extent.

D. Context Switch Optimization

The overhead of context switch between the binary trans-

lator and translated codes also contributes to the performance

loss greatly. The instruction cache flushing and register

contents saving and restoring are identified as most costly

ones. First, the binary translator dynamically generates the

translated binary codes on the target machine. Those binary

codes which are generated during the runtime are the data

results of the binary translation. Because the binary translator

stores these codes in data cache, the execution requires

flushing them from the data cache and loading them into

the instruction cache. However, flushing the data cache

through software to keep coherence between the data and

instruction caches is time consuming. Therefore, Godson

keeps coherence between the data and instruction caches,

as well as the L2 cache, through hardware automatically.

Second, generally the binary translator maps the registers

of the source machine to the registers on the target machine

with a certain method. When the binary translator performs

the context switch between binary translator codes and

translated codes, the target registers which are mapped as

the source registers should be reserved or restored before

switching. To reduce the register reserving and restoring

cost, the Godson processor implements 128-bit load and store

instructions, with which up to four x86 registers can be saved

or restored at one time.

V. EXPERIMENT PLATFORM AND PERFORMANCE

RESULTS

This section describes the infrastructure and the bench-

marks used for the experiments. Experimental results and

the analysis are also presented.

A. Experiment Platform

Godson-3 processors [10] are used in the experiments.

Godson-3 is the third generation of the Godson microproces-

sor series, a project of the Institute of Computing Technology

of the Chinese Academy of Sciences. Godson-3’s scalable

and distributed on-chip network connects processor cores and

globally addressed level-two (L2) cache modules. Each core

of Godson-3 is a MIPS64 compatible, 4-issue, out-of-order

processor core [9].

The hardware supports for binary translation which are

mentioned above have been integrated into the Godson-3

multi-core processor. The first four-core Godson-3 design

is fabricated in ST 65nm CMOS technology and has been

taped out. The physical design result shows that the chip

area cost is less than 5%. Before the Godson-3 chips return

from the fabrication, the performance experiments of the

Godson XBAR system are performed on two platforms: a

register-transfer-level (RTL) simulation platform and a field-

programmable-gate-array (FPGA) prototyping platform. In

the RTL simulation environment, the processor core clock

frequency is set to 1 GHz, the DDR2/DDR3 clock frequency

to 333 MHz, and the HyperTransport clock frequency to

800 MHz. To speed up the simulation, Cadence’s Xtreme-

3 simulation accelerator [25], which can achieve a speed of

200,000 to 400,000 cycles per second, is used. Because of the

difficulty of building a full-scale Godson-3 FPGA prototype

system, a partial-scale prototype is built to evaluate the single

processor core’s performance. The prototype system includes

one processor core, one 1 MB L2 cache, one DDR2/DDR3

controller, and one HyperTransport controller. The FPGA

prototyping speed is 50 MHz, which is much faster than

RTL simulation. Because the run speed ratio between the

FPGA prototype’s core and I/O clocks differs from those in

the real system, the I/O latency of the FPGA prototyping

system is carefully adjusted to obtain accurate performance

results.

The software architecture of Godson binary translation

system is shown in Fig. 5 (in the next page). The software

part of XBAR performs staged binary translation [16], using

both simple binary translation and optimized translation.

During the initial run of an x86 binary program, it performs

simple translation and the execution profile information is

collected. Then the translator can use the profile information

to find the hot regions. Once the execution count of code

blocks reaches the certain optimization threshold, the hot

region is optimized by some simple and common compiler

techniques, such as dead code elimination [16], address

alignment fix and so on. Some common problems, such as

self modifying code [15], exception support are also handled

in the software part of XBAR.

B. Benchmarks

Table II (in the next page) shows the benchmarks which

are evaluated on the Xtreme-3 and FPGA platforms. 11

typical application kernels or full applications are chosen

to evaluate the hardware improvements and the software

309

TABLE II

BENCHMARKS

Name Source Language Experiment Platform
Floating point IDCT Microbench C Xtreme
Floating point FFT Microbench C Xtreme
General Control Microbench C Xtreme
Fixed point IDCT EEMBC x86 assembly FPGA
Fixed point FFT EEMBC x86 assembly FPGA
OS booting codes Microbench C and x86 assembly Xtreme/FPGA
401.bzip (train) SPEC CPU2006 C FPGA
403.gcc (train) SPEC CPU2006 C FPGA
429.mcf (train) SPEC CPU2006 C FPGA

450.soplex (train) SPEC CPU2006 C++ FPGA
454.calculix (train) SPEC CPU2006 Fortran and C FPGA

Simple translation Optimized translation

Translated blocks cache

Translated block

exists?

Exec. count >

Opt. threshold?
No

No Yes

Execution

Start Yes

Fig. 5. Software Architecture of Binary Translator

translation efficiency. All benchmarks are compiled with the

GCC -O3 flag.

All these benchmarks are executed in three modes: 1. Na-

tive MIPS mode, in which benchmarks are directly compiled

into MIPS binaries and run on MIPS hardware; 2. Basic

translator mode, in which benchmarks are compiled into

x86 binaries and run on the standard MIPS hardware and

the software-based binary translator. The binary translator is

described in the previous section and pure software-based.

There isn’t any hardware binary translation support in the

MIPS hardware either; and 3. Improved translator mode, in

which benchmarks are compiled into x86 binaries and run

on MIPS hardware using the improved binary translator with

partial or full x86 binary translation acceleration methods on

RISC processors (XBAR) hardware support.

C. Results and Analysis

Fig. 6 (in the next page) shows the relative performances

of the pure software-based translator and different hardware

improved translators, which are compared to the native

MIPS mode. Floating point IDCT and FFT are handwritten

microbenches to verify the common floating point transla-

tion and execution performance. As expected the hardware

support for x86 floating point brings most of the speedup

to these programs. General control program uses lots of

EFLAGS related instructions. And fixed point IDCT and

FFT contain lots of x86 MMX instructions. They benefit the

most from the partial decode support for x86 architecture.

The operating system booting codes mix lots of different

kinds of instructions and most of the translated codes are

used only once. And the support for context switch still

brings it relative much speedup. The last five benchmarks

are from the SPEC CPU2006 [21]. For 401.bzip, 403.gcc and

450.soplex, as illustrated in Fig. 4 the CAM can catch most

of the indirect branch address translations, so the control

transfer hardware support improves the performance of the

two benchmarks greatly. The x86 floating point support also

improves the performance of 450.soplex and 454.calculix

greatly, because they are floating point applications. Because

of the complexity of these SPEC CPU2006 applications,

the context switch and partial decode hardware support also

bring some benefits to them.

The overall relative performance of basic and improved

translator modes compared to native MIPS mode is shown

in Fig. 7. The hardware supports for Godson-3 binary transla-

tion significantly accelerate the binary translation from x86 to

MIPS, and the binary translator achieves 73.5% of the native

execution performance on average. The results show that

several key factors to the performance of binary translation

architecture are successfully identified. And the proposed

hardware-software co-designed methods are very effective

to improve the translation and execution performance.

0

20

40

60

80

100

FP-ID
C
T

FP-FFT

G
C

EEM
B
C
1

EEM
B
C
2

O
S-B

O
O
T

401.bzip(int)

403.gcc(int)

429.m
cf(int)

450.soplex(fp)

454.calculix(fp)

AV
ER
A
G
E

P
er
fo
rm

an
ce

(%
o
f
n
at
iv
e)

no-opt. opt.

Fig. 7. Overall Performance Improvement

310

0

20

40

60

80

100

FP-IDCT

FP-FFT

GC EEMBC1

EEMBC2

OS-BOOT

401.bzip(int)

403.gcc(int)

429.mcf(int)

450.soplex(fp)

454.calculix(fp)

P
er
fo
rm

an
ce

(%
o
f
n
at
iv
e)

no-opt.

cam

switch

fp

decode

Fig. 6. Performance Improvements by Different Hardware Supports

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel hardware-software co-

designed method to accelerate the binary translation on an

existing ISA and the method is suitable to binary transla-

tion of any source and target architectures. Based on the

method, several key common factors to the performance of

binary translation are identified and corresponding hardware

supports are proposed. Experiments on the Godson-3 RTL

simulation and FPGA emulation show that this method helps

the binary translation system to achieve high performance

and simplify the software design. Also the hardware supports

cost little.

Our recent work will focus on the research of ISA

level compatibility and more common hardware supports

to achieve native execution speed on the binary translation

system. Further researches on parallel binary translation and

optimization in the Godson multi-core environment also will

be performed.

VII. ACKNOWLEDGMENTS

We would like to thank all members of the God-

son research group. And our work is supported by the

National Basic Research Program of China under Grant

No. 2005CB321600, the National High-Tech Research

and Development Program of China under Grant No.

2008AA010901, the National Natural Foundation Key Pro-

gram of China under Grant No. 60736012 and the Na-

tional Natural Science Foundation of China under Grant

No. 60673146. We would also like to thank the anonymous

reviewers for their feedback.

REFERENCES

[1] E. Altman, D. Kaeli, and Y. Sheffer, “Welcome to the opportunities
of binary translation,” IEEE Computer, vol. 33, pp. 40–45, 2000.

[2] E. Altman, K. Ebcioglu, M. Gschwind, and S. Sathaye, “Advances and
future challenges in binary translation and optimization,” Proceedings

of the IEEE, Special Issue on Microprocessor Architecture and Com-

piler Technology, vol. 89, no. 11, pp. 1710–1722, 2001.

[3] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach, “IA-32 Execution Layer: A Two-Phase Dynamic
Translator Designed to Support IA-32 Applications on Itanium-Based
Systems,” in Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture, vol. 36, 2003, pp. 191–204.
[4] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye, “Dynamic

binary translation and optimization,” Computers, IEEE Transactions
on, vol. 50, no. 6, pp. 529–548, 2001.

[5] E. Witchel and M. Rosenblum, “Embra: fast and flexible machine sim-
ulation,” in Proceedings of the 1996 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems.
New York, NY, USA: ACM, 1996, pp. 68–79.

[6] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye,
S. Bharadwaj Yadavalli, and J. Yates, “FX!32 a profile-directed binary
translator,” IEEE Micro, vol. 18, no. 2, pp. 56–64, 1998.

[7] K. Ebcioglu and E. Altman, “DAISY: Dynamic Compilation for
100% Architectural Compatibility,” in Proceedings of the 24th annual

International Symposium on Computer Architecture, 1997, pp. 26–37.
[8] A. Klaiber et al., “The Technology Behind Crusoe Processors,”

Transmeta, Tech. Rep., 2000.
[9] W. Hu, F. Zhang, and Z. Li, “Microarchitecture of the Godson-2

Processor,” J. Computer Science and Technology, vol. 20, no. 2, pp.
243–249, 2005.

[10] W. Hu, J. Wang, X. Gao, Y. Chen, Q. Liu, and G. Li, “Godson-3: A
Scalable Multicore RISC Processor with x86 Emulation,” IEEE Micro,
vol. 29, no. 2, pp. 17–29, 2009.

[11] R. Hookway and M. Herdeg, “DIGITAL FX!32: Combining Emulation
and Binary Translation,” Digital Technical Journal, vol. 9, pp. 3–12,
1997.

[12] C. Zheng and C. Thompson, “PA-RISC to IA-64: Transparent Execu-
tion, No Recompilation,” IEEE Computer, vol. 33, pp. 47–52, 2000.

[13] M. Probst, “Fast machine-adaptable dynamic binary translation,” in
Proceedings of the Workshop on Binary Translation, vol. 9, 2001.

[14] S. B. Vasanth Bala, Evelyn Duesterwald, “Transparent Dynamic
Optimization: The Design and Implementation of Dynamo,” HP Lab-
oratories Cambridge, Tech. Rep., 1999.

[15] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
USENIX 2005 Annual Technical Conference, 2005.

[16] J. E. Smith and R. Nair, Virtual Machines - Versatile Platforms for

Systems and Process. Elsevier, 2005.
[17] T. R. Halfhill, “Transmeta breaks x86 low-power barrier,” Micropro-

cessor Report, vol. Feb., pp. 1–11, 2000.
[18] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber,

and J. Mattson, “The Transmeta Code Morphing Software: using
speculation, recovery, and adaptive retranslation to address real-life
challenges,” in ACM International Conference Proceeding Series,
vol. 37, 2003, pp. 15–24.

[19] M. Gschwind, E. Altman, S. Sathaye, P. Ledak, and D. Appenzeller,
“Dynamic and transparent binary translation,” IEEE Computer, vol. 33,
pp. 54–59, 2000.

311

[20] J. Wang, “Co-design and Co-optimization of x86 virutal machine on
general RISC platform,” Ph.D. dissertation, Graduate University of
Chinese Academy of Sciences, 2008.

[21] “SPEC CPU benchmark suite,” http://www.spec.org/benchmarks.html.
[22] H.-S. Kim and J. E. Smith, “Hardware support for control transfers

in code caches,” in MICRO 36: Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture. Wash-
ington, DC, USA: IEEE Computer Society, 2003, p. 253.

[23] H. Kim, “A co-designed virtual machine for instruction-level dis-
tributed processing,” Ph.D. dissertation, University of Wisconsin,
2004.

[24] M. K. Gschwind, “Method and apparatus for determining branch
addresses in programs generated by binary translation,” IBM, Tech.
Rep., 1998.

[25] “Incisive Xtreme Series Datasheet,” http://www.cadence.com/rl/
Resources/datasheets/Cadence 6569 DS R2.pdf.

312

