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Abstract— Analog circuits are often tested based on their
specifications. While specification-based testing ensures the
initial product quality, full testing is often not possible in
high volume production. Moreover, even full specification-based
testing cannot guarantee that the circuit does not contain any
physical defects. Some application domains require near-zero
defect levels independent of whether the specifications are met.
In this work, we present a defect based test optimization method
focusing on defective parts per million (DPPM) minimization.
We extract potential defects through inductive fault analysis
(IFA) and reduce the number of tests without degrading the test
quality. In order to achieve near zero DPPM, we employ outlier
analysis to identify defective circuits that cannot be identified
using specification based methods. Simulation results on an
LNA show that DPPM is reduced down to 0 at a cost of 0.2%
yield loss with the proposed method.

I. INTRODUCTION

The objective of test optimization methods have been to
shrink the test list or reduce the test cost using alternative test
methods [1], [2]. Some application areas, however, require
near-zero level defective parts. Such a low defect level cannot
be guaranteed even if full specification tests are conducted.
There may be devices that satisfy all the specifications but
still have defects, which affect their reliability. It has been
reported that defects are the primary cause of customer
returns [3]. For application areas that cannot afford reliability
risk or the cost of return, it is imperative to detect all
defective devices.

Difficulty in identifying the defective devices rises from
the fact that some defects alter the circuit behavior only
slightly and process variations may mask their manifestation
on the specifications. Defect oriented test methodologies
[4], [5] have been proposed to address the requirement of
low-cost defect screening. Defect-based test generation and
optimization enables even small test lists to identify a large
portion of the defects. Defect-oriented testing is performed
in three steps: defect list generation, defect simulation, and
screening.

Physical defects have typically been modeled with ex-
tremely simplistic circuit behavior [6], [7], [8] , namely as
open and short catastrophic defects having a fixed resistance
value typically on the order of 1MΩ and 1Ω respectively
[7]. Presently, more sophisticated models of various defects
have been proposed in [9], where S-parameters of defects are
extracted using an electromagnetic simulator. These realistic
models help capturing the true behavior of the defects.

If the defect list generated at circuit level, it is probable to
obtain defect list of size ranging from hundreds to thousands.
However, in practice only a small subset of these defects are
likely to occur. Inductive fault analysis (IFA) method has
been proposed [10] to generate a realistic list of defects using
layout level information. IFA has been shown to significantly
reduce the number of defects for a given circuit [8].

For applications that require near-zero defect-levels, al-
ternative identification methods are needed. One option is
to tighten the specification limits so as to prune away
devices with slight shifts from the nominal. However, this
approach would incur significant yield loss for the near-
zero defect-level. Additional specification tests or alternative
test strategies have been proposed to increase the degree
of freedom in order to detect defective devices without
degrading the yield. Iddq test [11], [12] is a commonly used
low-cost technique. However, it is not capable of identifying
all defects. Indirect test methods are used to reduce test cost
by employing test set-ups for easy to measure parameters and
mapping these results are mapped back to the performance
domain [2]. Outlier based methods are also used to improve
defect coverage [3]. Machine learning methods have been
shown to be effective in defective device identification [13],
which can also be used on defect identification.

All the abovementioned approaches require generation and
analysis of alternative test stimuli that would eventually
exercise and distinguish defective behavior. However, there
is no systematic way of determining the best test stimuli.
A novel test stimulus also requires design and validation of
new test set-ups and would place a high overhead on the
test development process. Moreover, none of the previously
proposed techniques have been shown to reduce DPPM
to near-zero levels. In this work, we aim at reducing the
number of tests and achieving 100% defect identification
level, while keeping yield loss at an acceptable level. We still
rely on the original specification measurements, thus require
no additional test set-up. We employ two-dimensional outlier
analysis in order to identify even minute perturbation of
behavior. Our technique requires a very small computational
overhead, placing virtually no additional time on the critical
path.

Our motivation behind selecting specification-pair outlier
analysis is its simplicity of integrating into the produc-
tion line and its ability of identifying abnormalities in
performance. Although defects cannot be identified using
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Fig. 1. Overlap and Separation type defects

specification tests alone, outlier analysis greatly increases
the chance of identification. Our method is composed of
two parts. During off-line analysis, a minimal set of outlier
specification-pairs are obtained, where only outlier pairs that
contribute to defect identification are selected. During the
actual test phase, this minimal set of outlier pairs are used,
hence computational burden is greatly reduced. Outlier-pair-
list generation is done with the objective to minimize the
number of tests. Experimental results show that 40% of test
size reduction from the full specification list is achieved with
zero DPPM level.

II. DEFECT BASED TESTING

Accuracy and relevance of a defect list depends on how
much information about the device is used in defect ex-
traction. Using lower level information gives more detailed
information about the device. Inductive fault analysis (IFA)
method uses layout level information to obtain the possible
defects given the defect scenarios.

Systematic or large scale defects are easy to detect and
can be usually detected using simple tests. However, random
spot defects are hard to detect, since the disturbance they
cause may be insignificant to observe. In this work, we focus
on random spot defects. The reasons of spot defects can
be summarized as dust particles, extra or missing material,
missing or broken contacts and broken wires. Using the IFA
method we conduct layout level analysis to identify possible
defect locations.

In order to locate possible defects, we need to know size
and layer at which defects reside. There are two methods
[14], [15] in defect simulation; we employ critical area based
approach [15]. We determine critical areas on the layout
where defects are possible to cause a damage on the device
and calculate the probability of occurrence of the defect. One
of the defect scenarios is electrical connection between two
different layers, such as pinholes and extra vias, resulting in
overlap type defects. Figure 1(a) shows a typical scenario
of an overlap type defect, where the shaded area indicates
the critical region for the overlap defect. Probability of
occurrence of this defect can be calculated using eq (1):

# of defecti = W ×L×Density(de f ecti) (1)

Fig. 2. Defect Size Distribution

where L, W and Density(de f ecti) are length, width and
defect density of ith defect respectively. Another type of
likely defect is the bridge defect which is defined as a
short between metals of the same layer. A bridging defect
is illustrated in Figure 1(b). This type of defect is due to
an extra layer of metal shorting two separate wires. In order
to calculate defect occurrence probability of this defect we
need size information of the defect. Various defect size
distributions have been proposed [6]. We use the defect
distribution model presented in [14], as shown in Figure 2,
while the probability distribution curve given in [14], [6].
r0 is a parameter of the curve; it is usually taken as the
minimum feature length of the process. Density(de f ecti) is
the density of ith defect and is process dependent. Defect
occurrence probability of this defect type is calculated using
eq (2-3):

# of defects = We f f ×L×Density(de f ecti) (2)

We f f = 2
∫ W

W/2

∫ r

0
de f ectSize(α)dαdr (3)

Another type of hard defects is open circuit defect. Exam-
ples for open type defects are cracked wires, missing vias and
missing materials. Probability calculation of these defects
can be conducted in a similar manner to the probability
calculation of short circuit defects based on critical areas
and defect densities.

Given the critical areas of the defects and defect densities,
we can easily calculate defect occurrence probabilities. How-
ever, we may not have the absolute defect density informa-
tion for a particular technology. Fortunately, relative defect
density information can also be used to calculate defect
probabilities. A typical relative defect density information is
tabulated in Table I. First five values of the table are based
on published data [16], while last two are assumed due to
lack of published data. Substituting relative density values in
open defect and short defect calculation equations, we can
compute relative defect probabilities. Equation 4 can be used
to calculate relative defect probability of each defect, where
the denominator is the normalizing term.

P(de f ecti) =
Wi×Li×Density(de f ecti)

∑i Wi×Li×Density(de f ecti)
(4)
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Layer defect relative density
Metal1 open 0.01
Metal1 short 1
Metal2 open 0.02
Metal2 short 1.5

via open 0.8
M1-M2 pinhole 1
M1-P1 pinhole 1

TABLE I
RELATIVE DEFECT DENSITY

A. Defect Model
Possible defects that are identified using the IFA method

are injected into circuit-level representation to perform defect
simulations.

Defect models used in literature are usually small resis-
tances for shorts and very large resistances for open circuits
[7], [8], [6]. Although simple, most of the time these models
may not provide the desired accuracy to observe the true
behavior of the defects. Acar et. al. conducted electromag-
netic simulations for various types of defect scenarios and
obtained frequency dependent response of the defects [9].
We use these electrical models in our simulations.

III. TEST METHODOLOGY

Testing devices for their specifications identifies func-
tionally acceptable (good) and unacceptable (bad) devices.
However, a good device is not necessarily defect free.
Therefore, it is important to take additional steps in addition
to specification tests to find out the defective devices. In this
work, we focus on outlier based testing method to identify
the defective devices.

An outlier device is defined as a device that behaves
substantially different compared to the bulk of devices. One
way of conducting outlier analysis is to tighten the limits of
the test measurements to below their specifications. However,
due to high process variations, defect level can only be
substantially reduced if the yield is sacrificed to a great
length.

Luckily, we can take advantage of proximity-based cor-
relations in process variations to overcome this problem.
Even if process variations cause circuit parameters to widely
vary, the relation between two measured parameters may be
unaltered if they are structurally correlated. This is due to
the fact that most process variations are caused by die-to-die
fluctuations whereas within-die fluctuations are very small.
This premise is widely used in analog circuit design where
the ratios of matched components, rather than their absolute
values, define the overall behavior. Defects alter the circuit
structure, hence the correlation patterns of the specifications.
Thus, defects can be detected by identifying devices outside
of the expected correlation patterns. In this sense, the behav-
ior of a circuit with respect to two specifications at once can
be analyzed to take advantage of specification correlations.
Outlier analysis can be conducted in this two dimensional
space. As an example, suppose that two of the specifications
of a circuit is gain and power consumption. If we plot the

(a) (b)

Fig. 3. Outlier Diagram

outcomes of measurement/simulation for gain with respect
to power consumption, we can analyze the relation between
two specifications. Figure 3 illustrates a typical gain-power
consumption relation of a LNA in the presence of process
variations. In this figure, region A shows the region where
defect-free devices reside. Knowing the behavior of defect
free devices on outlier diagrams, we can identify defective
devices simply by checking wether devices are falling in
the safe region. If a device falls out of the safe region,
it is identified as a defective device. Region B shows the
possibly defective devices since they behave substantially
different than the majority of the device ensemble. Similarly,
construction of outlier diagrams for various combinations
of specifications reveals the hard-to-detect abnormalities and
enables us to spot the defective devices.

A. Outlier Analysis
Our defect identification method works in two phases;

off-line phase and on-line phase. In the off-line phase, the
analysis engine is trained with defect free devices to generate
reference outlier diagrams. The first step does not contribute
to test time since it runs prior to production testing. In the
second phase, once the measurements are conducted, devices
are identified with respect to expected correlation patterns.

In the off-line phase, correlation patterns are extracted,
analyzed, and outliers are defined. As an example, suppose
that we would like to store the outlier information for the
gain-power consumption pair from Figure 3. The key point
in representing this information is to model it in such a way
that checking four outliers does not place a computational
burden on the tester. For this purpose, we first shift the
distribution so that it is zero-mean and then we normalize it
with standard deviations of spec ”A” and spec ”B”. Then,
we convert the coordinate system to polar coordinates and
divide the azimuth range into N bins as we illustrate in
Figure 3(b). Now, we find the devices that have maximum
distance from the origin in each bin and record these
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Order Specs
for all (i, j) such that i 6= j do

Shift
Normalize
fails ← identify defectives
if size(fails) ≥ 0 then

append (i,j) → outlierPairs
record LUT for (i,j)

end if
end for

Fig. 4. Outlier Analysis and Test Selection Algorithm

distance values in a lookup table. Lookup tables generated
for each specification pair draw a virtual boundary between
defect free and potentially defective devices. However, this
boundary may not be very accurate due to process variations
and might result in misclassification of marginal devices.
In order to avoid substantial yield loss, we insert a buffer
between the defect free region and the defective region. We
define the defective region relative to the defect free region
using a ratio that we call defect threshold ratio. If the radius
of the defect free region is r for a particular azimuth bin
and the defect-threshold-ratio is ratio, then buffer region
is in (r and r× ration) range and defective region is in
(r× ratio,∞) range. The size of the buffer region controls
the misclassification rate and defect coverage rate, a more
thorough analysis is provided in the results section.

The on-line phase takes place during production testing.
We utilize the lookup table generated in off-line phase for
defect identification. The algorithm we use in on-line phase
to eventually classify the devices as pass or fail is shown
in Figure 5. For a given DUT, we go through the outlier
specification-pair list. If the DUT falls into the defective
region, it is immediately rejected. Otherwise, all specification
pairs are exhausted before the DUT is accepted.

B. Test Development
Generation of lookup table for all possible specification

pairs may result in excessive memory and CPU usage. If
we have M specifications, exhaustive enumeration of all
specification pairs will result in M∗(M−1) outlier diagrams.
Measurement and computation for all these pairs is not
affordable during production test. Moreover, specification
pairs that do not display a structural correlation are of little
use in identifying defective devices. Hence, we reduce the
number of outlier-specification-pairs through selecting ones
that contribute to defect coverage only. Figure 4 shows the
algorithm we employ to determine the specification pairs
for outlier analysis. Inputs for the algorithm are a defect
free device set and a defective device set. Devices in the
defective set have the same process variation but they are
generated through injecting defects. We start with ordering
the specification list by first placing the minimum covering
specification test set at the beginning of the list [17]. The
rest of the specifications are ordered according to the their
potential of identifying defective devices. We use a metric

for all (i,j) in outlierPairs do
Shift
Normalize
identify defectives

end for

Fig. 5. Pass/Fail Determination During Production Testing

that we show in eq (5) that is analogous to signal to noise
ratio (SNR) in order to sort the specification list:

SNRi =
µ f f ,i−µde f ective,i

√

σ 2
f f ,i +σ 2

de f ective,i

(5)

where, µ f f ,i and µde f ective,i are mean values of defect free
and defective devices respectively for ith specification, while
σ f f ,i and σde f ective,i are standard deviations. We iterate over
the ordered list and evaluate the potential outlier pairs they
form with the tests that have already been included in the
test list. Defect identification rates are calculated for each
potential pair using the number of incrementally identified
devices. Lookup tables for specification pairs that result in
nonzero defect identification are stored for later use in the
on-line phase.

IV. RESULTS

We evaluate of our method using a variable gain LNA,
which is shown in Figure 6. The layout of this circuit, which
we used to extract defect probabilities is shown in Figure
7. Possible defect types that are listed in Table I are ex-
tracted manually from the layout and defect probabilities are
calculated for each defect type. Table IV shows significant
defects, their type and relative probability of their occurrence.
We omitted the defects that have low relative probability,
since they do not contribute to DPPM. Hence, using the IFA
approach, compared to all possible defects that can occur,
we have only 15 potential defects that can occur for this
LNA. Moreover, relative probability information provided in
the table enables us to estimate the effect of each defect on
DPPM. First 11 defects are node-to-node bridging defects,
while defects 12 and 13 are open via defects. Defect 14 and
15 that are denoted with LD and LS respectively are short
defects that reside in the inductors.

In order to find the detectability of the defects, 5k simu-
lations are performed for each defect. Defect models from
[9] are used for defect simulations, as has been mentioned
in Section II. The process variation profile that we inject on
the circuit is summarized in Table II. In addition to defect
simulations, defect free device simulation of 40k samples
were also performed. We also apply our method on defect
free devices to find the yield loss of the method. 5k samples
out of 40k defect free samples are used as training set,
and the method is applied on the remaining 35k defect free
samples.

If only specification based tests are used, 12 out of 15
defects can be identified. Therefore, assuming the yield
level is 90%, a DPPM level of 4000 can be achieved, even
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Fig. 6. LNA Schematic

Fig. 7. LNA Layout

though we apply all specification tests. Specification based
detectability is shown in table III. The goal of our method is
to achieve near-zero DPPM, so the objective of applying this
method is to reduce the DPPM level from 4000 to 0 for this
particular case. For the off-line phase of our method, we use
5k defect-free devices to generate outlier-specification-pairs
and LUTs for each of them.

Performance of our method is a function of two parameters
that we have defined in section III; the number of bins in
outlier diagrams and the defectiveness threshold level which
determines the length of buffer region.

Table V shows defect identification performance of our
method as a function of N and defectiveness threshold.
Highlighted entries in the table constitute the feasible re-
gion in terms of defect coverage in order to achieve zero
DPPM. Yield loss information is given in Table VI. N and
defectiveness threshold levels that result in less than 1%

Process variation Width [%] Length [%] VTH0 [%] Passive [%]
inter-die 0.1 2 2 2
die-die 0.3 5 5 5
lot-lot 1 15 15 13

TABLE II
PROCESS VARIATION

Ld Ls nLs-gnd others
detectability 89.08% 12.42% 91.28% 100%

TABLE III
SPECIFICATION BASED DETECTABILITY

yield loss are highlighted to show the potentially feasible
region in terms of yield loss. Table VII shows the number
of specifications that need to be measured for several N
and defectiveness threshold pairs. These tables enable us to
decide on the defect coverage versus yield loss trade-off.
Since our premise is to achieve a DPPM level of zero, we
need to select a combination of N and defectiveness threshold
such that detectability is 100%.

Another criterion we need to consider is the yield loss,
which should be as small as possible. Intersecting the
highlighted regions of defect coverage and yield loss, we
obtain a feasible region for both criteria. Among the feasible
entries, the most relevant parameter combination is N=20
and threshold=1.2, which results in 0 DPPM and 0.2% yield
loss. The number of specifications required to measure for
this configuration is 31, as Table VII shows. Conducting the
off-line phase, we have obtained the outlier-specification-
pairs list and LUTs for each outlier diagram. The number
of outlier pairs necessary for full detection is 80. Since we
choose N=20 the total memory consumption of LUTs is 1600
8-bit entries.

For this circuit, 100% of defect coverage is achieved for all
defects leading to zero-DPPM with resolution of 1 DPPM.
One of the concerns in the online phase is the time required
to do the computations. Based on simulations conducted
using a 2.3GHz Quad core Intel machine, the time spent to
identify each device is 1.5ms. Since total of 31 specifications
are measured, computation time is 50µs per specification
and since 50µs per is less than the time required for data
acquisition, the computation overhead of the online-phase do
not contribute to the overall test time.

Note that it is not possible to achieve 0 DPPM using
specification tests even we conduct all tests. In our method
however, only 31 specs are required to achieve 0 DPPM.
Hence in terms of test size reduction, 40% of test list
compaction is achieved.

V. CONCLUSION

Achieving near-zero DPPM during production testing is
a requirement that needs to be met for application domains
that cannot risk customer returns or involve mission critical
operations. Most of the defective devices can be pruned away
during production testing. However, some of them cannot
be identified and treated equally as the defect free devices.
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Defect type relative probability
nLs-gnd M1-M1-short 0.0085
nd1-gnd M1-M1-short 0.0124
nd1-nLs M1-M1-short 0.3395
nd1-nd2 M1-M1-short 0.3350
nd1-nvc M1-M1-short 0.0335
nd1-ng M1-P1-pinhole 0.0532

nd1-nbw2 M1-M1-short 0.0003
nd2-gnd M1-M2-pinhole 0.0131

nd2-nbw2 M1-P1-pinhole 0.0532
ndb1-gnd M1-M1-short 0.0176
nbw2-vdd M1-P1-pinhole 0.0185

RB1 via-open 0.00023
Rb1 via-open 0.00023
Ld M2-M2-short 0.0844
Ls M2-M2-short 0.0303

TABLE IV
RELATIVE DEFECT PROBABILITIES

Threshold
1.1 1.2 1.3 1.4 1.5 1.6

N

15 100 99.9994 99.9913 99.9736 99.8602 99.7552
20 100 100 99.9922 99.9520 99.8464 99.7834
40 100 100 100 99.9796 99.9982 99.7930
60 100 100 100 99.9928 99.9598 99.9364
80 100 100 100 99.9970 99.9922 99.9568

TABLE V
DEFECT COVERAGE [%]

Defects cause reliability problems and affect functionality
of the devices. Hence, it is crucial to detect all defects.
Defect identification problem has been previously addressed,
however, none of the solutions were able to reduce DPPM
to near-zero levels. In this work, we propose a defect-based
low-cost test method that can attain near-zero DPPM levels
employing a two dimensional outlier analysis method. We
construct outlier diagrams of specification pairs and identify
devices showing abnormal behavior. Two dimensional outlier
analysis enables us to observe the perturbations caused by
defects with a higher confidence, increasing the defect identi-
fication probability. We use only specification measurements
in outlier analysis. Therefore, no additional test set-up or
test stimuli generation is necessary. Moreover, computation
burden we put on the ATE is very small.

We employ the IFA method to generate a realistic defect
list and a relative occurrence probability table of the defects.
The IFA method enable us to get a very compact defect set,
while the probability table helps generate a realistic defect
population for simulations. Simulation results show that for
a particular LNA circuit, we are able to reduce the size of
test list by 40% and DPPM level to zero at a cost of 0.2%
of yield loss.
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