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Abstract— Crossbar nano-architectures based on self-
assembled nano-structures are promising alternatives forcur-
rent CMOS technology, which is facing serious challenges for
further down-scaling. One of the major challenges in this
nanotechnology is elevated failure rate due to atomic device
sizes and inherent lack of control in self-assembly fabrication.
Therefore, high permanent and transient failure rates lead
to multiple faults during lifetime operation of crossbar nano
architectures.

In this paper, we present a concurrent multiple error
detection scheme for multistage crossbar nano-architectures
based on dual-rail implementations of logic functions. We prove
the detectability of all single faults as well as most classes of
multiple faults in this scheme. Based on statistical multiple fault
injection, we compare the proposed technique with other online
error detection and masking techniques such as Triple Module
Redundancy (TMR), duplication, and parity checking, in terms
of fault coverage as well as area and delay overhead.

I. I NTRODUCTION

Among different alternatives, Carbon Nano-Tubes (CNT)
and semiconductor Nano-Wires (NW) have shown to be
promising materials to be used in the fabrication of nano-
electronic circuits for the continuation of Moore’s law be-
yond CMOS limitations. These materials are suitable for
the implementation of active devices such as diodes and
transistors as well as interconnect wires and programmable
switches [1], [2], [3].

Bottom-up self-assembly is the main fabrication method
used to manufacture and combine these basic devices to
form electronic circuits. Lack of full control and precise-
ness in self-assembly process makes it mostly suitable for
creating regular crossbar structures [3]. Nano-crossbarsare
realized with crossed carbon nano-tubes and/or nano-wires.
They provide interconnects as well as logic elements by
implementing nano-devices and programmable switches at
the crosspoints. Different Programmable Logic Array (PLA)-
like architectures using nano-crossbars as the basic block
have been proposed to enable the realization of large circuits
[4], [2], [5].

Due to high susceptibility of nano-crossbars to transient
faults and permanent defects during system operation, incor-
porating suitable Fault Tolerance (FT) techniques into their
design is very important [6], [7], [8]. A major step in FT is
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Concurrent Error Detection(CED). A critical requirement
for FT methods targeting nano-crossbars is the ability to
cope with multiple faults, as opposed to the single fault
assumption in traditional FT techniques. This is due to very
high defect rates, both permanent and transient, arising from
self-assembly process uncertainties and very small feature
sizes.

Multiple fault testing has been addressed in PLA testing
techniques [9], [10], [11], [12], [13]. The main problem with
most of these techniques is large test time and offline test ap-
plication, making them incapable of handling transient faults
[12]. Also, some restrictive assumptions on the occurrence
of faults (e.g. faults occurring one by one) [11], [13] or
the circuit under test [12] limits their applicability for nano
architectures. In addition, checkers are required to be inserted
at every stage. This raises important challenges such as fault
detection in the checkers and their relatively high area and
performance overhead [12], [11].

There has been some recent work on fault tolerance of
PLA-like nano-crossbars [8], [6], [14], [7]. The technique
proposed in [8] relies on intensive connection for every nano-
crossbar with its neighbor crossbars to recover from multiple
faults. Availability of such interconnect resources seems
to be infeasible in current nano-architectures. Furthermore,
the method presented in [7] has the assumption of reliable
connections to CMOS substrate at the input/output of every
nano-crossbar stage, which is somehow impractical.

In this paper, we provide an efficient online error detection
scheme for detection of multiple faults (permanent and
temporary) in nano-crossbars and compare it with various
existing techniques. The basic idea of this scheme is to
exploit dual rail logic implementation, primarily used in
diode-based nano-crossbars [3], [1], [2], for error checking.
Detectability analysis of this method for single and multiple
faults is presented. An important feature of this scheme is
that it requires checking only at the final stage, eliminating
large area and performance overhead associated with inter-
mediate checkers (typically implemented in reliable CMOS
substrate), as required by other techniques. We also discuss
some alternative implementations of this scheme to further
improve its fault coverage. We have performed extensive
experimental comparison of this scheme with major online
error detection/masking methods namely NMR, duplication,
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and parity checking with respect to multiple fault detection
coverage as well as area and delay overhead.

The rest of the paper is organized as follows. Section II
presents some preliminaries regarding nano-crossbars along
with a review of previous work. The proposed dual rail error
checking scheme is described in Section III. Implementations
of various online error detection schemes are presented in
Section IV. Experimental results for different schemes are
discussed in Section V. Finally, Section VI concludes the
paper.

II. PRELIMINARY AND PREVIOUS WORK

A. Crossbar nano-architectures

Carbon Nano-Tubes and semiconductor Nano-Wires can
be used to produce programmable logic and interconnects
[15], [3]. The self-assembly process is used to form crossbar
structures from CNTs and NWs [3]. In order to implement
interconnects, programmable switches can be formed at the
crosspoint of nano-wires [3] (Figure 1). Also, it is possi-
ble to implement diodes and transistors at the crosspoints
[15], [16], [17]. By combining programmable switches and
diodes, a programmable logic fabric can be formed. Different
architectures have been proposed based on such diode-
based programmable crossbar structures. Nano logic ar-
rays calledNanoblocksimplementing Resistor-Diode Logic
(RDL) form the basic block of the FPGA-like architecture
called NanoFabric [3]. In order to implement a complete
logic family with such diode-based PLA-like crossbar struc-
tures, both desired functions and their complements should
be implemented at each stage, assuming inputs and their
complements are available. Crossbar structures realized with
transistors at the crosspoints have also been proposed. Array-
based nano architecture usingProgrammable Logic Arrays
(PLAs) has been presented [5]. The main building block,
called the nano Programmable Logic Array (nanoPLA), is
built from a crossed set of N-type and P-type nanowires.
The nanoPLA is programmed using lithographic-scale wires.
Molecular CMOS(CMOL) is another architecture proposed
in [4] designed using the same crossbar array structure as
the nanoPLA design consisting of two levels of nanowires.

B. Previous work

We review the previous work on online error detection for
programmable fabric with respect to the following criteria:

• transient faults as well as permanent defects detection.

Fig. 1. Programmable switches at the crosspoints ([3])

• handling very high failure rates
• multiple faults detection
• concurrent error detection/correction

Extensive work has been done on PLA testing ranging
from test generation [18] (externally applied) to concurrent
error detection techniques [19]. Design for testability (DFT)
has been exploited to simplify test generation and application
and improve test coverage [10], [9], [11], [12], [13].

Some techniques reduce test time and cost, and increase
fault coverage by introducing Built-In Self Test (BIST) to
PLAs [9]. The problem with these techniques is that they are
non-concurrent, unable to detect transient faults. To solve this
problem concurrent error detection techniques for PLAs have
been introduced [12], [13], [11]. The general idea of these
techniques is to assign some codewords to inputs/outputs
in a way that the output in the presence of faults is either
correct or outside the code space [20]. The assumption of
incremental fault occurrence (multiple faults occur one by
one in time) reduces their effectiveness for multiple fault
detection in nano-electronics with high failure rates, causing
simultaneous multiple faults. Also, the method in [13] has
a limiting assumption of unidirectional errors (only 0-to-1
or 1-to-0 errors). In [12], inputs assumed to be error free,
PLA is non-concurrent (only one product line is active for
each input combination), different fault types do not occur
simultaneously, and the primary focus is on single faults.
Moreover, an important drawback of all these techniques is
the need for checkers at the inputs and outputs of each PLA
stage, causing the following limitations for nano-crossbars:

• Checkers impose high area and performance overhead
for large multistage nano-crossbars [12].

• If checkers are placed at each stage, they have to
be implemented with unreliable nano-crossbars (CMOS
implementation of checkers at all stages is not feasible).
Designing testable checkers is a challenging issue [11],
[21].

Some recent work considers defect tolerance for yield
enhancement [22] and fault tolerance [8] in nano-crossbar
arrays based on the reconfigurability of such architectures. To
be able to cope with transient faults, fault masking techniques
for nanoPLAs have also been presented [7], [6], [14]. The
techniques presented in [6] and [14] are based on replication
of input, product, or output lines for fault masking with
considerable overhead. The goal of [7] is to reduce overhead
by selective replication. The required process for indication
of critical lines to replicate might be restrictive. Moreover,
all inputs/outputs are assumed to be in reliable connection
with CMOS level which is not realistic.

The proposed scheme in this paper aims to eliminate the
need for input/output checkers and CMOS connections at
every stage for intermediate checkers to reduce associated
area and performance overhead while preserving very high
error coverage.
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III. D UAL -RAIL ONLINE ERROR DETECTION

A. Definitions, assumptions, and fault model

We assume PLA-like crossbar structures (nano-crossbars)
in the form of AND-OR PLA, as shown in Figure 2. A
crosspointexists at the intersection of each input and product
(product and output) line if it is included in that product term
(output). We also assume that the functions implemented in
nano-crossbars are dual rail functions; i.e. for each output
Fi there is an outputF i which is the complement ofFi.
Also, it is assumed that both inputs and their complements
are available at the inputs of nano-crossbar. This is the in-
herent characteristic of nano-crossbars based on two terminal
devices [3], [1], [2]. Lastly, each logic circuit is implemented
with a multi-stage nano-crossbar.I nput sO ut put s

AND Plane
OR Plane P rod uctLi neC rosspoi nt s

Fig. 2. AND-OR crossbar

Definition 1: Crosspoint insertionhappens when some
extra crosspoints, due to faults, appear in AND-plane or OR-
plane.

Definition 2: Shrinkagerefers to the reduction of the
number of minterms of the function implemented in nano-
crossbar, e.g. due to crosspoint insertion in AND-plane.

Definition 3: Crosspoint deletionoccurs when some the
existing crosspoints in AND-plane or OR-plane disappear.

Definition 4: Expansionrefers to the increase in the num-
ber of minterms of the function implemented in nano-
crossbar, e.g. due to crosspoint deletion in AND-plane.

The fault model in this paper are as follows [11], [12],
[13]:

• Crosspoint insertion:any number of crosspoint insertion
in AND-plane, OR-plane or both.

• Crosspoint deletion:any number of crosspoint deletion
in AND-plane, OR-plane, or both.

• Bridging fault between input lines:includes any num-
ber of possible bridging (wired-or, wired-and) between
input lines.

• Non-dual rail input (NDRI):any number of non-dual
rail inputs to the nano-crossbar, i.e.∃ i, ini = ini.

All other defects/failures manifest themselves as a combi-
nation of the fault types in the fault model as follows:

• Input stuck-at-0, SA0, (SA1) and output SA0 (SA1) are
modeled by ’00’ (’11’) NDRI faults.

• Product line SA0 is modeled by crosspoint deletion in
OR-plane.

• Product line SA1 and output SA1 are equivalent to
multiple ’11’ NDRIs.

• Bridging faults between input and product lines are
equivalent to crosspoint insertion in the AND-plane.
Also, bridging faults between product lines are equiva-
lent to multiple crosspoint insertions in the AND-plane.

B. Online fault detection with dual rail checking

The basic idea of the proposed scheme is to use dual-rail
implementation of a function in nano-crossbars and check
this property for multiple fault detection. Fault detection is
done by checking the outputs of the circuit, i.e.:
error signal raised iff∃ i, Fi = Fi, Fi ∈ {PO}

In multistage nano-crossbars only primary outputs of the
circuit are checked.Undetected erroroccurs when some
outputs are different from their fault-free (expected) values
but they are still dual rail, i.e.Fi 6= Fi exp and Fi 6= Fi.
Since outputFi and its complementF i in a dual rail function
have no common product terms, it is straightforward that any
single fault affects only one of them and, hence. is detected.
However, the behavior of the dual-rail nano-crossbar in the
presence of multiple faults is more complicated. Multiple
fault detectability is discussed next.

Lemma 1:Any number of multiple crosspoint deletion
(insertion) faults in the AND-plane along with any number
of crosspoint insertion (deletion) faults in the OR-plane will
be detected by checking the dual rail primary outputs of a
nano-crossbar.

Proof 1: In the fault free circuit, the set of minterms for
Fi andFi, m(Fi) andm(Fi), have the following properties:
m(Fi) ∩m(Fi) = φ, m(Fi) ∪m(Fi) = 1

Crosspoint deletion in the product lines ofF results in
expansion in them(F ). A crosspoint deletion behaves as
a variable deletion in the boolean function of a product
term which expands the number of minterms covered by
the product term. Therefore, multiple crosspoint deletion
in the AND-plane results in expansion in at least one
output, Fi. When expansion happens inFi, Fi, or both,
the intersection of resulting sets of minterms is no longer
empty, i.e.m(Fi) ∩m(Fi) 6= φ. Therefore, for some input
combinations bothFi and Fi are ’1’. In such cases during
normal operation, the outputFiF i is either error free or non-
dual rail in the form of ’11’. By checking the values ofFi

andF i the non-dual rail erroneous outputs will be detected.
Note that crosspoint insertion in OR-plane adds some product
terms to the function which in turn results in the expansion
in the function (similar to crosspoint deletion in AND-
plane). The same conclusion is achieved when considering
only crosspoint insertion in the AND-plane and crosspoint
deletion in the OR-plane.�

Lemma 1 considers crosspoint faults with the assumption
of fault free (dual rail) inputs. However, non-dual rail inputs
(NDRI) are likely to occur in multistage nano-crossbars
because of non-dual rail outputs due to crosspoint faults
in previous stages. Also, in wired-and (wired-or) bridging
faults, some input ’aiai’ may become ’00’ (’11’). These
NDRI faults can change the behavior of nano-crossbars.
Input and output checkers can be used for each stage to
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ensure that they are fault free [7], [11], [12], [19]. However,
it is not feasible in nano-crossbars, as discussed in Sec. II.

To mitigate checker-related limitations, we propagate er-
rors through the nano-crossbar all the way to the primary
outputs. Then, robust checkers could be incorporated only
at the primary outputs. The effectiveness of this approach
depends on the behavior of nano-crossbars in the presence
of NDRI faults, as discussed next.

Lemma 2:All errors due to NDRI faults in the form of
’00’ (’11’) are detectable by checking the primary outputs
of nano-crossbar.

Proof 2: We show the proof for ’00’. The other case ,
’11’, can be concluded similarly. Having ’00’ at some inputs
changes some product lines erroneously to ’0’, and in turn,
changes at least one outputFi (or F i) erroneously ’0’.
Therefore, the outputs of the nano-crossbar stage with NDRI
in the form of ’00’ are either correct or non-dual rail in the
form of ’00’. �

Corollary 1: All multiple bridging faults at the inputs of
a nano-crossbar are detectable by dual rail implementation.

Multiple wired-and (wired-or) bridging faults are only
capable of producing NDRIs in the form ’00’ (’11’). Due
to Lemma 2, all multiple bridging faults are detectable.

Lemma 3:A combination of multiple ’00’ NDRI faults,
wired-and bridging faults, crosspoint insertions in AND-
plane and crosspoint deletions in OR-plane are all detectable
by dual rail checker.

Lemma 4:A combination of multiple ’11’ NDRI faults,
wired-or bridging faults, crosspoint deletions in AND-plane
and crosspoint insertions in OR-plane are detectable by dual
rail checker.

In some cases, combination of different fault types may
produce undetectable errors, as described below.

Statement 1:A combination of crosspoint insertion and
crosspoint deletion in the AND-plane (crosspoint insertion
and deletion in OR-plane) may not be detected.

To produce dual rail erroneous outputs, multiple faults
should affect bothFi and F i but in different directions. It
means that some faults should cause shrinkage (expansion)
in Fi and at the same time some other faults should cause
expansion (shrinkage) inF i. Consider the following func-
tion: F = bcd + cd, F = cd + cd + bd. Suppose that a
crosspoint deletion causes variable ’b’ to be removed from
the first product term ofF . Also a simultaneous crosspoint
insertion in F changes the product termbd to bcd. For
abcd = 1001, erroneous output (FF ) is ’10’ (fault-free value
is ’01’). However, since the output is still dual rail, this
multiple fault is undetectable.

Note that even if some faults affectF and F in the
different directions, they do not necessarily generate unde-
tectable errors. For example in the above function, suppose
a crosspoint deletion removes variable ’b’ from the product
term ’bcd’ of F and results in an expansion inF . Also, a
simultaneous crosspoint insertion inF changes the product
term ’cd’ to ’ acd’, resulting in a shrinkage inF . Recalcu-
lating the set of minterms forF and F shows that, for all
input combinations, the output ’FF ’ is either error free or

non-dual rail. Thus there will be no undetected errors.
Statement 2:A combination of multiple ’00’ and ’11’

NDRI faults may not be detectable.
Consider the same function as Statement 1. Assume that

fault-free input pairs are ’abcd = 0101’ and ’abcd = 1010’.
The fault-free outputFF is ’10’. Due to some faults, input
pair ’cc’ becomes ’00’. At the same time, ’bb’ becomes ’11’.
Then, the output becomes ’01’.

C. Extensions of dual rail error checking

1) Hazard-free implementation:
Definition 5: Static Hazardrefers to a momentary spu-

rious (glitch) in an output due to a transition between two
adjacent input combinations. In order to refer to such glitches
as static hazard, the desired output value before and after
input transition should be the same [23].

Static (’1’) hazard is likely to occur when two adjacent
minterms are covered by different cubes and there is no cube
covering both. So, when that input changes between these
cubes, the output should remain unchanged. However, due
to relative delays of gates, both cubes might momentarily be
deactivated (output becomes ’0’). In order to prevent static
hazards in the circuit it is required to incorporate the cube
covering the adjacent minterms. Consider the function in
Table I. The set of minterms for a logic function is presented
along with two different realization for this function. The
first one uses minimum cover prime implicants (PI) which
minimizes the area used for the circuit. The second one
includes another PI which covers the adjacent area between
the other two. In the first implementation there is a possibility
of having static hazard in the circuit when input changes
from abc = 110 to abc = 111. By adding product term ’ab’
to the circuit, for every transition between adjacent input
combinations corresponding to output value ’1’, there is an
active product term during the transition, eliminating the
possibility of static hazards. In short, including all PIs in
the realization of a function, instead of just essential PIs,
results in a (static) hazard-free circuit.

Statement 3:Hazard free implementation of a dual rail
circuit improves the detectability of errors.

In order to demonstrate the advantage of hazard-free
implementation, consider the following situation in TableI.
Assume thatabc = 110,abc = 001. ThusF1 = F2 = 1, F1 =
0. Due to some input errorscc becomes 00. This fault causes
F1 to become 0 whileF2 andF1 still preserve their values.
In fact F1F1 pair is a non-dual rail output whileF2F1 is
still dual rail and correct. This is an example of the situation
in which hazard free implementation prevents NDR input
faults from producing NDR output faults in nano-crossbars.
In general, NDR output faults, due to NDR input faults on the
input term changing between two adjacent minterms covered
by different products, could be eliminated by making the
circuit hazard-free. Besides reducing the number of errors
in the circuit, this implementation helps reducing undetected
errors in two ways:

• As mentioned previously, NDR output faults propagat-
ing through another stage might result in undetected
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errors at primary outputs. Reducing the number of NDR
outputs (by hazard-free implementation) could reduce
such undetected errors.

• The necessary condition for undetected errors is to
have bidirectional faults, i.e. a combination of expansion
(’0’ to ’1’ changes) and shrinkage (’1’ to ’0’ changes)
in the circuit. Reducing faults in either direction (by
hazard-free implementation) helps reducing the number
of undetected faults.

TABLE I

M INIMUM COVER AND HAZARD FREE IMPLEMENTATION OF A FUNCTION

ab
00 01 11 10

c
0 0 0 1 1
1 1 1 0 0

F1(minimum cover) =ac + bc

F2(hazard free) =ab + ac + bc

F1(minimum cover) =a c + bc

2) All-minterms implementation:Normally, in a dual rail
circuit with 2 × k inputs (k normal andk complement
signals), the number of ’0’ and ’1’ inputs are the same, i.e.
n0 = k, n1 = k (nv : the number of inputs holding value
′v′). If due to some faults in the previous stages the number
of inputs holding value ’1’ decreases, i.e.n0 > k, n1 < k,
we say that aDecrease In One(DIO) has happened in the
inputs. Similarly, we have Increase In One (IIO). Assume
that the circuit in a PLA-like nano-crossbar is implemented
in the form ofSum Of Minterms(SOM), in which individual
minterms form the products. In this case, each product
term is connected to exactlyk inputs. Thus, for each input
combination, only one product term is active among all
products ofF and F , the one with all itsk inputs being
’1’.

Lemma 5: In SOM dual-rail circuits, all NDRI faults in
the form of DIO are detected by NDR outputs in the form
of ’00’.

Proof 3: In orderF or its complementF to be ’1’, there
should be an active minterm in the circuit. When DIO occurs
in the circuit, the number of inputs holding value ’1’ is
less thank (the number of inputs in each product term).
Therefore, no minterm will be activated, resulting in ’00’
output onFF .

Since DIO results in ’00’ NDR outputs in the same stage,
it in turn causes DIO in the next stage and the effect
propagates all the way to the primary output and will be
detected. It is also possible to have DIO in the circuit even
if there are some ’11’ NDRIs. As long as the number of
’00’ NDRIs is more than ’11’ NDRIs, the circuit is in DIO
situation. According to Statement 2, a combination of ’00’
and ’11’ NDRIs may potentially cause undetected errors.
However, Lemma 5 suggests that in SOM implementation of
a function, whenever DIO happens, the error is guaranteed
to be detected.

Lemma 6: In SOM dual-rail circuits, all combinations of
DIO along with crosspoint insertion faults in AND-plane and
deletion faults in OR-plane are detected.

Proof 4: Even if there is a combination of ’00’ and ’11’
NDRIs, while ’00’ inputs are dominant (the effect is DIO),
shrinkage occurs in the set of minterms for some function in
the SOM implementation. So, addition of crosspoint insertion
(deletion) in AND-plane (OR-plane) cause more shrinkage
in the circuit resulting in some NDR output in the form of
’00’.

Note that having ’11’ NDRIs along with crosspoint inser-
tion (deletion) in AND-plane (OR-plane) is one of the cases
causing possible undetected errors (Statement 1), which is
eliminated here by the SOM implementation.

Lemma 7:All combinations of DIOs along with cross-
point insertion faults in OR-plane are detected.

Proof 5: In SOM implementations, a DIO inactivates all
minterms. So, with any number of crosspoint insertions in
OR-plane, all circuit outputs will be NDR in the form of
’00’.

The above statements suggest that the SOM implemen-
tation of dual rail functions could potentially improve the
coverage of dual-rail checking. Due to relatively high over-
head of this implementation, it might be useful to implement
only the critical parts of the circuit, e.g. PO checkers, with
this scheme.

IV. CED IMPLEMENTATIONS IN NANO-CROSSBARS

Here we discuss the implementation details of various
CED techniques in diode-based nano-crossbars. Figure 3
presents implementation of different techniques for the func-
tion provided in Table I.

A. Dual-rail checking

Consider a multi-output function implemented assum of
productsin a AND-OR PLA (Figure 2). In order to obtain
dual rail implementation of this function, the complements
of all outputs need to be implemented and mapped together
with the function in the same PLA stage, assuming that all
inputs and their complements are available (Figure 3.b).

B. NMR fault masking

N-Modular Redundancy (NMR) technique is a general
error masking approach which can be used with different odd
values for N, starting at 3. We have implemented both 3MR
(TMR) and 5MR to evaluate the effect of N on multiple fault
detection/masking. Figure 3.d shows TMR implementation
for the original circuit of Figure 3.a. As shown in this figure,
TMR implementation requires triplication of all product
terms and outputs. All three copies of products are identical.
Each copy of output uses one set of the triplicated products.
Also, another stage is added next to the triplicated stage
implementing voter to generate one set of outputs. As can
be seen in the figure, for each of the three copies of outputs
(which are concluded to one output), three product terms are
used in the voter stage. Converting circuits to 5MR is similar.
The area overhead of these two methods provided in Table II
is based on this implementation.
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AA ’BB ’CC ’ FAA ’BB ’CC ’ FF’ F1AA ’BB ’CC ’ FF2F3FA_dupA’_ dupB_dupB’_ dupC_ dupC’_ dup
AA’BB’CC’

F_dup
Fig. 3. Implementation of various CEDs in nano-crossbars

C. Duplication
We implement a variation of duplication in nano-crossbar

as originally proposed in [14]. In this approach, inputs as
well as products and outputs are duplicated (Figure 3.c).
Duplicated outputs can be directed to the duplicated inputsof
the next stage, all the way to the Primary Outputs (POs). So,
Only one checker circuit at POs is required and implemented.
This implementation of duplication is suitable for PLAs
which provides some level of fault masking [14], [6].

D. Parity checking
This error checking scheme is used for multi-output com-

binational circuits. For ann output combinational circuit,
additional parity output is added such that for each input
combination, then + 1 outputs hold an even (odd) parity
(and this is how the truth table for the parity output is
constructed). During normal operation, a parity checker for
n + 1 outputs detects the existence of errors in the circuit.
In general, this scheme can be extended for more checksum
output bits, for better detection/correction capabilities. More
information regarding the implementation details of parity
checking for nano-crossbars is provided in Section V-B.

Here, we formulate the area and performance overhead
of these error checking schemes with respect to the origi-
nal circuit. The following assumptions and parameters are
considered in this analysis.

• The implementations are done for AND-OR PLAs
based on diode-based nano-crossbars (i.e. without inver-
sion). Therefore, the original circuit is implemented as
dual rail. Area and delay values are presented in terms
of number of inputs (i), products (p), and outputs (o)
of the dual rail implementation of the function.

• Area cost is represented in terms of the number of
crosspoints required to implement each technique.

• Delay values are assumed to be proportional to the
number of crosspoints (whether they are active or not)
in the critical path from inputs to outputs.

Table II summarizes area and delay costs for different error
checking techniques. NMR area cost is due to replicated

TABLE II

AREA AND DELAY COSTS FOR VARIOUSCED TECHNIQUES

Method Area Delay

Dual rail i.p + p.o i + p + o

Duplication 4.(i.p + .p.o) 2.(i + p + o)
TMR 3.(i.p + 3.p.o + 4.o2) i + 3.p + 10.o

5MR 5.(i.p + 5.p.o + 12.o2) i + 5.p + 21.o

Parity N/A N/A

circuit as well as voter stages. It is obvious that dual rail
scheme is far more efficient than NMR in terms of area
and delay costs. For the duplication method implemented
here, the area cost is about4.(i.p+ p.o) which is four times
more than dual rail scheme. If the architecture can implement
inversion (e.g. FET-based nano-crossbars), the area cost of
duplication and dual rail schemes would be the same. The
area and delay costs of parity checking are strongly function
dependent and cannot be formulated similar to the other
techniques.

V. EXPERIMENTAL RESULTS

A. Fault injection and simulation

To evaluate multiple fault coverage of various CED tech-
niques discussed in Section IV, fault injections into different
benchmark circuits using a PLA simulator written in C++
programming language have been performed. Our fault sim-
ulator program is capable of injecting random multiple faults
into multistage nano-crossbars. Please note that simulation of
all possible multiple faults is infeasible (O(3n) for n fault
sites). Both crosspoint insertion/deletion and input bridging
faults are implemented in the simulator (NDRI faults are
modeled by combination of these faults). The pseudo code
for each fault injection step is as follows.
Function InjectFault()

for (all inputs& all crosspoints)do
rnd← randomnumber(0,1)
if (rnd≤ fault probability) then

inject fault into the corresponding fault site
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In each step of fault injection, we have the option to
preserve previous faults and add some new faults to the
circuit, or to remove the faults from previous step. This way
the simulator resembles the effect of permanent or transient
faults, respectively.

Each fault site (crosspoint or input) has a probability of
being faulty (fault rate) in each step of fault injection by
which the defect density in the simulations is controlled. This
way all multiple-type multiple faults have the opportunity,
with respective probabilities, to occur during fault injection
experiments. The probabilities are set so that in each fault
injection step there is at least one fault in the circuit, to
avoid unnecessary simulation cycles. Also, the probability
of bridge between two inputs decreases exponentially with
the distance between the inputs.

B. Benchmark implementation

Benchmark circuits used in the experiments adapted from
a subset of MCNC benchmarks provided withRASP logic
mapping toolset. These circuits are inBLIF format used
by SIS synthesistool. In order to convert the benchmarks
to multi-stage PLAs suitable for our experiments, we have
usedPLAMAPfrom RASP mapping tool. It converts a circuit
described in BLIF format to custom-sized PLAs described
in the format defined byESPRESSO logic minimization
tool. Dual rail multistage benchmarks can then be obtained
by combining these PLAs and their dual which have been
obtained by ESPRESSO. In order to obtain simulation files
for NMR and duplication, we use these dual rail benchmarks
and convert them to NMR and duplicate versions, based on
the steps provided in Section IV. To obtain parity checking
version of the benchmarks, we have modified the BLIF
files at the very beginning steps of the above process to
incorporate an additional even parity output for the original
primary outputs.100.00%70 00%80.00%90.00%ge 50.00%60.00%70.00%coverag 20 00%30.00%40.00%F aul t c 0.00%10.00%20.00%0.00% 0.001 0.01Fault RateDual Rail Duplicat ion Parity TMR 5MRDual Rail Duplicat ion Parity TMR 5MR
Fig. 4. The effect of fault rate on fault coverage of various CED schemes

C. Simulation results

Table III summarizes the experimental results for different
error checking methods. All numbers in the table are rounded
to two digits after the decimal point. Information providedin

this table contains error detection coverage and fault detec-
tion coverage.Error coveragerefers to the percentage of the
errors at the POs which are detected by the corresponding
technique. Thus, for TMR and 5MR which are masking
techniques, error coverage is meaningless.Fault coverage
refers to the percentage of faults which are detected by each
technique. For NMR techniques, the percentage of faults
successfully masked by the technique is considered as the
fault coverage since the rest of the faults produces undetected
errors. The values in Table III correspond to fault rate of
10−3. This fault rate translates to up to 407 simultaneous
multiple faults for alu4 circuit in dual rail scheme (this
becomes much higher for other techniques such as 5MR).
Along with coverage, area and delay overhead of different
techniques are reported as well. The area costs shown in
this table are in terms of the number of crosspoints used
in each technique. Also, critical path delays are based on
the assumption that delay is proportional to the number of
crosspoints in both AND-plane and OR-plane from the PIs
to POs. Delays and area costs have been normalized to the
values for the dual-rail scheme. It can be seen that other
techniques have considerable area and performance overhead
ranging from 1.87 to 17.14 times the cost of dual rail. As
shown in this table, the coverage for dual rail scheme is
much more than NMR and parity techniques. Duplication
technique has reasonable fault coverage. However, consid-
ering area and delay overhead as well, dual-rail checking
outperforms.

Figure 4 shows the coverage of these error checking
schemes versus different fault rates. This experiment helps
to understand the effect of increasing fault rate on the
effectiveness of different schemes. As can be seen in this
figure, the coverage of NMR techniques drops very quickly
with higher fault rate. Also, 5MR coverage is less than
TMR. However, the coverage of dual-rail checking, unlike
duplication, has almost not been affected with higher fault
rates.

VI. CONCLUSION AND SUMMARY

Fault tolerance techniques are essential in the design of
nano architectures due to very high permanent and transient
failure rates in nanoscale devices. In this paper, we proposed
an online multiple error detection scheme, for both perma-
nent and transient faults, based on dual rail implementation
of logic functions. This scheme is capable of detecting
multiple faults and best suited for nano-crossbar implemen-
tations. The proposed scheme eliminates high hardware and
performance overhead imposed by input/output checkers in
multistage nano-crossbars by incorporating checkers only
at the primary outputs. Moreover, in diode-based nano-
crossbars which are inherently dual rail, it has virtually no
hardware overhead. We proved that the proposed scheme
is capable of detecting all single faults as well as most
cases of multiple faults. Two alternative implementations
were presented to further improve fault coverage of this
scheme. Extensive experiments based on random multiple
fault injection were performed to compare the effectiveness
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TABLE III

SIMULATION RESULTS: FAULT DETECTION COVERAGE, AREA AND PERFORMANCE OVERHEADS OF DIFFERENTCED TECHNIQUES

Method duke2 x4 term1 alu1 alu4 rd48 average

Error Coverage(%)
Parity 49.05 50.00 44.10 44.09 49.30 52.45 48.17
Duplication 97.38 99.37 95.32 94.34 76.03 61.85 87.38
Dual Rail 100.00 100.00 100.00 100.00 100.00 99.96 99.99

Fault Coverage(%)

TMR
Permanent 9.93 1.68 27.60 6.71 12.41 50.15 18.08
Transient 62.33 41.74 79.43 65.09 61.13 96.44 67.69

5MR Permanent 0.02 0.32 0.54 1.06 5.77 8.12 2.64
Transient 36.43 8.41 18.89 8.06 26.54 75.63 28.99

Parity
Permanent 49.45 50.74 56.89 59.96 51.80 53.21 53.67
Transient 59.32 41.68 67.75 93.17 49.63 54.00 60.92

Duplication Permanent 97.66 99.39 96.01 94.50 88.06 75.21 91.80
Transient 99.25 99.87 99.57 98.56 99.80 99.03 99.35

Dual Rail
Permanent 100.00 100.00 100.00 100.00 100.00 99.98 100.00
Transient 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Area

TMR 6.66 6.42 6.75 5.93 6.02 4.13 5.98
5MR 20.33 19.11 20.33 16.94 17.05 9.06 17.14
Parity 1.42 2.41 1.55 3.32 1.49 1.05 1.87
Duplication 4.00 4.00 4.00 4.00 4.00 4.00 4.00
Dual Rail 1.00 1.00 1.00 1.00 1.00 1.00 1.00

delay (critical path)

TMR 3.15 3.33 3.37 3.27 3.13 2.82 3.18
5MR 5.59 6.00 6.05 5.86 5.50 4.76 5.63
Parity 5.00 10.33 1.93 2.00 1.35 1.06 3.61
Duplication 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Dual Rail 1.00 1.00 1.00 1.00 1.00 1.00 1.00

of this error checking scheme with other online fault detec-
tion/masking methods, such as NMR, duplication, and parity
checking, in terms of multiple fault coverage as well as area
and delay overhead. In average, the error coverage of the
proposed scheme for multiple faults is about 99.99% and its
fault coverage is 100.00%, compared with 2.64%, 18.08%,
53.67%, and 91.80% for 5MR, TMR, parity checking, and
duplication, respectively, when the fault rate is10−3. These
results confirm that dual-rail error checking seems to be the
most promising approach for online multiple error detection
in crossbar nano-architectures.
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