
Compiler-Directed Leakage Reduction in Embedded Microprocessors

Soumyaroop Roy, Nagarajan Ranganathan, and Srinivas Katkoori

Department of Computer Science and Engineering

University of South Florida

Tampa, FL 33620

{sroy, ranganat, katkoori}@cse.usf.edu

Abstract— Compiler-directed power gating is an approach in
which sleep instructions are inserted appropriately at compile
time into the application code to selectively deactivate the
functional units in microprocessors during their idle periods
to reduce power dissipation due to leakage. Although the effect
of code transformations on dynamic and system power has
been investigated and reported in the literature, such a study is
lacking in the context of power gating. In this paper, we inves-
tigate and report how the leakage savings in both integer and
floating point units can be improved using machine-dependent
and independent optimizations in a compiler-directed power
gating framework. In our study, it is ensured that power gating
is applied only when the leakage savings are considerably more
than the various overheads incurred in its implementation.
The target embedded processor is modeled on the ARMv4
architecture, which is modified to support the power gating
of its arithmetic functional units. For experimentation, GCC
is used as the compiler infrastructure and Simplescalar-ARM
is used as the detailed architectural simulator for reporting
power and performance metrics for embedded applications
belonging to the MiBench and MediaBench benchmark suites.
Experimental results suggest that the additional savings in
leakage energy due to one or more of the optimizations may
vary largely depending on the benchmark. Moreover, the
overhead of sleep instructions can be reduced by up to 50
times by performing procedure inlining.

I. INTRODUCTION

With the proliferation of ubiquitous and portable com-

puting devices, low power design of CMOS circuits has

become an imperative consideration in ensuring long battery

lives for such devices. These mobile devices range from

simple microcontrollers in sensor networks to moderately

sophisticated embedded microprocessors in smartphones. Till

the last decade, the major contributor of the total power

dissipation in CMOS circuits was dynamic power, which

is due to the charging and discharging of gate capacitances

during output switching. However, in the recent years, due

to the sub-100nm feature sizes in fabrication technologies,

leakage power, which is primarily due to the subthreshold

leakage current between the source and the drain terminals

of the transistor, has started to contribute significantly to the

total power of CMOS circuits [1]. Therefore, developing

techniques to reduce leakage power in CMOS circuits is

generating tremendous interest in the low power research

community these days.

Power gating [2] is a circuit-level technique that reduces

the subthreshold leakage by cutting off the supply voltage

to the circuit, thereby, putting it to sleep. To wakeup the

circuit, the supply is simply restored to it, which brings it

to the active operating mode. Power gating is considered

to be one of the most useful techniques for leakage reduc-

tion because, at the cost of low energy and performance

overheads, the savings in leakage achieved by power gating

can be substantially larger than those achieved by any other

technique. The overhead in the energy is as a result of

charging and discharging of the gate capacitances of the

circuit when it is turned on and off, respectively. If a circuit is

brought into and out of its low-leakage mode too frequently,

the energy overhead may become larger than the leakage

savings achieved, thereby making power gating ineffective

for leakage savings. Thus, adequate considerations about the

overhead energy should be made while designing the controls

to power gating to ensure that savings in leakage are achieved

during the operation of the circuit.

Power gating can be applied in microprocessors to put

its components to sleep during the periods when they are

idle. Their controls can be designed either entirely at the

microarchitectural level or in the form of special instruc-

tions (power gating instructions) that are embedded into

the application code by the compiler, which when executed

during program execution put those components in and out of

low-leakage states. In the latter compiler-directed approach,

static analyses of the application program are performed to

identify program regions where functional units are expected

to be idle and power gating instructions are inserted at the

boundary of such regions. Thus, this approach is dependent

on the compiler optimizations that are performed to generate

the executable because they may alter the power gating

opportunities of the components in a favorable or unfavorable

way. This aspect of compiler-directed power gating was

addressed for the first time in [3], in which four scalar

integer optimizations were performed to improve the power

gating opportunities of the integer multiplier. In this work,

we present the results of a more comprehensive study inves-

tigating how the leakage savings in both integer and floating

point units can be improved using machine-dependent and

independent optimizations in GCC, which is a production

compiler framework. We discuss these optimizations from

the power gating perspective and verify their effectiveness

with the help of simulations. The influence of a few high

level compiler optimizations on dynamic power and energy

consumption in microprocessors was studied by Kandemir

et al. in [4], however, no such study has been performed for

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 35

leakage power.

This paper is organized as follows. Section II presents

the related work and Section III describes the architecture

support for power gating and the technique for inserting

power gating instructions into the code. Section IV discussses

compiler optimization techniques that enhance opportunities

for power gating. The experimental results and the conclu-

sions are presented in Section V and Section VI, respectively.

II. RELATED WORK

Power gating techniques at a purely microarchitectural

level were first investigated for caches [5], [6]. Subsequently,

Hu et al. presented a purely microarchitectural technique that

was based on hardware-level branch prediction to control

the sleep and wakeup of arithmetic functional units in [7].

In this paper, we simply use the term functional units to

refer to the arithmetic functional units in the datapath of a

microprocessor. Compiler-directed approaches with microar-

chitectural support have generated more interest in effectively

employing power gating to reduce leakage power in idle

functional units. Two of the early works based on compiler-

directed techniques were presented by Rele et al. in [8],

wherein they target reducing leakage in idle functional units

in superscalar processors, and by You et al. in [9], wherein

they apply dataflow analyses to inspect program regions

for idleness of functional units. A brief study [10] on the

impact of both input vector control and power gating was

presented by Zhang et al. The need for an explicit wakeup

instruction to activate the functional units was eliminated

in the technique proposed by Roy et al. in [11], wherein the

functional units were designed with multiple sleep transistors

to facilitate a single cycle wakeup for those units. Thus, by

the time an instruction reached the execution stage from the

decode stage, the functional unit was already active to start a

computation. Seki et al. and Komoda et al. further removed

the need for an explicit sleep instruction by encoding the

sleep information into the unused bits in the instruction

format for each data processing instruction in [12] and [13],

respectively.

III. ARCHITECTURE AND COMPILER SUPPORT FOR

POWER GATING

The architecture model used in this work is based on the

one proposed in [11] because of the following reasons:

1) The ARM architecture accounts for approximately

75% of the 16/32-bit embedded RISC processors in

the world [14]. Since, this work investigates a com-

piler driven leakage reduction technique for embedded

microprocessors, the choice of the ARM architecture

seems most appropriate.

2) In [11], the ARM instruction set architecture (ISA) is

extended with an explicit sleep instruction but there

is no explicit wakeup instruction. A functional unit is

automatically activated by the decode logic when an

instruction requiring that unit is decoded.

3) The integer and floating point functional units in the

target ARM processor are designed and characterized

for latency and power using 70 nm PTM files.

The functional units that can be power gated are an integer

multiplier, an FP adder, an FP multiplier, and an FP division

and square root unit. The integer ALU is not power gated

because it is the most frequently used functional unit in every

application. Unlike in [11], however, the barrel shifter in

this work is not considered for power gating because the

ARM instruction set supports data and memory instructions

in which one of the operands may be a register shifted

by a constant integer [15]. During code optimizations, such

instructions are generated very densely, thereby making the

usage of the shifter much higher than the other functional

units. The decode logic is extended to include a 4-bit register

that controls the sleep transistors of the four functional units.

The assembly opcode for the sleep instruction is slp. It

takes a 4-bit immediate integer as an argument that encodes

the list of the functional units that are to be deactivated.

The format of the machine code for the sleep instruction is

chosen from the domain of exceptional opcodes described

in the ARM reference manual. It has bits 7-0 assigned to

‘F0’ and bits 31-20 to ‘07F’. Instruction bits 11-8 are

reserved for the four-bit immediate integer argument that is

passed to the sleep instruction. The assembler source code

in Binutils [16] is modified to generate the machine code

for the slp instruction and the source for sim-ourorder

in Simplescalar architectural simulator [17] is modified to

carry out the activation and deactivation of the functional

units during the decode stage of the processor pipeline.

The approach for inserting power gating instructions dur-

ing compilation is outlined in Algorithms 1-3. Algorithm 1

describes the technique of inserting sleep instructions within

a procedure. The functional unit usage of all the basic blocks,

loops and function are computed. In case of a procedure

Algorithm 1 pgi-insert(f)

1: /* Gather functional usage information */
2: for each basic block b ∈ CFG nodes do
3: Note functional unit usage in b, FU(b)
4: end for
5: FU(f)← ∪FU(b), ∀b ∈ CFG nodes
6: Compute the loop hierarchy tree, L, in f
7: for each loop l ∈ L do
8: FU(l)← ∪FU(b), ∀b ∈ l
9: end for

10: /* Insert power gating instructions */
11: for each region r ∈ L in BFS order do
12: if FU(r) ⊂ FU(parent(r)) then
13: /* r needs fewer functional units than parent(r) */
14: Insert sleep(FU(parent(r)− FU(r))) at the entry of r
15: end if
16: end for

call instruction, if that call is to a procedure from the

standard C math library, it is assumed that the instruction

uses all the functional units. Otherwise, it is assumed that

the instruction does not use any of the functional units.

This approach, although conservative, is essential to handle

36

standard library functions in the code. Then, the loop tree is

traversed in postorder sequence for regions whose entries can

be gated with sleep instructions. A loop tree is a rooted tree

data structure, in which each node represents a loop in the

procedure and the children of a node, l, represent the loops

immediately contained inside l. The root of the loop tree

represents the entire procedure. Algorithm 2 describes the

expansion steps for a procedure, which involves performing

all the intraprocedural optimizations, inserting power gating

instructions, and generating its assembly code. The top level

Algorithm 2 expand(f)

1: Perform intraprocedural optimizations on f
2: pgi-insert (f)
3: Output the assembly code for f

driver that drives the entire compilation process is described

in Algorithm 3 and is equipped to perform interprocedural

analysis (IPA) and procedure inlining. If IPA is enabled, a

call graph is constructed and procedure inlining is performed

on the call graph. After that, the expansion of the procedures

is performed in the postorder sequence of the vertices in the

call graph. This is done to enable transfer of data from a

callee to its caller, which may lead to better optimization

opportunities during code generation of the caller. If IPA is

Algorithm 3 toplevel-driver()

1: if ipa-enabled then
2: Construct the call graph
3: Perform procedure inlining
4: for each procedure x ∈ call graph in postorder sequence do
5: expand (x)
6: end for
7: else
8: for each procedure x ∈ procedure parse sequence do
9: expand (x)

10: end for
11: end if

not enabled, the procedures are expanded in the order they

are parsed from the source file.

It should be noted that the compiler optimization tech-

niques discussed subsequently in this work reduce the

functional unit usage in a program either by completely

eliminating instructions that use those units (e.g., strength

reduction) or by moving them to less frequently executed

regions in the program (e.g., code motion). This results in

generation of code that has more regions which do not use

those units, thereby making them idle for longer periods of

time. Therefore, although we perform our experiments using

the technique for inserting power gating instructions decribed

above, all compiler-directed power gating techniques should

benefit from these optimization techniques.

IV. PERFORMING COMPILER OPTIMIZATIONS TO

IMPROVE POWER GATING

In this section, we discuss how the effectiveness of a

compiler-directed power gating approach may be improved

with the help of compiler optimizations.

A. Dominator Optimizations

These optimizations use the dominance information of

the control flow graph (CFG) for the procedure to perform

various optimization tasks. Given two basic blocks X and

Y , block X dominates block Y if and only if X is always

executed before Y . The common dominator optimizations

are dead code elimination, constant and copy propagation,

and common subexpression elimination. Dead code elimi-

nation is an optimization technique that removes code that

will not get executed during program runtime. Constant

propagation and Copy propagation are techniques that sub-

stitute the occurence of a constant operand and a source

variable in a chain of copy or move operations throughout

the code, respectively. Common subexpression elimination

(CSE) searches for instances of identical expressions and

attempts to replace them with a single temporary holding

the computed value. Its scope can be either local to a basic

block (local CSE or just CSE) or across basic blocks (global

CSE). Most of the optimizations in this category can be very

effective in removing redundant arithmetic operations from

the code, thereby, eliminating the need for functional units

in various regions in the program.

B. Loop Optimizations

We discuss two optimizations in this category. The first

is code motion or code hoisting, in which expressions that

do not vary over different iterations of a loop are moved

out of it. This may lead to one or more multiplication or

division operations to be hoisted before the entry to the

loop, thereby leaving the loop body devoid of that operation.

In such a case, a sleep instruction, putting the appropriate

functional units to sleep, may be inserted at the entry of

the loop. The second is a family of optimizations that are

performed on induction variables. An induction variable is

a variable that gets increased or decreased by a constant

value in every iteration of a loop or varies linearly with

respect to another induction variable. Strength reduction is

an induction variable optimization in which an iterated series

of strong computations is replaced with an equivalent series

of weaker computations. Although both the optimizations

discussed above have traditionally been used and proven to

be effective on integer instructions, if IEEE or ISO floating

point (FP) precision rules are relaxed, these techniques can

also be applied to FP instructions.

C. Machine Dependent Optimizations

These optimizations require a detailed knowledge of the

machine architecture, like pipeline latency specifications,

functional unit latencies, cache latencies, branch delay slot

details, etc. One subcategory of these optimizations, known

as peephole optimizations, includes techniques that perform

code transformations on a small window of instructions. For

example, in the C programming language, the expression

a[i], where a is an integer array on a 32-bit machine,

translates to the memory address given by a + 4 ∗ i. This is

because the size of integer type data on a 32-bit machine is

4 bytes. If code generation is performed based on the above

37

computation, a multiplication instruction will be introduced

by the compiler prior to a load or store instruction for

the array element. However, ARM also provides a complex

addressing mode for its load and store instructions, in which

the base address and the offset can be specified directly.

Thus, the multiply instruction may be eliminated during

this optimization. The other optimization in this category is

weak strength reduction, in which multiplication and division

operations in which one of the operands is a constant is

replaced with a sequence of addition, subtraction, and shift

instructions. For example, a·119 may be expressed as a·(16+
1)·(8−1). The latter expression can now be computed solely

by using add, subtract, and left shift operations without the

need for a multiply instruction. The optimized code is also

likely to be faster than the unoptimized code because, while

a multiply instruction takes multiple cycles (upto 16 cycles in

ARMv4 architecture), the add, sub, and asl instructions

each take just 1 cycle to execute. As it can be seen, the

decision to carry out the above transformations requires

accurate estimation of latencies of various instructions for

the target machine [18], [19], which is only available at this

stage of compilation.

D. Procedure Inlining

Procedure inlining is an interprocedural optimization that

replaces the body of a callee procedure within the body of

the caller procedure. From the perspective of power gating,

procedure inlining has two distinct advantages:

1) Any modern static compilation flow features perform-

ing code generation for one procedure at a time.

Therefore, procedure inlining improves the visibility

of the program behavior for the compiler during code

generation, thereby making the intraprocedural opti-

mizations more effective.

2) The process of inserting sleep instructions is also per-

formed at the procedure level and, therefore, procedure

inlining may reduce the number of discrete regions

at the entries of which sleep instructions are inserted.

This, in turn, may reduce the number of redundant

sleep instructions that are executed during runtime.

V. EXPERIMENTAL SETUP AND RESULTS

For this work, we set up an ARM cross-compiler toolchain

with GCC 4.2.1, Binutils 2.17, and Glibc 2.3.6 [16]. GCC

is used as the compiler framework because the quality

of code generated by GCC is generally much superior

to that generated by most research compilers. Moreover,

GCC has a rich library of compiler optimizations which

can be explored comprehensively in this work. GCC uses

three intermediate representations - GENERIC, GIMPLE,

and RTL. The compiler front end parses the C source

code and converts it into GENERIC representation. This is

lowered into GIMPLE representation, where high level code

transformations (procedure inlining, loop transformations,

etc.) are performed. Lower level optimizations, including

most of the machine dependent optimizations (instruction

scheduling, peephole optimizations etc.), are performed at

the RTL level. The control flow graph (CFG) information

for a procedure is retained till late in the RTL optimization

passes. Since insertion of power gating instructions into

the code requires its control flow information, this pass is

added as the final pass before the control flow graph for the

procedure is purged and the procedure is described only as

an instruction list.

A. Optimization Configurations

TABLE I

OPTIMIZATION CONFIGURATIONS

Optimization
Description

Label

C0 Base configuration (only machine specific instruction
scheduling is performed)

C1 C0 + Machine dependent peephole optimizations +
Dominator optimizations

C2 C1 + Loop invariant code motion

C3 C2 + Induction variable optimizations

The optimizations in each of the configurations above may be performed
with procedure inlining and floating point optimizations

Table I describes the various optimizations configurations

defined for the purpose of experimentation in this work. C0

is the base configuration in which only machine specific in-

struction scheduling is performed. In C1, machine dependent

peephole optimizations and all dominator optimizations (as

enumerated in the table) are performed. In C2, loop invariant

code motion is performed along with those in C1. Finally,

in C3, induction variable optimizations are performed in

addition to those performed in C2. All the intraprocedural

optimizations above can also be performed after procedure

inlining is performed. Along with that, the floating point

arithmetic optimization flag -ffast-math can also be

turned on during all the intraprocedural optimizations. This

is particularly helpful for benchmarks that are floating point

intensive.

B. Results

TABLE II

DESCRIPTION OF METRICS

Metric label Description

cyc Number of simulation cycles

ovhd Percentage of overhead cycles due
to power gating, computed as
1 - (cyc without power gating/cyc with power gating)

slp Number of sleep instructions decoded

bsy Number of cycles for which a unit is busy

engy leakage energy for a unit

sav Percentage savings due to power gating, computed as
1 - (engy without power gating/engy with power gating)

We ran the experiments assuming a library of functional

units which have breakeven periods of 500 cycles and

sleep/wakeup latencies of 1 cycle. The leakage savings in

sleep mode for the units are 50%, which indicates that the

theoretical upper bound on the maximum savings is 50%.

This is in agreement with the details of the functional unit

38

library developed in [11]. Table II enumerates the metrics

that are computed and reported in this section to demonstrate

the effectiveness of power gating. Table III describes the pro-

cessor configuration used during simulations. Experiments

were performed on various benchmarks from MiBench [20]

and MediaBench [21] suites.

TABLE III

ARM PROCESSOR CONFIGURATION [17]

Fetch Queue (instructions) 2

Fetch/Decode/Issue width 1

Branch Predictor Not-taken

Functional Units

1 Integer Multiplier (16 cycles)
1 FP Adder (6 cycles)
1 FP Multiplier (10 cycles)
1 FP Div/Sqrt (19 cycles)

Instruction L1 Cache 16K, 32-way

Data L1 Cache 16K, 32-way

L2 Cache None

Memory bus width 4-byte

TABLE IV

STATISTICS FOR Susan Corners

cyc1
Imul Fdsq

slp1

sav bsy1 sav bsy1

C0 1.00 6.10 1.00 9.34 1.00 1.00

C12 0.79 6.54 0.10 8.10 1.00 0.83

C22 0.81 9.11 0.12 19.78 0.17 8.02

C32 0.82 12.35 0.08 21.08 0.17 0.73

1 The numbers in this column are normalized with the
number in C0

2 Performed with floating point optimizations

Susan Corners is an image processing program that detects

corners in an image. In this benchmark, the integer multiplier

is busy for 14% of the cycles in C0. The FP adder, multiplier

and divider are busy for 0.8%, 1.4%, and 0.5% of the

cycles in C0. When the optimizations are performed on this

benchmark, marked improvements in leakage energy savings

are observed for the integer multiplier and the FP divider

(Table IV). In C1-C3, the number of busy cycles for the

integer multiplier drops by 8X (0.12 vs. 1.0) to 12X (0.08 vs.

1.0) giving an increase in savings by 7% (6.54% vs. 6.1%)

to 2X (12.35% vs. 6.1%). For the FP divider, the number

of busy cycles drops by almost 6X (0.17 vs. 1.0), thereby

increasing the savings by more than 2X (19.78% or more vs.

9.34%). As indicated in the table, floating point optimizations

are performed in C1-C3. Interprocedural optimizations are

not performed for this benchmark because almost the entire

execution time is spent in one function that is called by

the main() routine for corner detection. The performance

overhead (ovhd) is between 0.4% and 0.6%.

Susan Edges is another image processing program (part of

the same distribution as Susan Corners) that detects edges

in an image. In this benchmark, the integer multiplier is the

most frequently used unit (busy for 17.3% of the cycles in

C0). The FP adder, multiplier, and divider are busy for 1%

of the cycles in C0. While the usage statistics do not change

for the FP units over the various optimization configurations,

TABLE V

STATISTICS FOR Susan Edges

cyc1
Imul

slp1

sav bsy1

C0 1.00 3.30 1.00 1.00

C1 0.74 29.50 0.24 6.97

C2 0.73 29.29 0.22 7.00

C3 0.78 29.95 0.21 1.07

1 The numbers in this column are nor-
malized with the number in C0

they change significantly for the integer multiplier (Table

V). In C1, the number of busy cycles for this unit reduces

by 4X (0.24 vs. 1.0), thereby increasing the savings by

more than 9X (29.5% vs. 3.3%). In C3, the number of

busy cycles reduces by almost 5X (0.21 vs. 1.0). This is

due to strength reduction performed on induction variables,

which are instrumental in replacing multiplication operations

with equivalent add or subtract operations. The performance

overhead (ovhd) for this benchmark ranges from 0.06% to

0.1%.

TABLE VI

STATISTICS FOR Mpeg2 Encode

cyc1
Fadd Fmul

slp1

sav bsy1 sav bsy1

C0 1.00 36.39 1.00 38.24 1.00 1.00

C12 0.90 38.36 0.89 44.20 1.01 1.66

C22 0.93 38.02 0.95 39.00 1.01 1.70

C32 0.97 40.80 0.86 42.13 0.99 1.81

C33 0.78 41.37 0.86 42.63 1.00 0.79

1 The numbers in this column are normalized with the
number in C0

2 Performed with floating point optimizations
3 Performed with procedure inlining and floating point

optimizations

Mpeg2 Encode is a video compressing program which

converts uncompressed video frames into MPEG-2 video

coded bitstreams. The FP multiplier is the most frequently

used unit (busy for 4.4% of the total cycles in C0), whereas

FP divider is the most infrequently used units (busy for less

than 0.01% in C0). Integer multiplier is busy for 3.3% of

the cycles and FP adder is busy for 2.6% of the cycles (both

in C0). Over all the optimization configurations, the savings

in FP divider and the integer multiplier are almost uniform

(50% and 31%, respectively). However, for the FP adder,

5% extra savings are achieved in C3 with procedure inlining

over that in C0 (41% compared to 36%). This is a significant

improvement considering the fact that the theoretical upper

bound on maximum savings is 50%. For the FP multiplier,

6% extra savings are observed in C1 over those in C0

(44% compared to 38%). The range of performance overhead

(ovhd) in implementing power gating is 0.08% to 0.10%.

Rsynth is a text to speech synthesis program in which

the integer multiplier and the FP divider unit are used very

infrequently (less than 0.1 %). Due to this, the fraction

of savings for these units are almost uniform over all the

optimization configurations (almost 50%). However, the FP

39

TABLE VII

STATISTICS FOR Rsynth

cyc1
Fadd Fmul

slp1

sav bsy1 sav bsy1

C0 1.00 0.81 1.00 0.74 1.00 1.00

C12 0.82 1.01 0.74 1.31 0.95 0.02

C22 0.83 1.01 0.74 1.17 0.95 0.02

C32 0.83 1.23 0.74 1.98 0.95 0.02

1 The numbers in this column are normalized with the
number in C0

2 Performed with procedure inlining and floating point
optimizations

adder and the FP multiplier are used extensively (they are

busy during 10% and 26% of the simulation cycles in C0).

Due to such extensive usage of these units, the savings in

them are negligible (less than 1%). However, the overhead of

sleep instructions is very high since the source code descrip-

tion has numerous small procedures that carry out specific

arithmetic functions. Therefore, when procedure inlining is

perfomed, the number of sleep instructions inserted reduces

by 50X. This is because the small procedures are inlined into

their callers, thereby generating larger sequential program

regions. Minor increase in savings (from 1.01% - 2.1%) can

also be seen for these two units. This demonstrates the impact

that procedure inlining can have on reducing the sleep in-

struction overhead in power gating. Table VII enumerates the

statistics for these units over all the configurations. Except for

C0, procedure inlining and floating point optimizations are

performed in every configuration. It can be seen that when

procedure inlining is performed, the busy cycles for the FP

adder and FP multplier reduce by 26% and 4%, respectively,

with respect to those in C0. Increase in code size due to

procedure inlining is above 0.8%. The performance overhead

(ovhd) due to power gating is 0.6% in C0 and 0.01%, on an

average, in the rest of the configurations.

VI. CONCLUSIONS

In this work, we analyze various compiler optimization

techniques from the perspective of improving the effective-

ness of compiler-directed power gating of arithmetic func-

tional units in an embedded microprocessor. We also perform

extensive simulations in a strong experimental framework

to substantiate the analyses above. We showed that, de-

pending on the nature of the application, various compiler

optimizations can improve the effectiveness of power gating

significantly. Since the leakage component in CMOS circuits

is increasing every technology generation, it is imperative

that compilers will need to generate code to not only im-

prove performance but also reduce energy consumption in

microprocessors. The work presented in this paper serves as

an important step towards satisfying that requirement.

REFERENCES

[1] R.K. Krishnamurthy, S.K. Mathew, M.A. Anders, S.K. Hsu, H. Kaul,
and S. Borkar. High-performance and low-voltage challenges for sub-
45nm microprocessor circuits. International Conference on ASIC,
pages 283–286, 2005.

[2] K. Roy. Leakage Power Reduction in Low-Voltage CMOS Design.
IEEE International Conference on Electronics, Circuits and Systems,
pages 167–173, 1998.

[3] S. Roy, N. Ranganathan, and S. Katkoori. Exploration of Compiler
Optimization Techniques for Enhancing Power Gating. International

Symposium on Circuits and Systems, pages 1004–1007, 2009.
[4] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and Wu Ye. Influence of

Compiler Optimizations on System Power. 9:801–804, 2001.
[5] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting

Generational Behavior to Reduce Cache Leakage Power. International

Symposium on Computer Architecture, pages 240–251, 2001.
[6] K. Flautner, Z. Hu, and M. Martonosi. Drowsy Caches: Simple

Techniques for Reducing Leakage Power. International Symposium

on Computer Architecture, pages 241–250, 2002.
[7] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,

and P. Bose. Microarchitectural Techniques for Power Gating of
Execution Units. International Symposium on Low Power Electronics

and Design, pages 32–37, 2004.
[8] S. Rele, S. Pande, S. Onder, and R. Gupta. Optimizing Static Power

Dissipation by Functional Units Superscalar processors. International

Conference on Compiler Construction, pages 261–274, 2002.
[9] Y. You, C. Lee, and J.K. Lee. Compiler Analysis and Supports for

Leakage Power Reduction on Microprocessors. ACM Transactions on

Design Automation of Electronic Systems, pages 147–164, 2006.
[10] W. Zhang, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and V. De.

Compiler Suppport for Reducing Leakage Energy Consumption. De-

sign Automation and Test in Europe, pages 1146–1147, 2003.
[11] S. Roy, S. Katkoori, and N. Ranganathan. A Compiler Based Leakage

Reduction Technique by Power-Gating Functional Units in Embedded
Microprocessors. International Conference on VLSI Design, pages
215–220, 2007.

[12] N. Seki et al. A fine-grain dynamic sleep control scheme in MIPS
R3000. IEEE International Conference on Computer Design, pages
612–617, 2008.

[13] N. Komoda et al. Compiler Directed Fine Grain Power Gating for
leakage Reduction in Microprocessor Functional Units. Workshop on

Optimizations for DSP and Embedded Systems, pages 42–51, 2009.
[14] Advanced RISC Machines Limited. ARM Product Backgrounder.

http://www.arm.com/miscPDFs/3823.pdf, 2005.
[15] Advanced RISC Machines Limited. ARM7 Processor Architecture

Data Sheet. http://www.arm.com/.
[16] GNU Project. GCC, the GNU Compiler Collection. http://gcc.

gnu.org/.
[17] D. Burger and T. Austin. The Simplescalar Tool Set, version 2.0. Tech-

nical report, TR-97-1342, University of Wisconsin-Madison, 1997.
[18] P. Briggs and T.J. Harvey. Multiplication by Integer Constants.

Technical report, Rice University, 1994.
[19] T. Granlund and P. Montgomery. Division by Invariant Integers using

Multiplication. Proc. ACM SIGPLAN, Conf. on PLDI, pages 61–72,
1994.

[20] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. IEEE Annual Workshop on Workload

Characterization, pages 3–14, 2001.
[21] C Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A

Tool for Evaluating and Synthesizing Multimedia and Communica-
tions Systems. International Symposium on Microarchitecture, page
330, 1997.

40

