
  

  

Abstract—Square and square-root are widely used in digital 

signal processing and digital communication algorithms, and 

their efficient realizations are commonly required to reduce the 

hardware complexity. In the implementation point of view, 

approximate realizations are often desired if they do not 

degrade performance significantly. In this paper, we propose 

new linear approximations for the square and square-root 

functions. The traditional linear approximations need 

multipliers to calculate slope offsets and tables to store initial 

offset values and slope values, whereas the proposed 

approximations exploit the inherent properties of 

square-related functions to linearly interpolate with only simple 

operations, such as shift, concatenation and addition, which are 

usually supported in modern VLSI systems. Regardless of the 

bit-width of the number system, more importantly, the 

maximum relative errors of the proposed approximations are 

bounded to 6.25% and 3.13% for square and square-root 

functions, respectively.  

I. INTRODUCTION 

Square and square-root operations are commonly used in 

many digital signal processing systems. For example, vector 

quantization determines the representative codeword by 

calculating the Euclidean distance [1] using square operations, 

Viterbi decoding computes branch metrics using square 

operations [2], and the maximum-likelihood (ML) estimation 

for Gaussian distortions, such as sphere detection for 

multi-input multi-output (MIMO) antenna systems [3],  needs 

square operations. The square-root function is also important 

in many applications such as the distance calculation between 

two points in three-dimensional graphics and the calculation 

of Euclidean norm in vector median filtering [4]. 

In such applications, approximate square and square-root 

functions have more advantages than the exact ones. 

Especially for estimation algorithms dealing with input 

values corrupted by noise, exact calculations are less 

important than achieving efficient implementations. 

Therefore, it is desired to approximate the functions without 

sacrificing the error performance significantly. There have 

been a few works on the approximations. Some of the works 

are devoted to approximate square operations in the 

viewpoint of optimizing logic circuits [5]-[9], and others are 

focused on the algorithms to approximate Euclidean norm 

[10]- [12]. 

In this paper, we propose a new method to approximate the 

square-related functions based on linear interpolation.  The 

proposed method exploits the following properties of the 

operations: 1) if the input value is a power of 2, its square and 

square-root can be calculated easily by shifting the input 

value, and 2) if the slope of every interpolating line is 

approximated as a power of 2, the slope multiplication can be 

replaced with a shift operation. Therefore, the proposed 

method enables both square and square-root functions to be 

approximated with simple operations such as shift, 

concatenation and addition. These operations are basically 

supported in most of modern VLSI systems, and can be 

shared for the proposed method. Note that the proposed 

method can be implemented without employing any tables 

and multipliers, whereas the traditional linear approximation 

necessitates them. The relative errors of the approximate 

square and square-root functions are bounded to 11.11% and 

6.07%, respectively.  Additionally, efficient compensation 

techniques are proposed to further reduce the maximum 

relative errors to 6.25% and 3.13%. 

The rest of the paper is organized as follows. In Section II, 

we briefly describe the previous works proposed to 

approximate square and square-root functions. In Section III, 

we propose the multiplier-less, table-less linear 

approximations for square function. Section IV explains how 

the proposed method can be applied to square-root function. 

In Section V, we evaluate the performance of the proposed 

approximations compared to those of the previous works, and 

then discuss the advantages of the proposed method. 

Concluding remarks are made in Section VI. 

II. PREVIOUS WORKS 

In this section, we briefly review the previous works of 

square and square-root approximations. First of all, it is a 

well-known fact that the calculation of x
2
 is simpler than the 

general multiplication because the number of partial products 

can be reduced by half [13]. This property has been actively 

utilized to approximate square functions in the estimation 

hardware such as Viterbi decoders. In [14], x
2
 is exactly 

calculated by recursively decomposing x, and the 

decomposition results in a cellular logic array that can reduce 

hardware complexity compared to the general multiplier. 

An N-bit positive number, x can be decomposed into{xN-1, 

(N-1)b0} and xN-2:0 as in [14], where xi is the i-th bit of x, xi:j is 

a part of x from the j-th bit to the i-th bit (0 ≤ j ≤ i), {x, y} is 

the concatenation of x and y, and Nb0 is the N-bit binary 

representation of 0. Then x
2
 can be expressed as {xN-1, 

(N-1)b0}
2
 + 2·{xN-1,(N-1)b0}·xN-2:0 + (xN-2:0)

2
. By removing 

non-dominant terms, we can approximate x
2
 as {xN-1, 
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(N-1)b0}·({xN-1, (N-1)b0}+{xN-2:0, 1b0}) [8]. In order to 

improve the error performance of this approximation, a 

compensation scheme is introduced in [5], which adds a 

regular bit-pattern to the approximation result. The carry 

propagation mechanism occurring in summing the partial 

product terms of x
2
 is investigated in [9] to derive a systematic 

approach to compensate the approximate error. In [7], the 

logic function for each bit in x
2
 is approximated to a regular 

one and then followed by a heuristic compensation. 

Although many applications require square-root operations, 

there have been few works on approximating the square-root 

operation. Possible solutions are to remove square-root 

operations by transforming the algorithm or to calculate them 

by using look-up tables. Compared with the square operation 

that can generate all the partial products simultaneously, the 

square-root operation is usually calculated iteratively as its 

computation is very similar to division [13]. To approximate 

the square-root operation, we can employ iterative solvers 

such as Newton-Rapshon, bisection and so on. As the 

iterative solvers need multiple cycles to produce the final 

result, they suffer from the converging speed, and are not 

appropriate for hardware implementation [15]. It is hard to 

find some previous works directly related to the 

approximation, since the square-root operation is serial in 

nature. Instead, we can find some works on the approximation 

of composite operations which contain square-root operations. 

In [11] and [12] the Euclidean norm (L-2 norm) required in 

the vector median filtering is approximated as a linear 

combination of the components of a vector. In [10], the 

Euclidean norm is approximated as a linear combination of 

other norms such as L-1 and L-∞. However, a number of 

complicated operations such as division and multiplication 

are used in those approximations [11] [12]. 

III. PROPOSED APPROXIMATION FOR SQUARE 

FUNCTION 

In this section, we propose a new approximation for the 

square function. The proposed method is to apply piecewise 

linear approximations. As shown in Fig. 1, the piecewise 

linear approximation partitions the input range into several 

segments, and each segment is linearly approximated. To 

compute the output value for an input belonging to a segment, 

the difference between the input and the left end-point is 

multiplied by the slope and then it is added to the initial offset 

of the segment. This linear interpolation is widely used to 

approximate complicated functions that should be computed 

with a large number of operations, and in general it requires 

tables to store the initial offset and the slope for each segment 

and a multiplier to do the slope multiplication. As the square 

operation is exactly computed with one multiplication, the 

piecewise linear interpolation seems to be inappropriate for 

the approximation of square-related functions. If we can 

remove the table and the multiplication, however, the linear 

interpolation can be a good candidate for efficient 

implementation. 

The fundamental concepts behind the proposed method to 

approximate the square is as follows. First, if the input is a 

power of 2, say 2
k
, where k is an integer not less than 0, the 

square is 2
2k

. In other words, we can generate the square of 2
k
 

by shifting the input left by k bits. If the input range is 

segmented to have boundaries at 2
k
, we can eliminate the 

offset table. Secondly, if the slope of a segment is restricted to 

a power of 2, we can also remove the multiplier, because the 

slope multiplication can be replaced with shifting the input 

difference. The proposed approximation is developed under 

the above constraints to achieve a table-less and 

multiplier-less linear interpolation. 

A. Proposed Linear Interpolation for Square Function 

Let x be an N-bit positive number, where N > 1. The range 

of x is partitioned into N segments, each of which ranges from 

2
i
 to 2

i+1
, where i is an integer from 0 to N-1. At the two 

end-points of the i-th segment, the square values are 2
2i

 and 

2
2i+2

  as shown in Fig. 2. If we use a single line for the 

approximation of the segment, its slope is not a power of 2, as 

(2
2i+2

-2
2i

) / (2
i+1

-2
i
)=3·2

i
. At the middle point in the segment, 

(2
i+1

+2
i
)/2 = 2

i
+2
i-1

, its square can be approximated as 

 (2
i
+2
i-1

)
2
 = 2

2i+1
 + 2

2i-2
 ≈ 2

2i+1
. (1) 

With the approximation of (1), the segment whose input 

ranges from 2
i
 to 2

i+1
 can be interpolated with two lines 

denoted as α and β in Fig. 2. In this case, their slopes can be 

calculated as 

 slope of α = (2
2i+1

-2
2i

)/(2
i
+2
i-1

-2
i
)=2

i+1
, (2) 

and 

 slope of β = (2
2i+2

-2
2i+1

)/(2
i+1

-(2
i
+2
i-1

))=2
i+2

. (3) 

 
Fig. 1. General piecewise linear approximation. 

 
Fig. 2. Proposed piecewise linear approximation of x2 for 2i≤x<2i+1. 
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Note that both of the slopes are powers of 2. Therefore, the 

slope multiplication in the linear interpolation can be replaced 

with shifting, as multiplication by 2
i
 is the same as shifting 

left by i bits. 

Let f1(x) be the square approximation based on the 

proposed linear interpolation. According to (2) and (3), f1(x) 

can be expressed with a number of line equations as follows: 

2 1 1

1 2 1 1 2 1 1

2 ( 2 ) 2 for 2 2 2
( )

2 ( (2 2 )) 2 for 2 2 2

i i i i i i

i i i i i i i

x x
f x

x x

+ −

+ − + − +

 + − ⋅ ≤ < +
= 

+ − + ⋅ + ≤ <
  .(4) 

Alternatively, this can be expressed as 

( )
( )

1 1 1

1
1 1 2 1 1

2 ( 2 ) 2 for 2 2 2
( )

2 ( (2 2 )) 2 for 2 2 2

i i i i i i

i i i i i i i

x x
f x

x x

− + −

− − + − +

 + − ⋅ ≤ < +
= 

+ − + ⋅ + ≤ <
  .(5) 

The additions in (5), 2
i-1

+(x-2
i
) and 2

i-1
+(x-(2

i
+2
i-1

)), cause 

no carry propagation and thus can be replaced with simple 

concatenations. Considering the range of x specified in the 

first equation of (5), xi:i-1 is 2b10, where 2b10 means the 2-bit 

binary number 10. This means that x-2
i
 can be expressed as 

xi-2:0 as shown in Fig. 3 (a). It is clear that adding 2
i-1

 to xi-2:0 

does not cause any carry propagation. Similarly, x-(2
i
+2
i-1

) in 

the second equation of (5) is xi-2:0, because xi:i-1=2b11 in the 

input range as shown in Fig. 3 (c). Hence, the addition 

contained in the second equation of (5), 2
i-1

+xi-2:0, does not 

cause carry propagation, either. With these properties, the 

above equations can be simplified with adopting 

concatenations as follows: 

 
{ }
{ }

1 1

2:0

1 2 1 1

2:0

1, 2 for 2 2 2
( )

1, 2 for 2 2 2

i i i i

i

i i i i

i

x x
f x

x x

+ −
−

+ − +
−

 ⋅ ≤ < +
= 

⋅ + ≤ <
. (6) 

Suppose that the left most non-zero position in x is i. The 

proposed approximate square can be made by concatenating 1 

in front of xi-2:0 and then shifting it left by the left most 

non-zero position plus a constant. The constant is determined 

by xi-1. More specifically, the constant is 1 when xi-1 is 0, or 2 

when xi-1 is 1. Therefore, the proposed square approximation 

can be simplified as follows: 

 

1

2:0 1

1 2

2:0 1

{1, } 2 for 0
( )

{1, } 2 for 1

i

i i

i

i i

x x
f x

x x

+
− −

+
− −

 ⋅ =
= 

⋅ =
. (7) 

Fig. 3 (b) and Fig. 3 (d) are the proposed approximation of the 

number presented in Fig. 3 (a) and Fig. 3 (c), respectively. 

B. Error Analysis and Error Compensation of the 

Approximate Square 

As the proposed square approximation has errors compared 

to the exact square values, we analyze the relative error 

defined below, 

 2 2
1 1

( ( )) ( ) /RE f x f x x x= − . (8) 

RE(f1(x)) is maximized when x is equal to 2
i
+2
i-1

, which is 

calculated as  

 

1 1 2

1

1 1 2

2 1 1 2

1 2

(2 2 ) (2 2 )
MAX( ( ( )))

(2 2 )

2 (2 2 ) 1
0.1111

9(2 2 )

i i i i

i i

i i i

i i

f
RE f x

− −

−

+ −

−

+ − +
=

+

− +
= = ≈

+

. (9) 

Additionally, average relative error of f1(x) is defined as 

 ( ) ( )2 1

1 11
AVG( ( ( ))) ( ( )) / 2 1

N
N

x
RE f x RE f x

−

=
= −∑ . (10) 

The average relative errors in (10) are evaluated by a 

computer program. In Table 1, these are listed together with 

the maximum relative errors for various bit-widths of x. Note 

that the maximum relative error of the proposed 

approximation is constant regardless of the bit-widths, and 

the average relative error is almost constant. The constancy of 

the relative error is due to the inherent property of the 

proposed linear approximation, which guarantees good 

performance even for large numbers. 

The proposed square approximation, f1(x), is always 

smaller than or equal to the exact value of x
2
, and its relative 

error can be 11.11% maximally. Therefore, we can scale up 

f1(x) by a factor of 17/16 when the smaller relative error is 

required in some applications. This scaling can be achieved 

by simply adding f1(x)·2
-4

 to f1(x). Let f2(x) be the 

error-compensated approximation of x
2
; that is, f2(x) = 

f1(x)+(f1(x)·2
-4

). Fig. 4 illustrates the relative errors resulting 

from f2(x) and f1(x) for the i-th segment, where we can see that 

Fig. 3. Proposed method to calculate the approximate square. (a) 

2i≤x<2i+2i-1, (b) approximate square of (a), (c) 2i+2i-1≤x<2i+1, and (d) 

approximate square of (c). 

 
Fig. 4. Relative error of the proposed approximate square functions for 

2i≤x<2i+1. 
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the maximum relative error of f2(x) is reduced to almost a half 

compared to that of f1(x), but their average errors are almost 

equal to each other. In Table 2, the maximum and average 

relative errors of  f2(x) are listed for various bit-widths. 

IV. PROPOSED APPROXIMATION FOR 

SQUARE-ROOT FUNCTION 

In this section, we propose a new approximation for the 

square-root function, and analyze its error performance. The 

proposed method is also based on piecewise linear 

approximations, and does not need any multiplications and 

tables.  

A. Proposed Linear Interpolation for Square-root 

Let x be a 2N-bit positive number, where N > 1. The entire 

range of x is partitioned into N segments, each of which 

ranges from 2
2i

 to 2
2i+2

, where i is an integer from 0 to N-1. 

The i-th segment is shown in Fig. 5. At the middle point in 

this segment, 2
2i+1

, its square-root can be approximated as 

 
(2 1) /2 1

2 2 2 (1 1 / 2) 2 2 2
i i i i i+ −= ⋅ ≈ + ⋅ = +

. (11) 

By taking (11), the curve of x
1/2

 in the i-th segment can be 

linearly approximated with two lines, γ and δ, as depicted in 

Fig. 5. Let f3(x) be the proposed linear interpolation of the 

square-root of x. Then, f3(x) can expressed with a number of 

line equations as follows: 

( )

( )

2 1

2 2 1

2 1 2 1

3 1 2 1 2

2 1 2 2

2 2 2 1 2 1 2

2 ( 2 ) 2
for 2 2

2 ( 2 ) 2
( )

2 2 ( 2 ) 2
for 2 2

2 2 ( 2 ) 2

i i i

i i

i i i

i i i i

i i

i i i i

x
x

x
f x

x
x

x

− −

+
+ − −

− + − −

+ +
+ + + − −

 + − ⋅
≤ <

= + − ⋅
= 

+ + − ⋅
≤ <= + + − ⋅

  .(12) 

If x is less than 2
2i+1

, x-2
2i

 in (12) can be replaced with x2i-1:0, 

and if x is less than 2
2i+2

, x-2
2i+1

 in (12) can be replaced with 

x2i:0. Fig. 6 (a) and Fig. 6 (c) correspond to these cases, 

respectively. In (12), 2
2i+1

+x2i-1:0 and 2
2i+2

+2
2i+1

+x2i:0 can be 

achieved by doing simple concatenations, {2b10, x2i-1:0} and 

{2b11, x2i:0}, respectively. For a given x, the binary 

bit-pattern of x is divided into groups of two adjacent bits 

starting from the least significant bit, and then we search for 

the left-most non-zero group to find the range of x. If the 

group is x2i+1:2i, f3(x) can be expressed as follows, 

 

1

2 1:0 2 1

3 2

2 :0 2 1

{2 10, } 2 for 0
( )

{2 11, } 2 for 1

i

i i

i

i i

b x x
f x

b x x

− −
− +

− −
+

 ⋅ =
= 

⋅ =
. (13) 

The proposed square-root approximations corresponding to 

Fig. 6 (a) and Fig. 6 (c) are shown in Fig. 6 (b) and Fig. 6 (d), 

respectively. 

B. Error Analysis and Error Compensation of the 

Approximate Square-root 

The relative error of f3(x) is defined below: 

Table 1. Relative error of the proposed approximate square 

Bit-width 

of x 
MAX(RE(f1(x))) AVG(RE(f1(x))) 

4 0.1111 0.0352 

8 0.1111 0.0375 

12 0.1111 0.0382 

16 0.1111 0.0383 

20 0.1111 0.0383 

 

Table 2. Relative error of the proposed approximate square with error compensation 

Bit-width of x MAX(RE(f2(x))) AVG( RE(f2(x))) 
MAX(RE(f2(x)))/ 

MAX(RE(f1(x))) 

AVG(RE(f2(x)))/ 

AVG(RE(f1(x))) 

4 0.0625 0.0466 0.5625 1.3238 

8 0.0625 0.0383 0.5625 1.0213 

12 0.0625 0.0373 0.5625 0.9764 

16 0.0625 0.0372 0.5625 0.9712 

20 0.0625 0.0372 0.5625 0.9712 

 

x

 
Fig. 5. Proposed piecewise linear approximation of x1/2 for 22i≤x<22i+2. 

 
Fig. 6. Proposed method to calculate the approximate square-root. (a) 

22i≤x<22i+1, (b) approximate square-root of (a), (c) 22i+1≤x<22i+2, and (d) 

approximate square root of (c). 
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3 3( ( )) ( ) /RE f x f x x x= − . (14) 

The relative error is maximized when x is 2
2i+1

, which is 

calculated as 

 
3

3 / 2 2
MAX( ( ( ))) 0.0607

2
RE f x

−
= ≈ . (15) 

Similar to (10), the average relative error of f3(x) is defined as 

 ( ) ( )
22 1 2

3 31
AVG( ( ( ))) ( ( )) / 2 1

N
N

x
RE f x RE f x

−

=
= −∑ . (16) 

The average relative errors evaluated for various bit-widths 

are listed in Table 3 along with the maximum relative errors. 

Note that the maximum relative error is constant regardless of 

the bit-widths of the number systems, like the proposed 

approximate square described in the previous section. 

f3(x) is always larger than or equal to the exact square-root 

value and its relative error is up to 6.07% as shown in Table 3. 

To reduce the maximum error, we can apply a compensation 

technique similar to that used in the previous section. As f3(x) 

is always larger than x
1/2

, we can scale down f3(x) by a factor 

of 31/32 to achieve the smaller maximum relative error. Let 

f4(x) be the compensated one; that is, f4(x)=f3(x)-(f3(x)·2
-5

). 

Fig. 7 compares the error performances of f3(x) and f4(x). 

Applying the proposed compensation reduces the maximum 

relative error to almost a half, while maintaining the average 

relative error performance. In Table 4, the maximum and 

average relative errors of f4(x) are listed for various 

bit-widths. 

V. COMPARISON AND DISCUSSION 

In Fig. 8 and Fig. 9, we compare the relative error 

performance of the proposed square approximation with 

those of previous works. In fact, the error performances in 

large number systems are much more important than those in 

small number systems, as the exact square calculation can be 

realized with a few logic gates when the number system is 

represented in a small number of bits. We can see in the 

figures that the proposed method is associated with constant 

error performance, while those of the previous works are 

severely degraded as the bit-width increases. In the proposed 

square-root approximation, the relative errors of the 

compensated one are always less than 3.13%. In contrast to 

the iterative approximations, the proposed methods have no 

convergence problems, as they can be computed at once. In 

addition, it is worth noting that the proposed approximations 

maintain the monotonic behaviors; that is, f1(a)≥f1(b), 

f2(a)≥f2(b), f3(a)≥f3(b), and  f4(a)≥f4(b) if a≥b. These 

monotonic properties are significant in comparing two app- 

roximated values. 

The proposed approximations for square and square-root 

functions can be understood by employing 1st-order Taylor 

series expansions. For example, the proposed approximate 

square in (4) is the same as the composition of the 1st-order 

Taylor expansions for 2
i≤x<2

i
+2
i-1

 and 2
i
+2
i-1≤x<2

i+1
. 

However, note that the proposed methods have a contribution 

in selecting the specific evaluation points of the Taylor 

expansions that result in multiplier-less and table-less 

implementations. Moreover, simple calculation methods are 

derived as expressed in (7) and (13). 

The proposed multiplier-less, table-less linear interpolation 

applied to approximate the square-related functions requires 

simple basic operations, such as shift, concatenation and 

detection of the leading non-zero bit, which are usually 

supported in modern VLSI systems. To compensate the 

relative errors, an addition is needed additionally. Therefore, 

it is possible to realize the proposed method by sharing the 

basic operators provided in the VLSI systems. For example, 

instructions for shifting and counting leading zeros are 

 
Fig. 7. Relative error of the proposed approximate square-root with the 

error compensation for 22i≤x<22i+2. 

Table 3. Relative error of the proposed approximate square-root 

Bit-width 

of x 
MAX(RE(f3(x))) AVG(RE(f3(x))) 

4 0.0607 0.0191 

8 0.0607 0.0191 

12 0.0607 0.0191 

16 0.0607 0.0191 

20 0.0607 0.0191 

 

Table 4. Relative error of the proposed approximate square-root with error compensation 

Bit-width of x MAX( RE(f4(x))) AVG( RE(f4(x))) 
MAX(RE(f4(x)))/ 

MAX(RE(f3(x))) 

AVG(RE(f4(x)))/ 

AVG(RE(f3(x))) 

4 0.0313 0.0197 0.5157 1.0314 

8 0.0313 0.0193 0.5157 1.0105 

12 0.0313 0.0193 0.5157 1.0105 

16 0.0313 0.0193 0.5157 1.0105 

20 0.0313 0.0193 0.5157 1.0105 
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supported in most of contemporary processor architectures, as 

specified in [16] and [17]. Hence, the proposed 

approximations can be efficiently implemented with the 

assistance of those pre-defined instructions. 

VI. CONCLUSION 

In this paper, we have proposed new methods to 

approximate the square-related functions. Though the 

proposed method is based on the piecewise linear 

approximation, it can be implemented without employing 

tables and multipliers. Simple operations such as shift, 

concatenation, and addition, which are commonly supported 

in VLSI systems, are only used in the proposed 

approximation. For the proposed approximate functions, the 

mathematical analysis reveals that the proposed approx- 

imations have no convergence problems, the maximum 

relative errors are constant irrespective of bit-widths, and the 

average relative errors are also almost constant. In addition, 

simple compensation techniques are proposed to further 

reduce the maximum relative errors. If the simple 

compensation techniques are employed, the maximum 

relative errors are 6.25% and 3.13% for the approximate 

square and square-root functions, respectively. 
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Fig. 8. Comparison of the maximum relative errors of square appro- 

ximations. 

 
 

 
Fig. 9. Comparison of the average relative errors of square appro- 

ximations. 
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