

Abstract—Square and square-root are widely used in digital

signal processing and digital communication algorithms, and

their efficient realizations are commonly required to reduce the

hardware complexity. In the implementation point of view,

approximate realizations are often desired if they do not

degrade performance significantly. In this paper, we propose

new linear approximations for the square and square-root

functions. The traditional linear approximations need

multipliers to calculate slope offsets and tables to store initial

offset values and slope values, whereas the proposed

approximations exploit the inherent properties of

square-related functions to linearly interpolate with only simple

operations, such as shift, concatenation and addition, which are

usually supported in modern VLSI systems. Regardless of the

bit-width of the number system, more importantly, the

maximum relative errors of the proposed approximations are

bounded to 6.25% and 3.13% for square and square-root

functions, respectively.

I. INTRODUCTION

Square and square-root operations are commonly used in

many digital signal processing systems. For example, vector

quantization determines the representative codeword by

calculating the Euclidean distance [1] using square operations,

Viterbi decoding computes branch metrics using square

operations [2], and the maximum-likelihood (ML) estimation

for Gaussian distortions, such as sphere detection for

multi-input multi-output (MIMO) antenna systems [3], needs

square operations. The square-root function is also important

in many applications such as the distance calculation between

two points in three-dimensional graphics and the calculation

of Euclidean norm in vector median filtering [4].

In such applications, approximate square and square-root

functions have more advantages than the exact ones.

Especially for estimation algorithms dealing with input

values corrupted by noise, exact calculations are less

important than achieving efficient implementations.

Therefore, it is desired to approximate the functions without

sacrificing the error performance significantly. There have

been a few works on the approximations. Some of the works

are devoted to approximate square operations in the

viewpoint of optimizing logic circuits [5]-[9], and others are

focused on the algorithms to approximate Euclidean norm

[10]- [12].

In this paper, we propose a new method to approximate the

square-related functions based on linear interpolation. The

proposed method exploits the following properties of the

operations: 1) if the input value is a power of 2, its square and

square-root can be calculated easily by shifting the input

value, and 2) if the slope of every interpolating line is

approximated as a power of 2, the slope multiplication can be

replaced with a shift operation. Therefore, the proposed

method enables both square and square-root functions to be

approximated with simple operations such as shift,

concatenation and addition. These operations are basically

supported in most of modern VLSI systems, and can be

shared for the proposed method. Note that the proposed

method can be implemented without employing any tables

and multipliers, whereas the traditional linear approximation

necessitates them. The relative errors of the approximate

square and square-root functions are bounded to 11.11% and

6.07%, respectively. Additionally, efficient compensation

techniques are proposed to further reduce the maximum

relative errors to 6.25% and 3.13%.

The rest of the paper is organized as follows. In Section II,

we briefly describe the previous works proposed to

approximate square and square-root functions. In Section III,

we propose the multiplier-less, table-less linear

approximations for square function. Section IV explains how

the proposed method can be applied to square-root function.

In Section V, we evaluate the performance of the proposed

approximations compared to those of the previous works, and

then discuss the advantages of the proposed method.

Concluding remarks are made in Section VI.

II. PREVIOUS WORKS

In this section, we briefly review the previous works of

square and square-root approximations. First of all, it is a

well-known fact that the calculation of x
2
 is simpler than the

general multiplication because the number of partial products

can be reduced by half [13]. This property has been actively

utilized to approximate square functions in the estimation

hardware such as Viterbi decoders. In [14], x
2
 is exactly

calculated by recursively decomposing x, and the

decomposition results in a cellular logic array that can reduce

hardware complexity compared to the general multiplier.

An N-bit positive number, x can be decomposed into{xN-1,

(N-1)b0} and xN-2:0 as in [14], where xi is the i-th bit of x, xi:j is

a part of x from the j-th bit to the i-th bit (0 ≤ j ≤ i), {x, y} is

the concatenation of x and y, and Nb0 is the N-bit binary

representation of 0. Then x
2
 can be expressed as {xN-1,

(N-1)b0}
2
 + 2·{xN-1,(N-1)b0}·xN-2:0 + (xN-2:0)

2
. By removing

non-dominant terms, we can approximate x
2
 as {xN-1,

Multiplier-less and Table-less Linear Approximation for Square and

Square-root

In-Cheol Park and Tae-Hwan Kim

Division of Electrical Engineering, Korea Advanced Institute of Science and Technology

icpark@ee.kaist.ac.kr , thkim@eeinfo.kaist.ac.kr

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 378

(N-1)b0}·({xN-1, (N-1)b0}+{xN-2:0, 1b0}) [8]. In order to

improve the error performance of this approximation, a

compensation scheme is introduced in [5], which adds a

regular bit-pattern to the approximation result. The carry

propagation mechanism occurring in summing the partial

product terms of x
2
 is investigated in [9] to derive a systematic

approach to compensate the approximate error. In [7], the

logic function for each bit in x
2
 is approximated to a regular

one and then followed by a heuristic compensation.

Although many applications require square-root operations,

there have been few works on approximating the square-root

operation. Possible solutions are to remove square-root

operations by transforming the algorithm or to calculate them

by using look-up tables. Compared with the square operation

that can generate all the partial products simultaneously, the

square-root operation is usually calculated iteratively as its

computation is very similar to division [13]. To approximate

the square-root operation, we can employ iterative solvers

such as Newton-Rapshon, bisection and so on. As the

iterative solvers need multiple cycles to produce the final

result, they suffer from the converging speed, and are not

appropriate for hardware implementation [15]. It is hard to

find some previous works directly related to the

approximation, since the square-root operation is serial in

nature. Instead, we can find some works on the approximation

of composite operations which contain square-root operations.

In [11] and [12] the Euclidean norm (L-2 norm) required in

the vector median filtering is approximated as a linear

combination of the components of a vector. In [10], the

Euclidean norm is approximated as a linear combination of

other norms such as L-1 and L-∞. However, a number of

complicated operations such as division and multiplication

are used in those approximations [11] [12].

III. PROPOSED APPROXIMATION FOR SQUARE

FUNCTION

In this section, we propose a new approximation for the

square function. The proposed method is to apply piecewise

linear approximations. As shown in Fig. 1, the piecewise

linear approximation partitions the input range into several

segments, and each segment is linearly approximated. To

compute the output value for an input belonging to a segment,

the difference between the input and the left end-point is

multiplied by the slope and then it is added to the initial offset

of the segment. This linear interpolation is widely used to

approximate complicated functions that should be computed

with a large number of operations, and in general it requires

tables to store the initial offset and the slope for each segment

and a multiplier to do the slope multiplication. As the square

operation is exactly computed with one multiplication, the

piecewise linear interpolation seems to be inappropriate for

the approximation of square-related functions. If we can

remove the table and the multiplication, however, the linear

interpolation can be a good candidate for efficient

implementation.

The fundamental concepts behind the proposed method to

approximate the square is as follows. First, if the input is a

power of 2, say 2
k
, where k is an integer not less than 0, the

square is 2
2k

. In other words, we can generate the square of 2
k

by shifting the input left by k bits. If the input range is

segmented to have boundaries at 2
k
, we can eliminate the

offset table. Secondly, if the slope of a segment is restricted to

a power of 2, we can also remove the multiplier, because the

slope multiplication can be replaced with shifting the input

difference. The proposed approximation is developed under

the above constraints to achieve a table-less and

multiplier-less linear interpolation.

A. Proposed Linear Interpolation for Square Function

Let x be an N-bit positive number, where N > 1. The range

of x is partitioned into N segments, each of which ranges from

2
i
 to 2

i+1
, where i is an integer from 0 to N-1. At the two

end-points of the i-th segment, the square values are 2
2i

 and

2
2i+2

 as shown in Fig. 2. If we use a single line for the

approximation of the segment, its slope is not a power of 2, as

(2
2i+2

-2
2i

) / (2
i+1

-2
i
)=3·2

i
. At the middle point in the segment,

(2
i+1

+2
i
)/2 = 2

i
+2
i-1

, its square can be approximated as

 (2
i
+2
i-1

)
2
 = 2

2i+1
 + 2

2i-2
 ≈ 2

2i+1
. (1)

With the approximation of (1), the segment whose input

ranges from 2
i
 to 2

i+1
 can be interpolated with two lines

denoted as α and β in Fig. 2. In this case, their slopes can be

calculated as

 slope of α = (2
2i+1

-2
2i

)/(2
i
+2
i-1

-2
i
)=2

i+1
, (2)

and

 slope of β = (2
2i+2

-2
2i+1

)/(2
i+1

-(2
i
+2
i-1

))=2
i+2

. (3)

Fig. 1. General piecewise linear approximation.

Fig. 2. Proposed piecewise linear approximation of x2 for 2i≤x<2i+1.

379

Note that both of the slopes are powers of 2. Therefore, the

slope multiplication in the linear interpolation can be replaced

with shifting, as multiplication by 2
i
 is the same as shifting

left by i bits.

Let f1(x) be the square approximation based on the

proposed linear interpolation. According to (2) and (3), f1(x)

can be expressed with a number of line equations as follows:

2 1 1

1 2 1 1 2 1 1

2 (2) 2 for 2 2 2
()

2 ((2 2)) 2 for 2 2 2

i i i i i i

i i i i i i i

x x
f x

x x

+ −

+ − + − +

 + − ⋅ ≤ < +
= 

+ − + ⋅ + ≤ <
 .(4)

Alternatively, this can be expressed as

()
()

1 1 1

1
1 1 2 1 1

2 (2) 2 for 2 2 2
()

2 ((2 2)) 2 for 2 2 2

i i i i i i

i i i i i i i

x x
f x

x x

− + −

− − + − +

 + − ⋅ ≤ < +
= 

+ − + ⋅ + ≤ <
 .(5)

The additions in (5), 2
i-1

+(x-2
i
) and 2

i-1
+(x-(2

i
+2
i-1

)), cause

no carry propagation and thus can be replaced with simple

concatenations. Considering the range of x specified in the

first equation of (5), xi:i-1 is 2b10, where 2b10 means the 2-bit

binary number 10. This means that x-2
i
 can be expressed as

xi-2:0 as shown in Fig. 3 (a). It is clear that adding 2
i-1

 to xi-2:0

does not cause any carry propagation. Similarly, x-(2
i
+2
i-1

) in

the second equation of (5) is xi-2:0, because xi:i-1=2b11 in the

input range as shown in Fig. 3 (c). Hence, the addition

contained in the second equation of (5), 2
i-1

+xi-2:0, does not

cause carry propagation, either. With these properties, the

above equations can be simplified with adopting

concatenations as follows:

{ }
{ }

1 1

2:0

1 2 1 1

2:0

1, 2 for 2 2 2
()

1, 2 for 2 2 2

i i i i

i

i i i i

i

x x
f x

x x

+ −
−

+ − +
−

 ⋅ ≤ < +
= 

⋅ + ≤ <
. (6)

Suppose that the left most non-zero position in x is i. The

proposed approximate square can be made by concatenating 1

in front of xi-2:0 and then shifting it left by the left most

non-zero position plus a constant. The constant is determined

by xi-1. More specifically, the constant is 1 when xi-1 is 0, or 2

when xi-1 is 1. Therefore, the proposed square approximation

can be simplified as follows:

1

2:0 1

1 2

2:0 1

{1, } 2 for 0
()

{1, } 2 for 1

i

i i

i

i i

x x
f x

x x

+
− −

+
− −

 ⋅ =
= 

⋅ =
. (7)

Fig. 3 (b) and Fig. 3 (d) are the proposed approximation of the

number presented in Fig. 3 (a) and Fig. 3 (c), respectively.

B. Error Analysis and Error Compensation of the

Approximate Square

As the proposed square approximation has errors compared

to the exact square values, we analyze the relative error

defined below,

 2 2
1 1

(()) () /RE f x f x x x= − . (8)

RE(f1(x)) is maximized when x is equal to 2
i
+2
i-1

, which is

calculated as

1 1 2

1

1 1 2

2 1 1 2

1 2

(2 2) (2 2)
MAX((()))

(2 2)

2 (2 2) 1
0.1111

9(2 2)

i i i i

i i

i i i

i i

f
RE f x

− −

−

+ −

−

+ − +
=

+

− +
= = ≈

+

. (9)

Additionally, average relative error of f1(x) is defined as

 () ()2 1

1 11
AVG((())) (()) / 2 1

N
N

x
RE f x RE f x

−

=
= −∑ . (10)

The average relative errors in (10) are evaluated by a

computer program. In Table 1, these are listed together with

the maximum relative errors for various bit-widths of x. Note

that the maximum relative error of the proposed

approximation is constant regardless of the bit-widths, and

the average relative error is almost constant. The constancy of

the relative error is due to the inherent property of the

proposed linear approximation, which guarantees good

performance even for large numbers.

The proposed square approximation, f1(x), is always

smaller than or equal to the exact value of x
2
, and its relative

error can be 11.11% maximally. Therefore, we can scale up

f1(x) by a factor of 17/16 when the smaller relative error is

required in some applications. This scaling can be achieved

by simply adding f1(x)·2
-4

 to f1(x). Let f2(x) be the

error-compensated approximation of x
2
; that is, f2(x) =

f1(x)+(f1(x)·2
-4

). Fig. 4 illustrates the relative errors resulting

from f2(x) and f1(x) for the i-th segment, where we can see that

Fig. 3. Proposed method to calculate the approximate square. (a)

2i≤x<2i+2i-1, (b) approximate square of (a), (c) 2i+2i-1≤x<2i+1, and (d)

approximate square of (c).

Fig. 4. Relative error of the proposed approximate square functions for

2i≤x<2i+1.

380

the maximum relative error of f2(x) is reduced to almost a half

compared to that of f1(x), but their average errors are almost

equal to each other. In Table 2, the maximum and average

relative errors of f2(x) are listed for various bit-widths.

IV. PROPOSED APPROXIMATION FOR

SQUARE-ROOT FUNCTION

In this section, we propose a new approximation for the

square-root function, and analyze its error performance. The

proposed method is also based on piecewise linear

approximations, and does not need any multiplications and

tables.

A. Proposed Linear Interpolation for Square-root

Let x be a 2N-bit positive number, where N > 1. The entire

range of x is partitioned into N segments, each of which

ranges from 2
2i

 to 2
2i+2

, where i is an integer from 0 to N-1.

The i-th segment is shown in Fig. 5. At the middle point in

this segment, 2
2i+1

, its square-root can be approximated as

(2 1) /2 1

2 2 2 (1 1 / 2) 2 2 2
i i i i i+ −= ⋅ ≈ + ⋅ = +

. (11)

By taking (11), the curve of x
1/2

 in the i-th segment can be

linearly approximated with two lines, γ and δ, as depicted in

Fig. 5. Let f3(x) be the proposed linear interpolation of the

square-root of x. Then, f3(x) can expressed with a number of

line equations as follows:

()

()

2 1

2 2 1

2 1 2 1

3 1 2 1 2

2 1 2 2

2 2 2 1 2 1 2

2 (2) 2
for 2 2

2 (2) 2
()

2 2 (2) 2
for 2 2

2 2 (2) 2

i i i

i i

i i i

i i i i

i i

i i i i

x
x

x
f x

x
x

x

− −

+
+ − −

− + − −

+ +
+ + + − −

 + − ⋅
≤ <

= + − ⋅
= 

+ + − ⋅
≤ <= + + − ⋅

 .(12)

If x is less than 2
2i+1

, x-2
2i

 in (12) can be replaced with x2i-1:0,

and if x is less than 2
2i+2

, x-2
2i+1

 in (12) can be replaced with

x2i:0. Fig. 6 (a) and Fig. 6 (c) correspond to these cases,

respectively. In (12), 2
2i+1

+x2i-1:0 and 2
2i+2

+2
2i+1

+x2i:0 can be

achieved by doing simple concatenations, {2b10, x2i-1:0} and

{2b11, x2i:0}, respectively. For a given x, the binary

bit-pattern of x is divided into groups of two adjacent bits

starting from the least significant bit, and then we search for

the left-most non-zero group to find the range of x. If the

group is x2i+1:2i, f3(x) can be expressed as follows,

1

2 1:0 2 1

3 2

2 :0 2 1

{2 10, } 2 for 0
()

{2 11, } 2 for 1

i

i i

i

i i

b x x
f x

b x x

− −
− +

− −
+

 ⋅ =
= 

⋅ =
. (13)

The proposed square-root approximations corresponding to

Fig. 6 (a) and Fig. 6 (c) are shown in Fig. 6 (b) and Fig. 6 (d),

respectively.

B. Error Analysis and Error Compensation of the

Approximate Square-root

The relative error of f3(x) is defined below:

Table 1. Relative error of the proposed approximate square

Bit-width

of x
MAX(RE(f1(x))) AVG(RE(f1(x)))

4 0.1111 0.0352

8 0.1111 0.0375

12 0.1111 0.0382

16 0.1111 0.0383

20 0.1111 0.0383

Table 2. Relative error of the proposed approximate square with error compensation

Bit-width of x MAX(RE(f2(x))) AVG(RE(f2(x)))
MAX(RE(f2(x)))/

MAX(RE(f1(x)))

AVG(RE(f2(x)))/

AVG(RE(f1(x)))

4 0.0625 0.0466 0.5625 1.3238

8 0.0625 0.0383 0.5625 1.0213

12 0.0625 0.0373 0.5625 0.9764

16 0.0625 0.0372 0.5625 0.9712

20 0.0625 0.0372 0.5625 0.9712

x

Fig. 5. Proposed piecewise linear approximation of x1/2 for 22i≤x<22i+2.

Fig. 6. Proposed method to calculate the approximate square-root. (a)

22i≤x<22i+1, (b) approximate square-root of (a), (c) 22i+1≤x<22i+2, and (d)

approximate square root of (c).

381

3 3(()) () /RE f x f x x x= − . (14)

The relative error is maximized when x is 2
2i+1

, which is

calculated as

3

3 / 2 2
MAX((())) 0.0607

2
RE f x

−
= ≈ . (15)

Similar to (10), the average relative error of f3(x) is defined as

 () ()
22 1 2

3 31
AVG((())) (()) / 2 1

N
N

x
RE f x RE f x

−

=
= −∑ . (16)

The average relative errors evaluated for various bit-widths

are listed in Table 3 along with the maximum relative errors.

Note that the maximum relative error is constant regardless of

the bit-widths of the number systems, like the proposed

approximate square described in the previous section.

f3(x) is always larger than or equal to the exact square-root

value and its relative error is up to 6.07% as shown in Table 3.

To reduce the maximum error, we can apply a compensation

technique similar to that used in the previous section. As f3(x)

is always larger than x
1/2

, we can scale down f3(x) by a factor

of 31/32 to achieve the smaller maximum relative error. Let

f4(x) be the compensated one; that is, f4(x)=f3(x)-(f3(x)·2
-5

).

Fig. 7 compares the error performances of f3(x) and f4(x).

Applying the proposed compensation reduces the maximum

relative error to almost a half, while maintaining the average

relative error performance. In Table 4, the maximum and

average relative errors of f4(x) are listed for various

bit-widths.

V. COMPARISON AND DISCUSSION

In Fig. 8 and Fig. 9, we compare the relative error

performance of the proposed square approximation with

those of previous works. In fact, the error performances in

large number systems are much more important than those in

small number systems, as the exact square calculation can be

realized with a few logic gates when the number system is

represented in a small number of bits. We can see in the

figures that the proposed method is associated with constant

error performance, while those of the previous works are

severely degraded as the bit-width increases. In the proposed

square-root approximation, the relative errors of the

compensated one are always less than 3.13%. In contrast to

the iterative approximations, the proposed methods have no

convergence problems, as they can be computed at once. In

addition, it is worth noting that the proposed approximations

maintain the monotonic behaviors; that is, f1(a)≥f1(b),

f2(a)≥f2(b), f3(a)≥f3(b), and f4(a)≥f4(b) if a≥b. These

monotonic properties are significant in comparing two app-

roximated values.

The proposed approximations for square and square-root

functions can be understood by employing 1st-order Taylor

series expansions. For example, the proposed approximate

square in (4) is the same as the composition of the 1st-order

Taylor expansions for 2
i≤x<2

i
+2
i-1

 and 2
i
+2
i-1≤x<2

i+1
.

However, note that the proposed methods have a contribution

in selecting the specific evaluation points of the Taylor

expansions that result in multiplier-less and table-less

implementations. Moreover, simple calculation methods are

derived as expressed in (7) and (13).

The proposed multiplier-less, table-less linear interpolation

applied to approximate the square-related functions requires

simple basic operations, such as shift, concatenation and

detection of the leading non-zero bit, which are usually

supported in modern VLSI systems. To compensate the

relative errors, an addition is needed additionally. Therefore,

it is possible to realize the proposed method by sharing the

basic operators provided in the VLSI systems. For example,

instructions for shifting and counting leading zeros are

Fig. 7. Relative error of the proposed approximate square-root with the

error compensation for 22i≤x<22i+2.

Table 3. Relative error of the proposed approximate square-root

Bit-width

of x
MAX(RE(f3(x))) AVG(RE(f3(x)))

4 0.0607 0.0191

8 0.0607 0.0191

12 0.0607 0.0191

16 0.0607 0.0191

20 0.0607 0.0191

Table 4. Relative error of the proposed approximate square-root with error compensation

Bit-width of x MAX(RE(f4(x))) AVG(RE(f4(x)))
MAX(RE(f4(x)))/

MAX(RE(f3(x)))

AVG(RE(f4(x)))/

AVG(RE(f3(x)))

4 0.0313 0.0197 0.5157 1.0314

8 0.0313 0.0193 0.5157 1.0105

12 0.0313 0.0193 0.5157 1.0105

16 0.0313 0.0193 0.5157 1.0105

20 0.0313 0.0193 0.5157 1.0105

382

supported in most of contemporary processor architectures, as

specified in [16] and [17]. Hence, the proposed

approximations can be efficiently implemented with the

assistance of those pre-defined instructions.

VI. CONCLUSION

In this paper, we have proposed new methods to

approximate the square-related functions. Though the

proposed method is based on the piecewise linear

approximation, it can be implemented without employing

tables and multipliers. Simple operations such as shift,

concatenation, and addition, which are commonly supported

in VLSI systems, are only used in the proposed

approximation. For the proposed approximate functions, the

mathematical analysis reveals that the proposed approx-

imations have no convergence problems, the maximum

relative errors are constant irrespective of bit-widths, and the

average relative errors are also almost constant. In addition,

simple compensation techniques are proposed to further

reduce the maximum relative errors. If the simple

compensation techniques are employed, the maximum

relative errors are 6.25% and 3.13% for the approximate

square and square-root functions, respectively.

ACKNOWLEDGMENT

This work was supported by Korean Intellectual Property

Office (KIPO) and by IC Design Education Center (IDEC).

REFERENCES

[1] M. R. Soleymani, S.D. Morgera, "A Fast MMSE Encoding Technique
for Vector Quantization," IEEE Trans. on Communications, vol. 37, no.

6, pp. 656-659, June 1989.

[2] A. J. Viterbi, "Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm," IEEE Trans. on

Information Theory, vol. 13, no. 4, pp. 260-269, April 1967.

[3] Hochwald. B. M., Ten Brink. S., "Achieving Near-capacity on a
Multiple-antenna Channel," IEEE Trans. on Communications, vol. 51,

no. 3, pp. 389-399, March 2003

[4] J. Astola, P. Haavisto, Y. Neuvo, "Vector Median Filter," in Proc. of
IEEE, vol. 78, no. 4, pp. 690-710, April 1990.

[5] Hiasat, A.A. and Abdel-Aty-Zohdy, H.S., "Combinational Logic

Approach for Implementing an Improved Approximate Squaring
Function," IEEE J. Solid-State Circuits, vol. 34, no.2, pp. 236-240, Feb.
1999.

[6] Jae-Tack Yoo, Kent F. Smith, Ganesh Gopalakrishnan, "A Fast Parallel
Squarer Based on Divide-and-Conquer," IEEE J. Solid-State Circuits,

vol. 32, no. 6, pp. 909-912, June 1997.

[7] J.M. Pierre Langlois, Dhamin Al-Khalili, "Carry-Free Approximate
Squaring Functions with O(n) complexity and O(1) Delay," IEEE

Trans. on Circuits and Systems-II: Express Briefs, vol. 53, no. 5, pp.

374-378, May 2006.
[8] Aria Eshraghi, Terri S. Fiez, Kel D. Winters, Thomas R. Fischer,

"Design of a New Squaring Function for the Viterbi Algorithm," IEEE

J. Solid-State Circuits, vol. 29, no. 9, pp. 1102-1107, Sep. 1994.
[9] Ming-Hwa Sheu, Su-Hon Lin, "Fast Compensative Design Approach

for the Approximate Squaring Function," IEEE J. Solid-State Circuits,

vol. 37, no. 1, Jan. 2002.
[10] Changkyu Seol, Kyungwhoon Cheun, "A Low Complexity Euclidean

Norm Approximation," IEEE Trans. on Signal Processing, vol. 56, no.

4, pp. 1721-1726, April 2008.
[11] Mauro Barni, Fabio Buti, Franco Bartolini, Vito Cappellini, "A

Quasi-Euclidean Norm to Speed Up Vector Median Filtering," IEEE
Trans. on Image Processing, vol. 9, no. 10, pp. 1704-1709, Oct. 2000.

[12] Mauro Barni, Vito Cappellini, A. Mecocci, "Fast Vector Median Filter

Based on Euclidean Norm Approximation," IEEE Signal Processing
Letter, vol. 1, no. 6, pp. 92-94, June 1994.

[13] Behrooz Parhami, "Computer Arithmetic - Algorithms and Hardware

Designs," Oxford University Press 2000.
[14] M. Shammanna, S. Whitaker, J. Canaris, "Cellular Logic Array for

Computation of Squares," 3rd NASA Symposium on VLSI Design 1991,

pp.2.4.1-2.4.7.
[15] Edwin K.P. Chong, Stani H. Zak, "An Introduction to Optimization -

2nd Edition," WILEY 2001.

[16] ARM Ltd., ARM DSP Instruction Set Extensions, http://www.arm.co-
m/products/CPUs/cpu-arch-DSP.html

[17] IBM Co. Ltd., Power ISATM Version 2.05, www.power.org/re-

sources/reading/PowerISA_V2.05.pdf

Fig. 8. Comparison of the maximum relative errors of square appro-

ximations.

Fig. 9. Comparison of the average relative errors of square appro-

ximations.

Bit-width

M
ax

im
u

m
 r

el
at

iv
e

er
ro

r

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

3 4 5 6 7 8 9 10

Proposed (with error compensation)

Approximation 1 in [7]

Approximation 2 in [7]

[9]

[5]

[8]

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

3 4 5 6 7 8 9 10

Proposed (with error compensation)

Approximation 1 in [7]

Approximation 2 in [7]

[9]

[5]

[8]

Bit-width

A
v

er
ag

e
re

la
ti

v
e

er
ro

r

383

