
Accelerating Mobile Augmented Reality on a Handheld Platform

Seung Eun Lee, Yong Zhang, Zhen Fang, Sadagopan Srinivasan, Ravi Iyer, and Donald Newell
Integrated Platforms Architecture, Intel Labs, Hillsboro, OR 97124

{seung.eun.lee, steven.zhang, zhen.fang, sadagopan.srinivasan, ravishankar.iyer, and donald.newell}@intel.com

Abstract— Mobile Augmented Reality (MAR) is an emerging
visual computing application for the mobile internet device
(MID). In one MAR usage model, the user points the handheld
device to an object (like a wine bottle or a building) and
the MID automatically recognizes and displays information
regarding the object. Achieving this in software on the handheld
requires significant compute processing for object recognition
and matching. In this paper, we identify hotspot functions of
the MAR workload on a low-power x86 platform that motivates
acceleration. We present the detailed design of two hardware
accelerators, one for object recognition (MAR-HA) and the
other for match processing (MAR-MA). We also quantify the
performance and area efficiency of the hardware accelerators.
Our analysis shows that hardware acceleration has the potential
to improve the individual hotspot functions by as much as 20x,
and overall response time by 7x. As a result, user response time
can be reduced significantly.

I. INTRODUCTION

Smart phones and mobile internet devices (MIDs) have
gained widespread popularity by placing compute power and
novel applications conveniently in the hands of end users.
The introduction of low power general-purpose processors
(e.g. Intel R©AtomTM) expands the capability of MIDs to
include disruptive visual computing applications. Emerging
visual computing applications such as image/facial recog-
nition, computational photography and motion tracking are
quickly entering the mobile domain while nascent disruptive
usage cases including virtual worlds and extreme 3D gaming
are just around the corner. One disruptive usage model that
has become of significant interest to end-users and handheld
providers is Mobile Augmented Reality (MAR). Companies
such as Nokia, Microsoft and Google are working on and/or
have released products to enable MAR in their devices [1],
[2], [3].

The MAR workload of interest is best described with an
example as follows. Consider a tourist walking the streets of
a foreign city and scanning the surroundings using the cam-
era in their smart phone. The smart phone should recognize
the objects in the camera image and provide contextual data
overlaid on the object in the display. For example, if you
are walking in the streets of Jaipur, India and point your
MID camera at an interesting building (shown in Figure
1(a)), the MID should display historical information about
the building. Similarly, pointing the camera towards a unique
object should provide the user with contextual information
about it (example shown in Figure 1(b)).

In order to achieve this usage model, the MAR application
is required to (a) acquire the image or video stream, (b)

  
Hawa Mahal, 1799 

(Palace of Winds) 

“wikipedia-info” 

 
  Hawa Mahal, 1799 

(Palace of Winds) 

“MID-Info-link” 

 

  
Hawa Mahal, 1799 

(Palace of Winds) 

“wikipedia-info” 

 
 

 Terracotta bull 

(2000 B.C. artifact) 

“MID-Info-link” 
 

 

(a) building in a foreign city

(b) A sculpture

Fig. 1. Mobile augmented reality usage example

recognize objects by computing interest points in the image,
(c) match to a pre-established set of images in a database,
and (d) display relevant meta-data overlaid on the object
in the screen. Among these, steps (b) and (c) are the most
computationally challenging tasks, and are the focus of our
work. In this paper, we analyze a software implementation
of a MAR application and show that the time taken is still
in the order of hundreds of milliseconds, which affects user
response time and energy consumption. We take the above
MAR usage case, analyze the compute requirements, identify
the key hotspot functions, and present hardware accelerators
for specific key hotspots that help to enable a rich MAR
experience on a MID form factor SoC platform. To the best
of our knowledge, this is the first work with detailed analysis
of the key hotspot functions of MAR and design of hardware
accelerator for low power handheld plaforms running MAR.

The rest of this paper is organized as follows. We first
describe the image recognition algorithm that forms the basis
of the usage case and provide an overview of the Speeded
Up Robust Features (SURF) algorithm [4] and the match
algorithm used in the MAR application. Section III describes
a set of analysis and software optimizations on MAR. Based
on the analysis, we propose two hardware accelerators in
Section IV. We discuss the related work in section V, and
conclude in section VI by outlining the direction for future
work on this topic.

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 419



 

Interest Point 

Detection

Descriptor 

Generation

Match Against 

Database Files 

Pic from 
camera

SURF

Match & 

Content

Data locally 
available on MID

Each circle is 
a detected IP 

described with 

a numeric 
vector.

White lines 
denote the 

pairs of 

matching 
points. 

Interest Point 

Detection

Descriptor 

Generation

Match Against 

Database Files 

Pic from 
camera

SURF

Match & 

Content

Data locally 
available on MID

Each circle is 
a detected IP 

described with 

a numeric 
vector.

White lines 
denote the 

pairs of 

matching 
points. 

Fig. 2. System flow of mobile augmented reality

II. MAR APPLICATION OVERVIEW

In the MAR usage scenario, we start with a query image
that the user takes with the camera. The intent is to compare
this query image against a set of pre-existing images in a
database for a potential match. In order to do so, there are
three major steps:
• Interest-point detection: identify interest points in the

query image
• Descriptor generation: create descriptor vectors for

these interest points
• Match: compare descriptor vectors of the query image

against descriptor vectors in the database
Figure 2 illustrates the MAR system flow. There are

several algorithms that have been proposed to detect interest
points and generate descriptors. The most popular algorithms
amongst these are variants of SIFT (Scale-Invariant Feature
Transform) [5] and SURF (Speeded up Robust Features)
[4]. In this paper, we chose the SURF algorithm for our
MAR application because it is known to be faster and
has sufficient accuracy for the usage model of interest. In
addition, researchers have also used SURF successfully for
mobile phones for MAR [6]. Below we provide a brief
explanation of the SURF algorithm, although we refer the
reader to [4] for a more detailed description.

A. Interest Point Detection

SURF uses an interest point detector based on Hessian
matrix. Integral image is computed from the input image
and speeds up the calculation of any rectangular area. The
Hessian matrix is computed for different filter sizes, where
the filter size represents the region around which the matrix
determinant is computed, with various scale factors. The
Hessian computation for a point X = (x,y) in the image at a
scale of σ is shown below.

H(X ,σ) =
[

Lxx(X ,σ) Lxy(X ,σ)
Lxy(X ,σ) Lyy(X ,σ)

]
(1)

where Lxx, Lxy and Lyy are second-order Gaussian derivatives.
In SURF, the second-order Gaussian derivates are approxi-
mated based on box filters and are denoted as Dxx, Dxy and
Dyy instead. The Hessian determinant is computed from these
terms as follows:

det(Happrox) = DxxDyy−0.9D2
xy (2)

After calculating the Hessian matrix at different scale
factors (different octaves, and various filter sizes in each
octivees), the interest points are chosen by computing the
local maxima (in a 3× 3× 3 neighborhood) in scale and
image space (i.e. Hessian determinant value of a point is
compared against all the neighboring values in the current
and neighboring scales).

B. Descriptor Generation

Once the interest points are computed, the next step is
to tag the interest point with descriptor vectors. Descriptor
vector computes the Haar wavelets, which is the coarse grain
pixel contrast of a rectangular region, around a given interest
point. In our study, we use 64 element descriptor vector to
represent an interest point. The first step in computing de-
scriptor vector is to determine a reproducible orientation. To
assign the orientation, Haar wavelet responses are computed
in a circular neighborhood around the interest point. The
dominant orientation is estimated by calculating the sum of
all responses within a sliding orientation window (covering
an angle of π/3). The highest sum of horizontal and vertical
responses is chosen as the dominant orientation.

After computing the dominant orientation, a square region
of size 20s (where s is the scale factor at which the interest
point was identified) is chosen around the interest point
and oriented along the dominant orientation. The region
is split up into smaller 4× 4 square sub-regions and Haar
wavelets (dx in the x and dy in the y direction) are calculated
within each of the sub-regions at regular intervals. The
wavelet responses are summed up in each region and the

420



# of 

interest
points

64 elements

Query
descriptors

Database
descriptors

64 elements

Match

# of 

interest
points

64 elements

Query
descriptors

Database
descriptors

64 elements

Match

Fig. 3. Brute force match between a query image and a database image

following four dimensional vectors per 4× 4 region forms
the descriptor vector:

V = (∑dx,∑dy,∑ |dx|,∑ |dy|) (3)

Such a 64 element descriptor vector is used to describe
each interest point in any given image and is used as the
basis for the matching step below. We also add the sign of
a Laplacian, which is the trace of the Hessian matrix, to the
descriptor vector to speed up the matching process.

For interest point detection and description, we used
the OpenCV implementation [7] of SURF since it already
contains sufficient optimizations as compared to other open
source code [8]. The match algorithm is independent of the
algorithm used for interest point detection and description.
In this paper we employ a brute force match algorithm.

C. Matching

In order to match two images (query and database), we
use a brute force match algorithm that exhaustively compares
a pair of interest point descriptor vectors from each image
based on the Euclidean (a.k.a. L2) distance. Manhattan (a.k.a.
L1) distance is another option for the descriptor comparison.

Figure 3 and Algorithm 1 describe how a query image
from the camera is matched against a candidate image from
the database. One descriptor represents one interest point.
The key function is a simple loop shown in the Algorithm
1, assuming 64 elements per descriptor. For each descriptor
of the query image, performing the Distance function on
all descriptors of a database image gives us the minimum
and second minimum (2ndmin) values of sum. A match for
a query descriptor is found in the database image if min <
0.5×2ndmin. Database images are then ranked based on how
many matches they have for the query image, and the highest
ranked candidate is selected as the winner.

It should be noted that several other match algorithms
are available, such as ANNmatch [9], but the brute force
match is simple to implement from a hardware acceleration
perspective.

III. SOFTWARE MAR PERFORMANCE

We first analyze and optimize the software implemen-
tation of MAR on a 1.6GHz Intel R©AtomTM-based net-
book running CentOS4.1 with Linux kernel 2.6. The CPU

Algorithm 1 Brute Force Matching
Match(query,db)
for m = query.ip1 to query.ipM do

for n = query.ip1 to query.ipN do
if query.ipm.laplace == db.ip.n.laplace then

Distance(query.ipm, db.ipn)
end if

end for
Find min and 2ndmin for all N Distnace
if min < 0.5×2ndmin then

return query.ipx has a match in the db image
end if

end for

Distance(Q,D)
for k = 0 to 64 in groups of 4 do

sum+ = (Q[k]−D[k])2 //for Euclidean distance
sum+ = |Q[k]−D[k]| //for Manhattan distance
if sum > 2ndmin then

break
end if

end for

After S/W Optimizations

image = 640x480, IP's=533

0

500

1000

1500

2000

2500

3000

3500

1 10 20 50

# of DB images

T
im

e
 (

m
s
)

match

descriptor gen

IP detection

Before S/W Optimizations

image = 640x480, IP's = 533

0

500

1000

1500

2000

2500

3000

3500

1 10 20 50

# of DB images

T
im

e
 (

m
s

)

Fig. 4. Software-only performance of MAR on Intel R©AtomTM

has hyper-threading enabled supporting 2 hardware threads.
Intel R©AtomTMhas 24KB L1 data cache, 32KB instruction
cache, and 512KB unified L2 cache. The front-side bus runs
at 400 MHz and is connected to 1GB of DDR2-533 DRAM.

Our MAR analysis is based on OpenCV SURF and
brute force match implementation. We conducted a detailed
analysis of the baseline code, before and after optimizations
for Intel R©AtomTM. While additional algorithm and compiler
optimizations may be possible, we use this as our baseline
for hardware acceleration analysis. Specifically, for each
of the three functions (interest point detection, descriptor
generation, and matching), we profiled the application using
hardware counter-based performance analysis tools (Vtune).
These experiments allowed us to obtain a deep understanding
of the performance characteristics, and gain insight to the
workload’s sensitivity to architectural parameters such as

421



Q SRAM

(4KB)

DB SRAM

(4KB)

Euclidean Distance
2

(5-Stage Pipeline)

MIN

(176B)

MIN
2nd

(176B)

Control

AGU

Match

System BUS

q
X+

d

+

+

q
X+

d

q
X+

d

q
X+

d

q
X+

d

+

+

+

+

+

+

+

+

+
..

.
..

.

..

.

SUM

Query 0

DB 0

Query 1

DB 1

Query 2

DB 2

Query 3

DB 3

Query 63

DB 63

<

<

MIN

MIN2nd

∑
=

−=

63

0

2)(
i

ii dqsum

LD EU SUM1 SUM2 MIN

Euclidean 

Distance 

Square

Fig. 5. The microarchitecture of MAR match accelerator

cache size and vector unit width.
Based on our analysis of MAR, we performed a number

of optimizations for Intel R©AtomTM. These optimizations
include: cache-aware data padding to reduce conflict misses
in the L1D, vectorization, multithreading, basic loop trans-
formation to reduce redundant computations, and precision
reduction that allowed us to replace 32-bit floating points
with 8-bit integers in the matching function. We refer the
reader to [10] for a more detailed analysis. Figure 4 shows
an example of the how the optimizations have improved
MAR performance on Intel R©AtomTM. For this set of input,
interest point detection time dropped from 183ms to 109ms
(the bottom section of each bar in the figure), descriptor
generation 133ms to 76ms (the middle section of the bars).
The time for matching against 20 database images decreased
from 1110ms to 380ms, for example. Matching against 50
database images, the speedup from the applied optimizations
is about 3x.

IV. HARDWARE ACCELERATORS FOR MAR

We next turn our attention to hardware acceleration anal-
ysis to further improve MAR execution time and energy
efficiency. The largest fraction of time in software-only pro-
cessing continues to be the match function (especially when
matching against many images in the database). The next
most significant hotspot function is interest point detection.
For example, when matching against 20 (640×480) images,
the match processing takes 67% of execution (≈ 380ms)
whereas the interest point detection takes 19% of execution
time (≈ 110ms). In this section, we present two hardware
accelerators: a hardware match accelerator (MAR-MA) and
a Hessian accelerator (MAR-HA) that computes the Hessian
matrix during interest point detection.

A. Match Accelerator (MAR-MA)

The MAR match processing requires computation of the
Euclidean distance square or Manhattan distance between
every pair of descriptor vectors (one interest point from query
image and one interest point from the database image) and
computes the number of matches between two images. The

MAR match accelerator (MAR-MA) requires the following
blocks as shown in Figure 5:

1) SRAM: The MAR-MA accelerator employs SRAM as
a staging buffer in the address space, without which all
subsequent descriptor values would need to be read from
DRAM one at a time. One approach is to support a SRAM
size that can accommodate the entire size of M×N descriptor
vectors. For example, if N = M = 500, then the size of the
SRAM becomes 64KB. However, since an SRAM of this size
would consume a significant area, we use a smaller SRAM
that supports a 64× 64 descriptor computation (requiring
only 8KB). The loop in Algorithm 1 is rearranged for 64
descriptor vectors by using loop blocking technique.

2) Euclidean Distance Square: The data-path requires
computation of the Euclidean distance square for every
pair of descriptor vectors (repalcing multiplier to absolute
calculator realizes computation of Manhattan distace). MAR-
MA has 5-stage pipeline computing 64 descriptor vectors
in 8-bits unsigned integer format concurrently. In LD stage,
64 descriptor vectors are loaded from the internal SRAM
into the registers. EU stage calculates the Euclidean distance
square between descriptors by computing the difference
between a pair of descriptor vector elements and multiplying
it with itself to compute the square. SUM1 and SUM2
stages accumulate 64 Euclidean distance squares. Finally,
the accumulated value is checked against the minimum and
the second minimum value in MIN stage and the results are
stored to the internal SRAM for match operation.

3) Control Unit (Loop+AGU): The control unit consists
of a set of state machines for indexing calculations as well
as address generation for both the computation as well as for
fetches issued to DRAM for the next set of operations. First,
it fetches a block of query and DB image (64 descriptor vec-
tors for each) to internal SRAM and activates the Euclidean
Distance Square data-path. As a result, the minimum and the
second minimum for each query vector are stored into MIN
and MIN2nd SRAM simultaneously. After the computation
for the given blocks, it automatically generates controls over
system bus in order to fetch next block of DB image. The
Match unit is activated after the completion of computation

422



Control

State 

Machine

Control 

Infor 

Mem

Computation Pipeline
(shifting, multiplication, accumulation)

Integral 

Image 

Buffer

Integral Image Computation Block

Accumulation Buffer

System Bus Interface

x Points for block filter Dxy

Hessian result point

Points for block filter Dyy

Points for block filter Dxx

0 1 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3

1. Read one vector and compute Dxy point 0 of multiple (16) block filters at same time

2. Shift the vector left by 3 pixels and compute Dxy point 1 of multiple (16) block filters at the same time

1 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S
h
if
t 
le
ft
 3

(a) (b) (c)
Fig. 6. MAR-HA block diagram and computation illustration

0

100

200

300

400

500

640x480 800x600 1024x768 1280x960

Image Resolution

T
im

e
 (

m
s

)

Local Maxima

Hessian Matrix

Integral Image

Fig. 7. Execution time breakdown of interest point detection with software
optimization

for the given query block and entire DB image to accumulate
the number of matches between the block of query and DB
image. It continues the operation for entire query image.

4) Match Unit: The final result which is the number
of matches between two images is calculated by accessing
MIN and MIN2nd memory that are obtained from Euclidean
Distance Square unit. When the minimum value is less than
half of the second minimum, the number of matches is
increased by 1 for the pair of descriptor vectors.

TABLE I
PERFORMANCE AMD MEMORY BW OF MAR-MA AT 400MHZ

SRAM (Q+DB) Execution Time (ms) BW (MB/s)
32K 0.275 53.8
16K 0.285 69
8K 0.305 84.5

The performance and memory bandwidth requirements of
the match accelerator for two images (308 interest points
in each) running at 400MHz are shown in Table I. The
performance of MAR-MA accelerator increases with the
large SRAM. However, the 8K SRAM demonstrates feasible
performance with low area cost. With smaller SRAM, the
bandwidth requirement increases due to the multiple accesses
for DB image.

B. Hessian Accelerator (MAR-HA)
Interest point detection comprises of three steps which

are integral image, hessian matrix, and local maximum
computation. Software profiling shows that integral image
and Hessian matrix computation take more than 85% of
execution time in interest point detection (see Figure 7).
Based on this observation, we developed a MAR Hessian
accelerator (MAR-HA), as shown in Figure 6(a) to speed up
integral image and Hessian matrix computation.

1) Hessian Matrix Computation Description: As de-
scribed earlier in section II, the calculation of each hessian
matrix entry needs the results of 3 box filters, Dxx, Dyy and
Dxy. Figure 6(b) shows the 32 integral image points, 8 for
Dxx and Dyy and 16 for Dxy, which are required to calculate
the box filters for octave 1, octave layer 1. For each integral
image point, there is a fixed coefficient, which can be -3, -1,
1 or 3, associated with it. The result of a box filter is the
sum of the corresponding integer image points multiply its
coefficient. As octave and octave layer goes larger, the shape
of these box filters will not change but the size increases and
results with an even wider scattered integral image points.

2) Hessian Matrix Computation Exploiting Data Level
Parallelism: To optimize the box filter calculation, as shown
in Figure 6(a), the block of integral image points covered by
these box filters are prefetched into an on-chip buffer. The
prefetching and box filter calculation works in a pipelined
manner to hide the latency. However even with this on-
chip buffer, the box filter integral image point access pattern
still makes it quite inefficient and becomes the performance
bottleneck. To solve this problem, we proposed a novel
approach for hessian matrix computation which provides the
following key benefits.

1) Optimal on-chip buffer access pattern.
2) Leveraging data reuse among multiple box filters to

further decrease on-chip buffer access.
3) Exploiting data level parallelism among the computa-

tion of multiple hessian matrix entries.
The key idea is to compute multiple hessian matrix entries

at the same time and store the intermediate results in the
Accumulation Buffer. Figure 6(c) shows an example of

423



calculating 16 hessian matrix entries at the same time and it
includes the following steps.

1) Each time, a line of integral image points (we call
it vector) are read from on-chip buffer. As shown in
figure 6(c), it includes all the second line of integral
image points (point 0, 1, 2, and 3 in the figure) for
these 16 hessian matrix entries.

2) Shifts this vector left by 1 pixel. Then integral im-
age point 0 for these 16 hessian matrix entries are
aligned and ready to be computed by the Computation
Pipeline.

3) The shifted vector, coefficient and sum idx for point 0
are fed to the Computation Pipeline. In Computation
Pipeline, with sum idx as address, an intermediate ac-
cumulation vector is read out of Accumulation Buffer
and adds with the shifted vector multiply its coefficient.
The result is written back into the Accumulation Buffer
with shift value as address.

4) Repeats step 2 and 3 for next point with new shift
value, coefficient and sum idx until the completion
of all the points in this line. Then it goes to step 1
and a new vector is read from on-chip buffer. Repeats
these steps until all the 32 points are computed. Finally
Dxx, Dyy, Dxy are computed based on the value in
Accumulation Buffer.

3) Integral Image Buffer Management Scheme: There is
a tradeoff between on-chip integral image buffer size and
its filling bandwidth (query image is stored in off-chip
DRAM before the MAR computation). We choose our buffer
management scheme to minimize the on-chip buffer size
requirement with only small extra filling bandwidth overhead
vs. the ideal case. The width of integral image buffer Wbu f
and height of integral image buffer Hbu f (with unit of integral
image pixel) are

Wbu f = 2(N−1)+S f ilter (4)
Hbu f = S f ilter +2 (5)

where N is the number of hessian matrix entry to be com-
puted at the same time and S f ilter is the maximum supported
block filter size. In our buffer management scheme, the
hessian matrix is computed column by column and a column
includes N hessian matrix entries. To start with a column,
first Wbu f × S f ilter integral image pixels are fetched into
integral image buffer and then begins the hessian matrix
computation. During the computation, another two lines of
integral image pixels are fetched and filled into on-chip
buffer. So after the completion of current line of hessian
matrix calculation, it can directly go to next line. As the
result, the total filling bandwidth B f ill is

B f ill = Bideal×
2(N−1)+S f ilter

2N
(6)

Bideal = Qh×Qw×Frate (7)

where Qh is the query image height and Qw is the query
image width and Frate is the supported frame rate. For video

of 640×480, 1 byte per pixel, 30 frame per second, N=32
and S f ilter=30 (6 octave layers), the total on-chip buffer
filling bandwidth is 14MB/s and 1.6x of Bideal . While it only
requires an on-chip buffer size of 4K integral image pixels
and is independent of video resolution.

4) Optimized Integral Image Computation: The function
of Integral Image Computation Block is to receive the inte-
gral image filling request and respond accordingly. Based on
our integral image buffer management scheme, we proposed
a novel integral image computation architecture with the
following key advantages.

1) Compute integral image on-the-fly and without any
start up latency.

2) A fixed latency of less than 15 clock cycles in integral
image computation.

3) Minimal buffer size requirement.
The key idea is to compute integral image on-the-fly and

keep updating the minimal intermediate states during the
computation. For integral image I(x,y), according to the
definition, we have

I(x,y) =
i≤x

∑
i=0

j≤y

∑
j=0

img(i, j) (8)

We can also rewrite it to

I(x,y) = I(x,y−1)+
i<x−x%2N

∑
i=0

img(i,y)+
i≤x

∑
i=x−x%2N

img(i,y)

(9)
I(x,y − 1) is stored in the Previous Line Buffer and

according to our buffer management scheme, it contains
2(N−1)+S f ilter integral image pixels. ∑

i<x−x%2N
i=0 img(i,y) is

stored in Column Sum Buffer and it contains Qh integral im-
age pixels. The content of these two buffers are initialized to
0 before computation. Then the integral image computation
flow includes the following steps

1) After receiving an integral image filling request of
2(N− 1)+ S f ilter pixels, Integral Image Computation
Block generates request to fetch these pixels from
system DRAM.

2) After receiving these pixels from DRAM,
∑

i≤x
i=x−x%2N img(i,y) is calculated on-the-fly. With

I(x,y − 1) and ∑
i<x−x%2N
i=0 img(i,y) read from

Previously Line Buffer and Column Sum Buffer
respectively, I(x,y) is calculated, updated into
Previous Line Buffer and sent to Integral Image
Buffer. After this line is completed, Column Sum
Buffer is updated as well.

The total storage is 2(N−1)+S f ilter +Qh integral image
pixels. For video at 640×480, N=32 and S f ilter=30, the total
storage requirement is only 582 integral image pixels.

5) Computing multiple octave layers at the same time:
The last optimization we implemented is to compute multiple
octave layers at the same time. For the configuration of 6
octave layers, there will be 192 entries in Control Informa-
tion Memory. This optimization will decrease the off-chip
DRAM and on-chip integral image buffer access bandwidth

424



TABLE II
PHYSICAL CHARACTERASTICS

MAR-MA MAR-HA
voltage (V ) 0.75 0.75

frequency (MHz) 568 400
Area (mm2) 0.08 0.36

Dynamic Power (mW ) 23.1907 38.3145
Leakage Power (µW ) 467.9950 1,823

Main

Memory

MAR

HA

MAR

MA

Atom

Fabric
Main

Memory

MAR

HA

MAR

MA

Atom

System 

Interconnect

Fig. 8. Block diagram of the MAR platform with hardware accelerators

and improve the hessian matrix computation performance
dramatically.

C. Physical Characteristics

The hardware accelerators were implemented using
VerilogTMHDL and a logic description of our design
has been obtained by the synthesis tool from the
SynposysTMusing 45nm technology. Table II summarizes the
physical characteristics of the MAR-MA and MAR-HA. The
SynopsysTMtool chain provided critical path information for
logic within the MAR-MA and MAR-HA up to 568MHz
and 400MHz, respectively. Two accelerators have an area of
approximately 0.08mm2 and 0.36mm2 that are feasible for
on-chip integration.

D. Performance Benefits

Figure 8 shows the block diagram of MAR platform
with hardware accelerators. Software on Intel R©AtomTMcore
realizes MAR cooperating with the hardware accelerators
(MAR-MA for match and MAR-HA for interest point de-
tection). The core reads the input image and sends the data
to MAR-HA which computes integral image and Hessian
Matrix. The core identifies the interest points by computing

0

100

200

300

400

500

600

700

800

640x480 800x600 1024x768 1280x960

Image Resolution

H
e
s
s
ia

n
+

in
te

rg
ra

l 
ti

m
e
 (

m
s
)

Unoptimized

Software Optimized

Hardware Accelerator

Fig. 9. Execution time of integral image and Hessian matrix computing

0

500

1000

1500

2000

2500

3000

1 10 20 50

# of DB images 

M
a
tc

h
 t

im
e
 (

m
s
)

Unoptimized

Software Optimized

Hardware Accelerator

Fig. 10. Execution time of match

image = 640x480, IP's=533, clock = 400Mhz

2.4

4.0

5.5

8.8

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

1 10 20 50

# of DB images

T
im

e
 (

m
s
)

0.0

2.0

4.0

6.0

8.0

10.0

match

descriptor gen

IP detection

speed up

image = 1280x960, IP's=1912, clock = 400Mhz

3.3

7.8

10.6

14.7

0.0

200.0

400.0

600.0

800.0

1000.0

1 10 20 50

# of DB images

T
im

e
 (

m
s
)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

match

descriptor gen

IP detection

speed up

Fig. 11. MAR projected execution time with hardware accelerators

local maxima based on the Hessian matrix calculated by the
accelerator. Descriptor generation for the interest points is
performed in software as well. Finally, MAR-MA performs
match between query and database(DB) images.

The interest point detection is dependent on the number of
image pixels. Figure 9 shows the execution time of integral
image and Hessian matrix computing as a function of image
resolution (i.e. number of pixels per image). We observed
that the execution time decreased to 2ms for a 640× 480
resolution to 14ms for a 1280×960 image. Overall, interest
point detection was optimized by about 13x via the MAR-
HA accelerator.

The match portion of the execution time is dependent
on the number of database images to match against and
correspondingly to the number of interest points to be
compared across images. Figure 10 illustrates the execution
time of match for 533 interest points. MAR-MA accelerated
the processing by 20x compared with software only opti-
mization.

Figure 11 summarizes the performance benefits of the
proposed hardware accelerators for MAR processing. As

425



shown, accelerating MAR by introducing hardware accel-
erators reduced the overall execution time from 2x to 8x
for 640×480 resolution and from 3x to 14x for 1280×960
resolution, reducing the user response time from seconds to
milliseconds.

V. RELATED WORK

In recent years, there are few MAR studies primarily fo-
cusing on (a) developing algorithms for MAR usage models
and (b) analysis of MAR workloads on handheld platforms
that are based on ARM or other non-x86 processors. For
example, “Touring machine”, a prototype MAR device that
combines mobile computing with augmented reality was
developed in [11]. This is one of the earliest works in MAR
that presents information about a location using head-tracked,
head-worn, 3D display, and a handheld device.

Feng et al. characterized the SIFT algorithm on multi-core
servers [12]. Their work focuses on optimizing the image
recognition algorithm for back end servers. Heymann et al.
have implemented SIFT on graphics processing unit (GPU)
for real-time tracking and recognition of feature points [13].
Sinha et al. have yet another implementation of SIFT on GPU
[14]. Both these work try to achieve real-time processing
of image recognition algorithm on powerful graphics core,
typically seen on workstations.

Recent work has also implemented an outdoor augmented
reality system for ARM-based mobile phones in [6]. Zhou et
al. focus on matching robust query features against a database
[15]. A mobile phone is used to capture the query images and
interest points that occur in successive frames are matched
against a database that is running on a server. Object based
image retrieval using vocabulary of “visual words” to search
a large database was done in [16]. Here, the authors use
“visual words” as index during query and matching phase.
This work focuses on very large dataset as opposed to our
small localized database.

Clearly, these previous works highlight that the MAR
usage model is gaining significant momentum and such
workloads needs to be analyzed for performance and power
behavior more seriously. In this paper, we studied one
instance of a MAR workload on a Intel R©AtomTM-based
handheld platform and showed that hardware accelerators can
improve the performance of the application significantly (by
over 7x) over the optimized software implementation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we analyzed the execution time of MAR
processing on the Intel R©AtomTMcore for SoC Mobile In-
ternet Devices (MIDs) and showed that the base software
implementation requires several seconds for MAR process-
ing and therefore requires significant acceleration. We pre-
sented several software optimizations to the MAR applica-
tion (cache, compute, vectorization, multithreading and data
type/precision changes), implemented them and showed that
these can improve the software processing by as much as 3x.

In order to understand the potential benefits of hardware
acceleration, we then proposed hardware accelerators for

match processing and interest point detection processing. We
presented a detailed design and implementation of the MAR-
MA accelerator (for match) and the MAR-HA accelerator
(for Hessian computation within interest point detection) and
showed that these fairly small (in area) hardware accelerators
can improve the overall execution time by as much as 7x over
the optimized software implementation.

Future work in this area is as follows. We plan to
simulate the hardware accelerators proposed along with the
Intel R©AtomTMcore in a SoC platform simulator to study the
interaction between the hardware and software components.
We also plan to apply the accelerators to MAR processing
when dealing with video input (camera panning). We also
plan to continue investigating acceleration opportunities for
other MAR components (such as descriptor generation). Last
but not least, we also plan to study new tightly-coupled
accelerator interfaces that allow the user-mode applications
running on the core to more effectively communicate with
such fine-grain accelerators. We expect that accelerating
MAR will bring forth a new spectrum of novel usage models
for handhelds.

VII. ACKNOWLEDGMENTS

We would like to thank Binu Mathew for some of test
images. We would also like to thank Phil Cayton, Jianping
Zhou, Madhu Athreya and Jon Tyler for valuable discussions
and feedback.

REFERENCES

[1] Nokia, “Nokia mobile augmented reality,” http://research.nokia.com/
research/projects/mara/index.html.

[2] “Microsoft techfest 2009,” http://www.microsoft.com/presspass/events/
msrtechfest/videoGallery.aspx?initialVideo=techfest channel10 Aug-
mentedReality.

[3] Enkin, http://www.enkin.net.
[4] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust

features,” in ECCV06, 2006, pp. 427–434.
[5] D. G. Lowe, “Distinctive image features from scale-invariant key-

points,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.
[6] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen,

T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod, “Outdoors
augmented reality on mobile phone using loxel-based visual feature
organization,” in MIR ’08, 2008, pp. 427–434.

[7] OpenCV, http://sourceforge.net/projects/opencvlibrary/.
[8] OpenSURF, http://code.google.com/p/opensurf1.
[9] ANN, http://www.cs.umd.edu/ mount/ANN/.

[10] S. Srinivasan et al., “Performance characterization and optimization
of mobile augmented reality on handheld platforms,” in IEEE Inter-
national Symposium on Workload Characterization, Oct 2009.

[11] S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster, “A touring ma-
chine: prototyping 3d mobile augmented reality systems for exploring
the urban environment,” in Wearable Computers, 1997, pp. 74–81.

[12] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and charac-
terization of sift on multi-core systems,” in IISWC 2008, pp. 14–23.

[13] S. Heymann, K. Mller, A. Smolic, B. Froehlich, and T. Wiegand, “Sift
implementation and optimization for general-purpose gpu,” in WSCG,
Jan. 2007.

[14] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking
and matching in video using programmable graphics hardware,” in
Machine Vision and Applications, March 2007.

[15] Y. Zhou, X. Fan, X. Xie, Y. Gong, and W.-Y. Ma, “Inquiring of the
sights from the web via camera mobiles,” in Multimedia and Expo,
2006 IEEE International Conference on, July 2006, pp. 661–664.

[16] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in CVPR
’07, 2007, pp. 1–8.

426


