Computational Bit-width Allocation for Operations in Vector Calculus

Adam B. Kinsman and Nicola Nicolici
Department of Electrical and Computer Engineering
McMaster University,Hamilton,ON L8S4K1,Canada

kinsmaab @mcmaster.ca,nicola@mail.ece.mcmaster.ca

Abstract— Automated bit-width allocation is a key step re-
quired for the design of hardware accelerators. The use of
computational methods based on SAT-Modulo Theory to the
problem of finite-precision bit-width allocation has recently
been shown to overcome challenges faced by the known-art,
particularly in the scientific computing domain. However, many
such real-life applications are specified in terms of vectors and
matrices and they are rendered infeasible by expansion into
scalar equations. This paper proposes a framework to include
operations from vector calculus and thus it enables tackling
applications of practically relevant complexity.

Keywords: Bit-width allocation, hardware accelerators

I. INTRODUCTION

Recent advances in field programmable gate arrays (FP-
GAs) have tightened the performance gap to application
specific integrated circuits (ASICs), motivating research into
hardware acceleration [1], [2], [3]. Due to its impact on re-
sources and latency, choice of data representation (allocating
the bit-width for the intermediate variables) is a key factor
in the performance of such accelerators. Hence, developing
structured approaches to automatically determine the data
representation is becoming a central problem in high-level
design automation of hardware accelerators; either during
architectural exploration and behavioral synthesis, or as a
pre-processing step to register transfer-level (RTL) synthesis.

The data representation problem has two facets, the preci-
sion problem and the range problem. This work is focussed
on the range problem. It has been extensively researched in
the digital signal processing (DSP) and embedded systems
domains [4], yielding two classes of methods: 1) formal
based primarily on affine arithmetic [5], [6] or interval
arithmetic [7]; and 2) empirical based on simulation [8], [9],
which can be either naive or smart (depending on how the
input simulation vectors are generated and used).

Figure 1 summarizes the landscape of techniques that
address the bit-width allocation problem. Empirical methods
require extensive compute times and produce non-robust bit-
widths; while formal methods guarantee robustness, but can
over-allocate resources. Despite the success of the above
techniques for a variety of DSP and embedded applica-
tions, interest has been mounting in custom acceleration
of scientific computing. Examples include: computational
fluid dynamics [1], molecular dynamics [2] or finite element
modeling [3]. Scientific computing brings unique challenges
because, in general, robust bit-widths are required in the

978-1-4244-5028-2/09/$25.00 ©2009 IEEE

433

Empirical Formal
Smart \ Smart
g Simulation Computational
E Naive - @ @ @ - Naive
® Simulation Computational
c
S <«——— Affine
8 Arithmetic
2
£ <«—— Interval
S Arithmetic
S S
Under-allocated Optimal Over-allocated
Bit-width Bit-width Bit-width
(Optimistic) (Desired) (Pessimistic)
Fig. 1. Tradeoff Between Bit-width Allocation and Computational Effort.

scientific domain to guarantee correctness, which eliminates
empirical methods. Further, ill-conditioned operations, such
as division (common in numerical algorithms), can lead to
severe over-allocation and even indeterminacy for the exist-
ing formal methods based on interval or affine arithmetic.

The challenges associated with scientific computing have
recently been addressed through a computational approach
[10], building on the foundation and the recent developments
of computational techniques such as Satisfiability-Modulo
Theories (SMT) [11]. This approach is also shown on the
right hand side of Figure 1 (as the naive computational
approach). While this approach provides robust bit-widths
even on ill-conditioned operations, it has limited scalability
and is unable to directly address problems involving large
vectors that arise frequently in scientific computing.

Given the critical role of computational bit-width allo-
cation for designing hardware accelerators, in this paper
we describe a method to automatically deal with problem
instances based on large vectors. While the scalar based
approach in [10] provides tight bit-widths (provided that it
is given sufficient time), its computational requirements are
very high. In response, we first introduce a basic vector-
magnitude model which, while very favorable in compu-
tational requirements compared with full scalar expansion,
produces overly pessimistic bit-widths. Subsequently we
introduce the concept of block vector, which expands the
vector-magnitude model to include some directional infor-
mation. Due to its ability to tackle larger problems faster, we
label this new approach as smart computational in Figure 1.
This will enable to effectively scale the problem size, without
losing the essential correlations in the dataflow, thus enabling
automated bit-width allocation for practical applications.

II. BIT-WIDTH ALLOCATION IN VECTOR CALCULUS

This section details a new algorithmic approach to bit-
width allocation for operations in vector calculus.

A. Uniform Vector Bit-width

In order to leverage the vector structure of the calculation
and thereby reduce the complexity of the bit-width problem
to the point of being tractable, the independence (in terms of
range/bit-width) of the vector components as scalars is given
up. At the same time, hardware implementations of vector
based calculations typically exhibit the following:

o Vectors are stored in memories with the same number
of data bits at each address;

« Datapath calculation units are allocated to accommodate
the full range of bit-widths across the elements of the
vectors to which they apply;

Based on the above, the same number of bits tend to be
used implicitly for all elements within a vector, which is
exploited by the bit-width allocation problem. As a result,
the techniques laid out in this section result in uniform bit-
widths within a vector, i.e., all the elements in a vector use
the same representation however, each distinct vector will
still have a uniquely determined bit-width.

B. Vector Magnitudes

The approach to dealing with problems specified in terms
of vectors centers around the fact that no element of a vector
can have (absolute) value greater than the vector magnitude
i.e., for a vector x € R":

X = (XO,)C],...,X”,O
[Ix]] = vxTx

bl < Ix[[, 0<i<n—1

Starting from this fact, we can create from the input calcula-
tion a vector-magnitude model which can be used to obtain
bounds on the magnitude of each vector, from which the
required uniform bit-width for that vector can be inferred.

Creating the vector-magnitude model involves replacing
elementary vector operations with equivalent operations
bounding vector magnitude, Table I contains the specific
operations used in this paper. When these substitutions are
made, the number of variables for which bit-widths must
be determined can be significantly reduced as well as the
number of expressions, especially for large vectors.

TABLE 1
MAGNITUDE BOUNDING OPERATIONS.

Vector Magnitude
Name Operation Model
Dot Product X'y [Ix[[ly[lcos(6x)
Addition Xty x[[2+|y|]>+2x-y
Subtraction X—y x|2+|y||> —2x-y
Matrix ol[x]]
Multiplication Ax lop"| < o < |og ™|
Pointwise e[Ix[[[lyl]
Product Xoy 0<e<1

434

Vector
Magnitude

Scalar
Expansion

Block vector expansions

Limited search due
to computational
complexity

Faster runtimes
More exploration in
computational search

Better search via
reduced complexity

Tighter ranges via
directional information

Loss of directional
correlations

Full accounting of
interdependencies

Fig. 2. Goal of Block Vector Representations.

The entries of Table I arise either as basic identities within,
or derivations from, vector arithmetic. The first entry is
simply one of the definitions of the standard inner product,
and the addition and subtraction entries are resultant from
the parallelogram law [12]. The matrix multiplication entry
is based on knowing the singular values o; of the matrix and
the pointwise product comes from: ¥ x?y? < (Yx?)(Xy?).

While significantly reducing the complexity of the range
determination problem, the drawback to using this method
is that directional correlations between vectors are virtually
unaccounted for. For example, vectors x and Ax are treated as
having independent directions, while in fact the true range of
vector X+ Ax may be restricted due to the interdependence.
In light of this drawback, the next section proposes a means
of restoring some directional information without reverting
entirely to the scalar expansion based formulation.

C. Directionality via Block Vectors

As discussed in the previous section, bounds on the
magnitude of a vector can be used as bounds on the elements,
with the advantage of significantly reduced computational
complexity. In essence, the vector structure of the calculation
(which would be obfuscated by expansion to scalars) is
leveraged to speed up range exploration. These two methods
of vector-magnitude and scalar expansion form the two ex-
tremes of a spectrum of approaches, as illustrated in Figure 2.
At the scalar side, there is full description of interdependen-
cies, but much higher computational complexity which limits
how thoroughly one can search for the range limits. At the
vector-magnitude side directional interdependencies are al-
most completely lost but computational effort is significantly
reduced enabling more efficient use of range search effort.
A tradeoff between these two extremes is made accessible
through the use of block vectors, which this section details.

Simply put, expanding the vector-magnitude model to
include some directional information amounts to expanding
from the use of one variable per vector (recording magnitude)
to multiple variables per vector, but still fewer than the
number of elements per vector. Two natural questions arise:
what information to store in those variables? If multiple
options of similar compute complexity exist, then how to
choose the option that can lead to tighter bounds?

As an example to the above, consider a simple 3x3 matrix
multiplication y = Ax, where x,y € R? and x = [xg,x1,x2]”.
Figure 3 shows an example matrix A (having 9.9 < o4 <
50.1) as well as constraints on the component ranges of x.
In the left case in the figure, the vector-magnitude approach
is applied: ||x|| is bounded by v/22+2%+ 10% = 10.4, and
the bound on ||y|| is obtained as ¢}'™||x|| which for this
example is 50.1 x 10.4 = 521.

Xz

Ixg1<2
Ix;1<2 ¢
Ix,1<10 %o
Xz Xz X
X1
Hxo, X3, XH1 < 10.4 I1{xo, X}l < 2.9 Ixgl < 2
Xl <10 I1{x,, X}l < 10.2 \
Xo £ Xo L ‘ Xo
X4 X4 X4
49.2 396 3.96
A=1396 109 -0.1 * * *
396 -0.1 109 Iyl Xe
\ Xz Xz
lyll
ly,ll \
Xp K xo \ XO
X, iyl X, ey,

Xy

Fig. 3.

The vector-magnitude estimate of ~ 521 can be seen
to be relatively poor, since true component bounds for
matrix multiplication can be relatively easily calculated,
~ 146 in this example. The inflation results from dismissal
of correlations between components in the vector, which
we address through the proposed partitioning into block
vectors. The middle part of Figure 3 shows one partitioning
possibility, around the component with the largest range, i.e.
X0 = [x0,x1]7,X1 = x». The input bounds now translate into
a circle in the [xg,x]-plane and a range on the x-axis. The
corresponding partitioning of the matrix is:

A= Ago Aol Yo | _ | Aoco Ao X
A An Y1 A An X1

where 10.4 < 04y, < 49.7 and 0 < 0y4,,,04,, < 3.97 and
simply Ay; = 0y4,, = 10.9. Using block vector arithmetic
[13] (which bears a large degree of resemblance to standard
vector arithmetic) it can be shown that yy = AgoXp +Ao1X1
and y; = A10X¢ +A11X1. Expanding each of these equations
using vector-magnitude in accordance with the operations
from Table I, we obtain:

|yoll = \/(GAOUHXOH)ZJr (GAol||X1H)2+26A006A01||X0HHX1||

[1¥a]] = /(0,5 [[x0[1)> + (0a,, [1X11)* + 20,0 0, [1xol[[[x4]

As the middle part of Figure 3 shows, applying the
vector-magnitude calculation to the partitions individually
amounts to expanding the [xo,x;]-plane circle, and expanding
the x, range, after which these two magnitudes can be
recombined by taking the norm of [yg,y;]7 to obtain the

435

Vector-Magnitude and Partitioned Block Vector Example.

overall magnitude ||y|| = /||yo||>+ ||y1]|>. By applying the

vector-magnitude calculation to the partitions individually,
the directional information about the component with the
largest range is taken into account. This yields ||yo|| <= 183
and ||y1|| <= 154, thus producing the bound ||y|| <=z 240.
The right hand portion of Figure 3 shows an alternative
way of partitioning the vector, with respect to the basis
vectors of the matrix A. Decomposition of the matrix used in
this example reveals the direction associated with the largest
o4 to be very close to the x(axis. Partitioning in this way
(i.e., Xg = x0,X1 = [x1,x2]7) results in the same equations as
above for partitioning around x;, but with different values for
the sub-matrices: Agp = 04, =49.2 and 0 < 0y, 04,, < 5.61
and 10.8 < gy, < 11.0. As the figure shows, we now have
range on the xp-axis and a circle in the [x;,x;]-plane which
expand according the same rules (with different numbers) as
before yielding this time: ||yg|| <~ 137 and ||y;|| <=~ 124
producing a tighter overall magnitude bound ||y|| <~ 185.
Given the larger circle resulting from this choice of expan-
sion, it may seem surprising the bounds obtained are tighter
in this case. However, consider that in the xy direction (very
close to the direction of the largest 0,4), the bound is overes-
timated by 2.9/2 ~ 1.5 in the middle case while it is exact in
the rightmost case. Contrast this to the overestimation of the
magnitude in the [x},x;]-plane of only about 2% yet, different
basis vectors for A could still reverse the situation. Clearly
the decision how to partition a vector can have significant
impact on the quality of the bounds. Consequently, the next
section discusses an algorithmic solution for this decision.

D. Partition Selection

Recall that in the cases from the middle and right hand
portions of Figure 3, the magnitude inflation is reduced, but
for two different reasons. Considering this fact from another
angle, it can be restated that the initial range inflation (which
we are reducing by moving to block vectors) arises as a result
of two different phenomena; 1) inferring larger ranges for
individual components as a result of one or a few components
with large ranges as in the middle case or 2) allowing any
vector in the span defined by the magnitude to be scaled by
the maximum o4 even though this only really occurs along
the direction of the corresponding basis vector of A.

In the case of magnitude overestimation resulting from one
or a few large components, the impact can be quantified using
range inflation: f..(x) = ||x||/||X||, where X is x with the
largest component removed. Intuitively, if all the components
have relatively similar ranges, this expression will evaluate to
near unity, but removal of a solitary large component range
will have a value larger than and farther from 1, as in the
example from Figure 3 (middle) of 10.4/2.9=3.6

Turning to the second source of inflation based on ¢4, we
can similarly quantify the penalty of using o4 over the entire
input span by evaluating the impact of removing a compo-
nent associated with the largest c4. If we define o as the
absolute value of the largest component of the basis vector
corresponding to ¢4, and A as the block matrix obtained
by removing that same component’s corresponding row and
column from A we can define: fiq (A) = a0, /0", where
Gf’i’l“x is the maximum across the 6% of each sub-matrix of
A. The « factor is required to weight the impact of that basis
vector as it relates to an actual component of the vector which
A multiplies. When o' is greater than the other oy, fuu
will increase (Figure 3-right) to 0.99 x49.2/11.0 =4.4. Note
finally that the partition with the greater value (4.4 > 3.6)
produces the tighter magnitude bound (185 < 240).

Algorithm 1 shows the steps involved in extracting mag-
nitude bounds (and hence bit-widths) of a vector based cal-
culation. Taking the specification in terms of the calculation
steps, and input variables and their ranges, VectorMagnitude-
Model on line 1 creates the base vector-magnitude model as
in Section II-B. The algorithm then proceeds by successively
partitioning the model (line 5) and updating the magnitudes
(line 7) until either no significant tightening of the magnitude
bounds occurs (as defined by GainThresh in line 9) or
until the model grows to become too complex (as defined
by SizeThresh in line 10). Note that the DetermineRanges
function (line 7) is based upon existing range analysis
techniques, such as affine arithmetic or the computational
method from [10]. The Partition function (line 5) utilizes the
impact functions f,.. and f;,, to determine a good candidate
for partitioning. Computing the f,.. function for each input
vector is inexpensive, while the f,,, function involves two
largest singular(eigen) value calculations for each matrix. It
is worth noting however that a partition will not change the
entire Model, and thus many of the f,.. and f,, values can
be reused across multiple calls of Partition.

436

Input : VectorCalculation, InputVariables,
InputRanges, IntermediateVariables,
SizeThresh, GainThresh

Output: IntermediateMagnitudes

1 Model = VectorMagnitudeModel(VectorCalculation,
InputVariables, InputRanges, IntermediateVariables);
2 UpdatedMagnitudes=DetermineRanges(Model);
3 Flag = True;
4 while Flag do
5 Model = Partition(Model);
IntermediateMagnitudes = UpdatedMagnitudes;
UpdatedMagnitudes = DetermineRanges(Model);
Gain=max(UpdatedMagnitudes /
IntermediateMagnitudes);
if Gain < GainThresh then
Flag = False;
end
if size(Model) > SizeThresh then
Flag = False;
end
end
11 RETURN IntermediateMagnitudes;

Algorithm 1: Vector-Magnitude.

6
7
8

10

III. CASE STUDIES

In this section we discuss 4 case studies, which show the
proposed vector based method built on top of HySAT [11].

A. Analytic Center

The analytic center of a set of inequality constraints
maximizes a distance metric from all constraint boundaries.
This example comes from convex optimization, when using
a distance metric based on a logarithmic penalty function;
solving for the analytic center will give rise to calculations
such as those below [14].

2i) =dliali]- (C—P) d[i]=1/(bi] —ali]- C)

The inequality constraints are defined by a[i],b[i] and C is
the analytic center. The values z[i] reflect a penalty of moving
C to P with respect to ai],b[i]. For the specific case of
5 inequality constraints in R>, the vector equations can be
expanded into scalar equations (i € {1,2,3,4,5}):

q1i] = bli] = (ax[i|Ce+ ay[i(|Cy +a:[iC;) gl = 1/qui]

2lil = @a[i) (a:[i) (Ce = P) + 4y [i] (G = By) + ac[i] (C. — Fr))
Consider ranges of C.,C,,C;,P,,P,,P, € [—100,100], and
ali], ayli],a;[i],b[i] € [-10,10]. The equivalent vector-
magnitude model is as follows:
b[i] — |[a]|[|C[| cos(6ac)

q[i] = 1/q1[i]

q11i]

a31i] = V/||C[[>+ P[> — 2[[C][[[P]| cos(6cp)
z[]] = g2[i]|al|ga[i] cos(Bag,)
for 0 < |[a]| < 17.4 and 0 < ||C]|, ||P|| < 173.3.

TABLE I
AFFINE VS. SAT-MODULO FOR ANALYTIC CENTER.

Scalar Affine Scalar SAT-Modulo
Output Range Bits Range Bits
qili [-3010 , 3010] 13 [-3011 , 3011] 13
Qi =) - [-101, 101] 8
Z[i]) - [-3.6e5 , 3.6e5] 20
Vector Affine Vector SAT-Modulo
Output Range Bits Range Bits
qi [-3010 , 3010] 13 [-3011 , 3011] 13
Qi) - [-101 , 101] 8
q3i) - [-347 , 347] 10
z[i]) - [-6.1e5 , 6.0e5] 21

Table II shows ranges and equivalent bit-widths for the
analytic center calculation when using affine arithmetic and
the SAT-Modulo Theory (SMT) approach. Because in this
and in the next case study no matrix multiplications exist, the
block vectors are not required (only the vector-magnitude re-
sults are shown). Up to g3, the vector-magnitude model gives
identical results to the scalar expansion, but overestimates z, a
result of losing the correlations. Note also that the singularity
is circumvented by adding the constraint q% >0.0001, which
is convenient in the SMT approach (as detailed in [10]), but
for which no mechanism exists in affine arithmetic.

B. Euclidian Projection

A second convex optimization/analysis based case study is
Euclidian projection of a point/points onto a hyperplane. For
a hyperplane a-x+b = 0, a point x0 will have a projection:
b—a-x0
—a

a-a
If we consider for the case study x substituted for x0 and
a,x € R, once again the vector equations can be expanded
into scalar equations:

P(x0) =x0+

@ =Yoaxs =Y, a
GB=b—qi; ga=q3/q
Zi = Xi + q4a;, 16{07152a374}

where —100 < x; < 100 and —10 < a; < 10 for i €
{0,1,2,3,4} and —10 < b < 10. The vector-magnitude model
can also be formulated:

q1 = ||al[||x[| cos(6ax); g2 =|[a||?
g3=b—qi; @=q/q
l|z|| = V/[IX]]> + (gallal])> + 2| [x]|g4]|a]| cos ()

with 0 < |[x|| <223.7 and 1 < ||a|| <22.4.

Table III shows ranges and equivalent bit-widths for
Euclidian projection under the conditions described above.
Similarly to analytic center, the vector model keeps up
well with the scalar model for the first intermediates and
in fact, as of g4, the vector model actually surpasses the
scalar model to provide better results, since it can be more
thoroughly searched due to lower computational complexity.
Note also that singularity avoidance is unnecessary due to the
[la]| > 1 constraint in the specification. Nonetheless, since
no mechanism exists in affine arithmetic for capturing such
a constraint, it cannot handle the division.

437

TABLE III
AFFINE VS. SAT-MODULO FOR EUCLIDIAN PROJECTION.

Scalar Affine Scalar SAT-Modulo
Output Range Bits Range Bits
q1 [-5000 , 5000] 14 [-5001 , 5001] 14
QP [0, 500] 9 [0, 501] 9
Q3 [-5010 , 5010] 14 [-5011 , 5011] 14
q4 oo - [-348 , 348] 10
Zi oo - [-646 , 630] 11
Vector Affine Vector SAT-Modulo
Output Range Bits Range Bits
q1 [-5003 , 5003] 14 [-5003 , 5003] 14
q> [-114, 501] 9 [0, 501] 9
3 [-5013 , 5013] 14 [-5013 , 5013] 14
q4 oo - [-235 , 235] 9
Zi oo - [-270 , 271] 10

C. Conjugate Gradient Method

The third case study is based on a single iteration of
the Conjugate Gradient method for solving linear systems
of equations. This method has many applications, examples
include finite element method analysis and solutions to
partial differential equations. A single (in fact the first)
iteration can be formulated as follows. Given a matrix A, and
a vector b with an initial guess for x (which solves Ax = b)
of x¢ then let:

5.665 2.630 1.088
2.630 9.624 2.647
1.088 2.647 6.329

A=

r=>b d=1x q:ATd

T /T

a:ﬁ r=r—oq =t
d=r'+8d

and r’,d’ feed into the next iteration. Note, because of the
matrix multiplications, this case study (as well as the next
one) implements also the block vector from Section II-C.

Taking constraints on the inputs as 0.1 < x¢ < 104 and
0.1 <b <260, Table IV shows the ranges of the intermedi-
ates obtained through affine arithmetic and SMT. In this case,
due to the increased complexity of the scalar formulation
caused by the matrix multiplication, the scalar method over-
estimates the ranges (this is because of the timeouts due to
the problem size). While there is no guarantee that the ranges
obtained through the vector method are optimal, they are
significantly better than the scalar ones once again because
the reduced complexity of the formulation enables more
thorough search of the solution.

The significant reduction in bit-width from the vector
method in this case study arises largely because the eigen-
values of the matrix are fairly uniformly distributed, and the
input ranges of the vectors are uniform over the elements.
This algorithm also has inherently weak directional interde-
pendencies between intermediate variables, they are more
strongly correlated in terms of magnitude, which further
accounts for the success of the vector-magnitude approach.
Because of this however, no significant gains are made by
applying the block-vector approach, unlike the next study.

TABLE IV
AFFINE VS. SAT-MODULO FOR CONJUGATE GRADIENT.

TABLE V
AFFINE VS. SAT-MODULO FOR FFT-BASED CORRELATION.

Scalar Affine Scalar SAT-Modulo Scalar Affine Scalar SAT-Modulo
Output Range Bits Range Bits Output Range Bits Range Bits
d; [-104 , 104] 8 [-104 , 104] 8 fof [0, 6.56e4] 17 [0, 6.56e4] 17
ri [-260 , 260] 10 [-260 , 260] 10 F=7{f} [-512, 1024] 12 [-512, 1024] 12
qi [-1550 , 1550] 12 [-1075 , 1075] 12 F{fof} [-1.64e5 , 2.63e5] 20 [-1.32e5 , 2.63e5] 20
rTr [0, 2.03e5] 19 [0, 7.74e4] 17 FoG* [-2.63e5 , 1.05e6] 22 [-2.63e5 , 1.05e6] 22
dTq [-1.38e5 , 3.72] 20 [0, 1.44e5] 18 F{ssd} [-1.93e6 , 1.05e6] 22 [-1.99¢6 , 5.25€e5] 22
a) - [0, 7.78e8] 30 ssd [-1.06e8 , 9.23¢7] 28 [-1.01e8 , 8.01e7] 28
vl [-1.21e12, 1.21el2] 42 [-1.02e11 , 9.40e10] 38
rTY [-2.06e24 , 2.70e24] 83 [0, 2.08e22] 75 Vector Affine Vector SAT-Modulo
B o0 - [0, 2.23e17] 58 Output Range Bits Range Bits
d [-2.32e19 , 2.32¢19] 66 [-8.24e18 , 7.33e18] 64 fof [0, 4.20e6] 24 [0, 4.20e6] 24
F=Z7{f} [0, 2.05e3] 13 [0, 2.05e3] 13
Vector Affine Vector SAT-Modulo F{fof} [0, 4.20e6] 24 [0, 4.20e6] 24
Output Range Bits Range Bits FoG* [0, 4.20e6] 24 [0, 4.20e6] 24
]| [0.1, 104] 8 [0.1, 104] 8 F{ssd} [0, 7.55¢7] 28 [0, 7.55¢7] 28
I [0.1, 260] 10 [0.1, 260] 10 ssd [0, 7.55¢7] 28 [0, 7.55¢7] 28
Tl [0.42, 1300] 12 [0.42, 1300] 12
r’'r [0, 6.77e4] 18 [0, 6.77e4] 18 Block Vector Affine Block Vector SAT-Modulo
d’q [0, 1.36e5] 19 [0, 1.36e5] 19 Output Range Bits Range Bits
o pos - [0, 1.6060] o5 Fof [0, 4.206] 24 [0, 4.206] 24
7] P — [0, 2.01e6] 20 F=7{f} [0, 2.05e3] 13 [0, 2.05e3] 13
Ty = - (0. 204e12] 3 F{fof} [0, 4.20e6] 24 [0, 4.20e6] 24
B = - [0.5.97¢7] 77 FoG* [0, 2.10e6] 23 [0, 2.10e6] 23
T - - [0 418e7] 57 F {ssd [0, 3.78¢7] 27 [0, 3.78¢7] 27
ssd [0, 7.55e7] 28 [0, 7.55e7] 28
D. FFT Based Correlation REFERENCES

The last case study is based on a fast method for
computing correlation via sum-of-square-differences for 2-
dimensional (2D) data, as applied to object tracking. An
application and its dataflow are detailed in [15], which has
been reproduced below. The inputs f,g are 2D arrays of
data values, referred to by [15] as the search and reference
window respectively and the final correlation result ssd is:

ssd = F Y (sinco F{fof})—2(F{ftoF{g}*)}

where recall from Table I that o is the element-wise product
of arrays, sinc is the 2D sinc function of appropriate size,
and .Z is computed using the Fast Fourier Transform (FFT).
Two points are of primary interest in Table V. First,
note that the vector method overestimates the range for
F{ssd}, this is due to the strong directional correlation of
the pointwise matrix produce. However, the range for ssd is
actually smaller, due to the same phenomenon of the previous
case study, i.e., the scalar instance becomes too complex that
it cannot be feasibly searched and thus overestimates the bit-
width. In the bottom portion of the table, block vectors have
been implemented leading to tightening of the range of the
range for .7 {ssd}, while the range of ssd is unaffected due
to the directional independence of the FFT in the final step.
In all experiments, run times were on the order: scalar
SMT-10’s of min.; vector/block SMT-min.; Affine-seconds.

IV. CONCLUSION

This paper shows how to deal with vectors when allocating
bit-widths, with an impact on both area and performance.
This is a central problem when designing hardware acceler-
ators. The long-term implications on the implementation flow
for both ASICs and FPGAs may be significant because this is
a key step before RTL synthesis, which traditionally lacked
automation for robust solutions, as required by scientific
applications that are presently migrated to hardware.

438

[1]

[3]

[4]

[5

=

[7]
[8]

[9]

[10]

(1]

[12]
[13]
[14]

[15]

K. Sano, T. lizuka, and S. Yamamoto, “Systolic Architecture for
Computational Fluid Dynamics on FPGAs,” in Proc. Int. Symp. on
Field-Programmable Custom Comp Machines, 2007, pp. 107-116.
R. Scrofano, M. Gokhale, F. Trouw, and V. Prasanna, “Accelerating
Molecular Dynamics Simulations with Reconfigurable Computers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 6,
pp. 764-778, June 2008.

R. Mafi, S. Sirouspour, B. Moody, B. Mahdavikhah, K. Elizeh,
A. Kinsman, N. Nicolici, M. Fotoohi, and D. Madill, “Hardware-based
Parallel Computing for Real-time Haptic Rendering of Deformable
Objects,” in Proc. of the IEEE International Conference on Intelligent
Robots and Systems (IROS), 2008, p. 4187.

T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and
P. Cheung, “Reconfigurable Computing: Architectures and Design
Methods,” IEE Proceedings - CDT, pp. 193-207, March 2005.

J. Stolfi and L. de Figueiredo, “Self-Validated Numerical Methods and
Applications,” in Brazilian Mathematics Collog Monograph, 1997.
D.-U. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, and G. Constan-
tinides, “Accuracy-Guaranteed Bit-Width Optimization,” IEEE Trans-
actions on CAD, vol. 25, no. 10, pp. 1990-2000, Oct 2006.

R. Moore, Interval Analysis. Prentice Hall, 1966.

C. Shi and R. Brodersen, “An Automated Floating-point to Fixed-point
Conversion Methodology,” in Proc. International Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), 2003, pp. 529-532.

A. Mallik, D. Sinha, P. Banerjee, and H. Zhou, “Low-Power Opti-
mization by Smart Bit-Width Allocation in a SystemC-Based ASIC
Design Environment,” IEEE Transactions on Computer-Aided Design,
pp. 447-455, March 2007.

A.B. Kinsman and N. Nicolici, “Finite precision bit-width allocation
using SAT-modulo theory,” in Proc. IEEE/ACM Design, Automation
and Test in Europe (DATE), 2009, pp. 1106—-1111.

M. Franzle and C. Herde, “HySAT: An Efficient Proof Engine for
Bounded Model Checking of Hybrid Systems,” Formal Methods in
System Design, vol. 30, no. 3, pp. 178-198, June 2007.

G. Arfken, Mathematical Methods for Physicists, 3rd Edition.
lando, FL: Academic Press, 1985.

G. H. Golub and C. E. V. Loan, Matrix Computations, 3rd Edition.
John Hopkins University Press, 1996.

S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

L. M. C. Ruey-Yuan Han, “Fast courier transform correlation tracking
algorithm with background correction,” US Patent number: 6970577,
November 2005.

Or-

Cambridge

