

Abstract—Our earlier parallel algorithmics work on the

parallel random-access-machine/model (PRAM) computation

model led us to a PRAM-On-Chip vision: a comprehensive

many-core system that can look to the programmer like the

abstract PRAM model. We introduced the eXplicit Multi-

Threaded (XMT) design and prototyped it in hardware and

software. XMT comprises a programmer’s workflow that

advances from work-depth, a standard PRAM theory

abstraction, to an XMT program, and, if desired, to its

performance tuning. XMT provides strong performance for

programs developed this way due to its hardware support of

very fine-grained threads and the overhead of handling them.

XMT has also shown unique promise when it comes to ease-of-

programming, the biggest problem that has limited the impact

of all parallel systems to date. For example, teachability of

XMT programming has been demonstrated at various levels

from rising 6th graders to graduate students, and students in a

freshman class were able to program 3 parallel sorting

algorithms.

The main purpose of the current paper is to stimulate

discussion on the following somewhat open-ended question.

Now that we made significant progress on a system devoted to

supporting PRAM-like programming, is it possible to

incorporate our hardware support as an add-on into other

current and future many-core systems? The paper considers a

concrete proposal for doing that: recasting our work as a

hardware-enhanced programmer’s workflow “module” that

can then be essentially imported into the other systems.

I. INTRODUCTION

Programming today’s multi-core systems, as well as past and

present multi-chip multiprocessors is not easy. In fact,

relatively little has changed since the 2003 National Science

Foundation Panel on Cyberinfrastructure reported that: “to

many users, programming existing parallel computers is as

intimidating and time-consuming as programming in

assembly language”.

 The parallel random-access machine/model (PRAM)

theory of algorithms provides a well-established easy

approach to parallel algorithmic thinking, JaJa’90 and

Keller, Kessler&Traeff’01. A maxim that guided some of

this early PRAM work was that parallel algorithmic thinking

should be understood prior to attempting the design of a

parallel system.

As the PRAM theory reached maturity around 1990, a

debate developed on the role it can play for multi-chip

multiprocessing, the only type of multiprocessing possible at

the time. We note 3 positions on this subject that represent

the range of the debate: (i) The well-cited LOGP paper

Culler et al’93 stated that the PRAM theory is largely

irrelevant for anything that can be ever built, mostly because

of insufficient bandwidth among processors and among

processors and memories. (ii) At the other end of the

spectrum Wolfgang Paul originated the SB-PRAM

multiprocessor multi-chip project. See, e.g., Formella, Keller

&Walle’96. (iii) Culler, Singh&Gupta’99 opined that a

breakthrough for the programmability of parallel machines

may emerge if a machine that can look to the programmer

like a PRAM can ever be built.

The opportunity for building an on-chip parallel machine

with hundreds of processors or more using the amount of

logic than can fit on a single chip emerged on our horizon in

1997. The key questions were whether this opportunity can

address the concern of Culler et al’93 regarding bandwidth,

and, if yes, become the game changer that will allow seeking

a breakthrough, in line with Culler, Singh&Gupta’99.

Inspired by these questions, the PRAM has been our

starting point in Vishkin et al’98 for designing from the

ground-up a many-core on-chip computer system, called

eXplicit Multi-Threading (XMT). Several insights from the

Multi-threaded Architecture (MTA), a multi-chip system,

Alverson et al’90, originated by Burton Smith, influenced the

XMT system design. The MTA was renamed ―Cray XMT‖

in 2006 (after Smith left Cray). Note that the Cray XMT is a

different system than the XMT system discussed in this

paper.

Capitalizing on the system design opportunities opened up

by the new era of on-chip parallelism, XMT incorporates: (i)

a prefix-sum functional unit that subject to some constraints

executes a plurality of Fetch-and-Add (F&A) commands

(XADD in X86) in the same time as a single F&A command,

(ii) a higher-bandwidth, lower-latency interconnection

network among processors and memory, (iii) control

mechanisms that generalize the von-Neumann stored-

program-plus-program-counter mechanism to spawn as many

available threads (with their instructions already in place) as

the hardware supports, within the same time that it takes to

do that for spawning a single thread, (iv) reallocation of just-

freed hardware to as many available threads as the freed

hardware can support, and do that within the same time it

takes to have one thread allocated, (iv) on-chip shared

caches for a type of shared locality that was not possible in

the multi-chip MTA; (v) up to thousands of light-weight

processors (called thread control units, or TUCs), coupled

with a powerful serial processor (master TCU, or MTCU);

Algorithmic Approach to Designing an Easy-To-Program System:

Can It Lead to a HW-Enhanced Programmer’s Workflow Add-On?

Uzi Vishkin

University of Maryland Institute for Advanced Computer Studies (UMIACS)

vishkin@umd.edu

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 60

the TCUs can be all activated at once by the MTCU without

off-loading off-chip of data or instructions; the MTCU

provides backwards compatibility on serial code as it does

not fall behind a state-of-the-art uni-processor; XMT threads

can be very fine-grained and involve irregular access to

memory; and (vi) a programmer’s workflow that relies on

PRAM-like programming can guide XMT programming.

The purpose of this note is to support suggestions to be

made as part of the author’s keynote presentation at

ICCD’09. It is not meant to replace material already

presented in published papers. For this reason, the

presentation is not self-contained. Hopefully, the list of

references, the level of the discussion, and the slides that we

plan to make public through the XMT home page will make

all our points accessible to interested readers. In fact, we

expect that reading Wen&Vishkin’08 will be sufficient.

II. SOME PROPOSED CHALLENGES

The heart of the field needs to be reinvented for

parallelism, which is quite a tall order. The main technical

challenge is timely convergence to an easy-to-program

highly scalable general-purpose platform for many-cores.

The discussion below reviews 3 smaller challenges.

Addressing them will contribute towards such convergence.

Roles that XMT can play are emphasized.

1. Programmability by Every CS Major

Every person who majors in CS will have to be able to

program the new many-core system. But, is it possible to

build a many-core system that permits access by all CS

majors? We have provided tentative evidence that this is

doable: programming of the explicit multi-threaded (XMT)

system we built has been taught at various levels, from rising

6
th

 graders to graduate students.

Computer system research tends to limit benchmarking of

new machines to performance. This is in spite of the fact that

ease-of-programming of parallel systems for many-cores or

otherwise is a known problem.

We suggest using teachability at various levels as a

practical ease-of-programming benchmark for current and

future many-core designs, in addition to performance. A

necessary condition for programmability, it is relatively

simple to make teachability at various grade levels a standard

benchmark.

 2. Getting the Business of Software Developers

Customers buying a computer interact with its software, but

their link to the hardware is indirect, by nature. However, the

cyclic process of hardware improvements leading to software

improvements, which lead back to hardware improvements

and so on, known as the software spiral, facilitated for many

years a direct link between customers and hardware.

Hardware designers could directly serve their customers: (i)

A stable application-software base that could be reused and

enhanced from one hardware generation to the next was

available; and (ii) Better performance had been assured with

each generation if only the hardware could run serial code

faster, a reality popularized by the ―Intel inside‖ advertizing

campaign. Alas, the software spiral is now broken: (a)

nobody is building hardware that provides improved

performance on the old serial software base; (b) there is no

broad parallel computing application software base for which

hardware vendors are committed to improve performance;

and (c) no agreed-upon architecture currently allows

application programmers to build such software base for the

future.

Consequently, getting application software developers to

switch to the emerging generation of many-core systems has

become much more critical to serving the above customers.

However, the incentive to develop software for the new

machines has decreased considerably. Code development

and maintenance is much more expensive, as initial

development time is higher and code is more error prone.

Not only that the investment is higher, the returns on it are

much riskier: even if machines continue to support the

development platform, some hard-to-predict future upgrades

may offer new options for optimization of performance,

allowing competitors to develop better software, at a lesser

cost, by just adopting a wait-and-see approach. Thus,

computer designers need to understand the legitimate

concerns of software developers and do what they can to

―woo‖ them.

XMT could affect the above discussion in two ways. First,

it affirms concerns that hardware improvements that may

significantly reduce investment in code development by just

waiting till they are installed are indeed possible. The second

way would be if there was a way for incorporating the

needed hardware upgrades so as to support the broad family

of PRAM algorithms. Since an XMT system provides such

support, we suggest the following challenge.

3. Lower the Bar for Adoption of XMT by Vendors
 So far, vendors either adopted established parallel

architectures, generally known for the difficulty of

programming them, or introduced new ones, whose

programming is generally not much easier. For instance,

programming for locality is often very difficult. Still, urgings

by vendors to program for locality in order to match their

hardware appear to be gaining new momentum.

To date vendors have limited their adoption of

technologies addressing ease-of-programming to software

technologies that do not require any hardware update. The

appeal of these software technologies to vendors is clear, and

some are quite elegant, but so far they have not ―set the

programmer free‖ in the same way that a hardware-based

technology can. For example, none allows the programmer to

start with WD design and proceed directly from there to a

computer program in the same way that the XMT workflow

allows. XMT, on the other hand, does require some hardware

support. The question is whether we could come up with a

list of hardware features that allows upgrading current or

future many-core systems to harness the power of XMT; the

shorter the list the better.

We must say that we were not very optimistic, until

recently, about the prospects of making XMT an add-on

option for many-core systems. The good news, however, is

that to achieve better scalability a growing trend limits the

role of cache coherence in many-core systems. As XMT

61

parallelism assumes a memory architecture that does not

allow local (write) caches at the TCUs (thread control units),

this trend will hopefully make it easier to augment many-core

systems with some or all of the hardware features of XMT,

and support the XMT programmer’s workflow. The payoff

can be substantial: (i) these systems could benefit from the

ease-of-programming and performance of the XMT

approach, (ii) it may be easier to convince software

developers to bet on the new systems, and (iii) it should also

be easier to convince instructors who will see an easy-to-

program approach supported by vendors to start teaching it;

the XMT project developed extensive teaching materials

(and software release) that these teachers could use; these

materials can also help them decide to do it.

III. THE XMT APPROACH

The wealth of the parallel random-access machine/model

(PRAM) theory of algorithms is well documented. The

explicit Multi-Threading (XMT) project has been driven by

a PRAM-On-Chip vision, seeking to build an easy-to-

program parallel computer comprising thousands of

processors on a single chip using a PRAM-like programming

model. XMT has gone through significant hardware (e.g.,

64-processor machine) and software prototyping. A software

release allows experimentation with the XMT environment

on any standard computer platform.

Interestingly, starting with the PRAM might not have been

an obvious choice. Technology constraints guide us away

from tightly coupled concurrency in programs; e.g., away

from the PRAM and towards multi-threading. On the other

hand, multi-threaded programs are notoriously difficult to

design or analyze for correctness or performance.

1. The XMT Programmer’s Workflow

The XMT programming approach incorporates an elegant

workaround overviewed below. Based on a programmer’s

model that comprises multiple levels of abstractions, XMT

provides a ―workflow‖ from a PRAM algorithm to an XMT

program, and, if desired to its performance-tuning. Given a

problem, a PRAM-style parallel algorithm is developed for it

using the Shiloach&Vishkin’82 Work-Depth (WD)

methodology, very much in line with JaJa’90 and Keller,

Kessler&Traeff’01. All the operations that can be

concurrently performed in a first ―round‖ are noted, followed

by those that can be performed in the second round, and so

on. Such synchronous description of a parallel algorithm

makes it easy to reason about correctness and analyze for

work (the total number of operations) and depth (number of

rounds). The XMT programmer is then expected to use the

XMTC language (basically C with two additional

commands: spawn and prefix-sum) for translating this basic

concurrency to a multi-threaded program. The workaround is

that reasoning about correctness or performance can now be

restricted to just comparison of the program with the WD

algorithm, assuming that correctness and performance of

the algorithm have been established, often a much easier

task than directly analyzing the program.

This workflow workaround, with its multiple levels of

abstraction, made a difference with respect to ease-of-

programming. It allowed college freshmen (and even high-

school students) to solve the same problems they get in

typical freshmen serial programming course assignments

using (XMT) parallel programming. On the other hand, even

graduate students at the top of the class made embarrassing

mistakes when they tried to shortcut the parallel algorithm

stage.

For examples for advancing from WD to performance

tuning, see Vishkin, Caragea&Lee’08.

2. The XMT Hardware Enhancements

Below we briefly review the XMT hardware features.

- A prefix-sum functional unit. See the appendix of

Vishkin’97 and US Patent 6,542,918. Such a functional unit

provides enhanced hardware implementation of a plurality of

concurrent (atomic) Fetch-and-Add instructions, where the

Add is limited to very small integers. It should be of

independent interest to other parallel designs as it allows for

fast coordination among parallel processes.

- Extension of the von-Neumann program-counter +

stored-program apparatus plus broadcast of SPMD (single-

program multiple-data) code, plus independence of order

semantics (IOS). The prefix-sum unit is used for several

purposes including enhancing automatic allocation of thread

IDs. These (mostly) control mechanisms are the heart of the

XMT approach. See Naishlos et al’03, Wen&Vishkin’08 and

US patents 6,463,527 and 7,523,293.

- Prefix-sum to memory and reduced synchrony on-chip

interconnection network. US patent 6,768,336 and follow-

up work in Balkan et al’07&’08.

- Most of the above features would benefit from a uniform

memory architecture (UMA), where during parallel

execution no local (write) caches are used.

- How to build the memory architecture so that the many-

core computer will not fall behind on either serial code or

parallel code. US patent application 20090119481 shows

how to gracefully upgrade from a uniprocessor to up to

thousands of processors on-chip without losing on

backwards compatibility on serial code, and dynamically

moving back and forth between serial and parallel execution.

Note that GPU approaches tend to look at the parallel GPU

unit as a co-processor; thus, off-loading the execution to the

co-processor (and back) needs to be planned and its costs

can be significant, which must limit their effective use of the

parallel GPU unit.

 - How to enhance the above using nesting of threads with

hardware and software methods. For a limited input on this

see US patent application 20090125907

 Finally, a stable compiler (for programs written in

XMTC) that builds on GCC Tzannes at al’06 is now part of

our software release.

IV. SOME EVIDENCE

XMT is easy to build. A single graduate student, with no

prior design experience, completed the XMT hardware

description (in Verilog) of a 64-processor FPGA prototype

in just over 2 years. XMT is also silicon-efficient. Our ASIC

design indicates that a 64-processor XMT needs the same

62

https://franklin.pc.umiacs.umd.edu/exchweb/bin/redir.asp?URL=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26p=1%26u=%252Fnetahtml%252FPTO%252Fsearch-bool.html%26r=4%26f=G%26l=50%26co1=AND%26d=PTXT%26s1=vishkin.INNM.%26OS=IN/vishkin%26RS=IN/vishkin
https://franklin.pc.umiacs.umd.edu/exchweb/bin/redir.asp?URL=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26p=1%26u=%252Fnetahtml%252FPTO%252Fsearch-bool.html%26r=5%26f=G%26l=50%26co1=AND%26d=PTXT%26s1=vishkin.INNM.%26OS=IN/vishkin%26RS=IN/vishkin
https://franklin.pc.umiacs.umd.edu/exchweb/bin/redir.asp?URL=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26p=1%26u=%252Fnetahtml%252FPTO%252Fsearch-bool.html%26r=1%26f=G%26l=50%26co1=AND%26d=PTXT%26s1=vishkin.INNM.%26OS=IN/vishkin%26RS=IN/vishkin
https://franklin.pc.umiacs.umd.edu/exchweb/bin/redir.asp?URL=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26p=1%26u=%252Fnetahtml%252FPTO%252Fsearch-bool.html%26r=3%26f=G%26l=50%26co1=AND%26d=PTXT%26s1=vishkin.INNM.%26OS=IN/vishkin%26RS=IN/vishkin
https://franklin.pc.umiacs.umd.edu/exchweb/bin/redir.asp?URL=http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26p=1%26u=%252Fnetahtml%252FPTO%252Fsearch-bool.html%26r=2%26f=G%26l=50%26co1=AND%26d=PG01%26s1=vishkin.IN.%26OS=IN/vishkin%26RS=IN/vishkin
https://franklin.pc.umiacs.umd.edu/exchweb/bin/redir.asp?URL=http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2%26Sect2=HITOFF%26p=1%26u=%252Fnetahtml%252FPTO%252Fsearch-bool.html%26r=1%26f=G%26l=50%26co1=AND%26d=PG01%26s1=vishkin.IN.%26OS=IN/vishkin%26RS=IN/vishkin

silicon area as a (single) current commodity core. The

approach goes after any type of application parallelism

regardless of its amount, regularity, or grain size and is

amenable to standard multiprogramming (i.e., where the

hardware supports several concurrent OS threads).

We also demonstrated good performance,

programmability and teachability. Highlights include:

evidence of 100X speedups on general-purpose applications

on a simulator of 1000 on-chip processors in

Gu&Vishkin’06, and speedups ranging between 15X to 22X

for irregular problems such as Quick-sort, breadth-first

search (BFS) on graphs, finding the longest path in a

directed acyclic graph (DAG), and speedups in the range of

35X -45X for regular programs such as matrix multiplication

and convolution on the 64-processor XMT prototype versus

the best serial code on XMT, in Wen&Vishkin’08. Caragea

et al’09 demonstrates nearly 10X average performance

improvement potential relative to Intel Core 2 Duo for a 64-

processor XMT chip that uses the same silicon area as a

single core.

The teachability of our approach has been extensively

demonstrated. Over 100 students in grades K-12 have

already programmed XMT and it even entered the regular

syllabus of the year-long parallel computing course at

Thomas Jefferson High-School for Science and Technology,

Alexandria, VA. See Vishkin et al’09 for a recent

presentation at the Computer Science for High School

Workshop.

V. CONCLUSION

The algorithmic approach to designing a parallel system

gave XMT some desired capabilities. The open question that

this note starts to address is the understanding of the extent

to which these capabilities can also be imported into other

systems. We hope that ICCD system designers will be able to

advance this opportunity further.

ACKNOWLEDGMENT

Contributions by current and former members of the XMT

team, as well as discussion with Ronny Ronen, Intel and

support by National Science Foundation grants 0325393,

0811504 and 0834373, are gratefully acknowledged.

REFERENCES

[1] Explicit Multi-Threading (XMT): A PRAM-On-Chip Vision.

Homepage: www.umiacs.umd.edu/~vishkin/XMT/

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,

and B. Smith. The Tera computer system. In Proceedings of the 4th

international conference on Supercomputing, 1990.

[3] A. O. Balkan, G.C. Caragea, A. Tzannes, and U. Vishkin.

Programmer's manual for XMTC language, XMTC compiler and

XMT simulator. University of Maryland Institute for Advanced

Compuer Studies, 2005-2009.

[4] A. O. Balkan, M. Horak, G. Qu, and U. Vishkin. Layout-accurate

design and implementation of a high-throughput interconnection

network for single-chip parallel processing. In Hot Interconnects,

Stanford, CA, 2007.

[5] A. O. Balkan, G. Qu, and U. Vishkin. An Area-Efficient High-

Throughput Hybrid Interconnection Network for Single-Chip Parallel

Processing. In 45th Design Automation Conference, Anaheim, CA,

June 8-13, 2008.

[6] G. Caragea, B. Saybasili, X. Wen, and U. Vishkin. Performance

potential of an easy-to-program PRAM-On-Chip prototype versus

state-of-the-art processor. In Proc. ACM SPAA, Calgary, Canada,

2009.

[7] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,

E. Santos, R. Subramonian, and T. von Eicken. LogP: Towards a

realistic model of parallel computation. In Principles Practice of

Parallel Programming, pages 1-12, 1993.

[8] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer

Architecture: A Hardware/Software Approach. Morgan Kaufmann

Publishers, Inc, 1999.

[9] A. Formella, J. Keller, and T. Walle. Hpp: A high performance

PRAM. In Euro-Par '96: Proceedings of the Second International

Euro-Par Conference on Parallel Processing-Volume II, pages 425-

434, London, UK, 1996. Springer-Verlag.

[10] P. Gu and U. Vishkin. Case study of gate-level logic simulation on an

extremely fine-grained chip multiprocesor. J. Embedded Comp.,

2:181–190, 2006.

[11] J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley,

1992.

[12] J. Keller, C.W. Kessler and J.L. Traeff. Practical PRAM

Programming. Wiley-Interscience, 2001.

[13] D. Naishlos, J. Nuzman, C.-W. Tseng, and U. Vishkin. Towards a

first vertical prototyping of an extremely fine-grained parallel

programming approach. Theory of Computing Systems, Special Issue

for SPAA 2001. Springer, 36:521-552, 2003.

[14] Y. Shiloach and U. Vishkin. An O((n**2)log n) parallel max-flow

algorithm. J. Algorithms, 3(2):128-146, 1982.

[15] A. Tzannes, R. Barua, G. Caragea, and U. Vishkin. Issues in writing a

parallel compiler starting from a serial compiler, draft. Technical

report, University of Maryland Institute for Advanced Computer

Studies, 2006.

[16] U. Vishkin. From algorithm parallelism to instruction-level

parallelism: an encode-decode chain using prefix-sum. In Proc. 9th

ACM Symposium on Parallel Algorithms and Architectures (SPAA),

1997.

[17] U. Vishkin, G. Caragea, and B. Lee. Models for advancing PRAM

and other algorithms into parallel programs for a PRAM-On-Chip

platform. In Handbook of Parallel Computing: Models, Algorithms

and Applications. Editors: S. Rajasekaran and J. Reif. CRC press,

2008.

[18] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman. Explicit multi-

threading (XMT) bridging models for instruction parallelism. In Proc.

10th ACM symposium on Parallel algorithms and architectures

SPAA, 1998.

[19] U. Vishkin, R. Tzur, D. Ellison and G.C. Caragea. Parallel

programming for High Schools. Keynote presentation, CS4HS

Workshop, Carnegie-Mellon University, July 2009, power point

presentation available though the XMT home page.

[20] X. Wen and U. Vishkin. FPGA-based prototype of a PRAM-on-chip

processor, ACM Computing Frontiers, Ischia, Italy, May 5-7, 2008.

63

http://www.umiacs.umd.edu/~vishkin/XMT/

