
Test-Wrapper Optimization for Embedded Cores in TSV-Based
Three-Dimensional SOCs∗

Brandon Noia1, Krishnendu Chakrabarty1 and Yuan Xie2

1Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708
2 Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802

1 Email: brn2@duke.edu, krish@ee.duke.edu 2 Email: yuanxie@cse.psu.edu

Abstract— System-on-chip (SOC) designs comprised of a
number of embedded cores are widespread in today’s integrated
circuits. Embedded core-based design is likely to be equally
popular for three-dimensional integrated circuits (3D ICs), the
manufacture of which has become feasible in recent years.
3D integration offers a number of advantages over traditional
two-dimensional (2D) technologies, such as the reduction in
the average interconnect length, higher performance, lower
interconnect power consumption, and smaller IC footprint.
Despite recent advances in 3D fabrication and design methods,
no attempt has been made thus far to design a 1500-style test
wrapper for an embedded core that spans multiple layers in a
3D SOC. This paper addresses wrapper optimization in 3D ICs
based on through-silicon vias (TSVs) for vertical interconnects.
Our objective is to minimize the scan-test time for a core under
constraints on the total number of TSVs available for testing.
We present two polynomial-time heuristic solutions. Simulation
results are presented for embedded cores from the ITC 2002
SOC test benchmarks.

I. INTRODUCTION

System-on-chip (SOC) designs are common for today’s
integrated circuits, and they are often comprised of a number
of embedded cores. In order to test the cores at a system
level, a test-access mechanism (TAM) must be included on
the chip. The purpose of the TAM is to allow test data to
be transported between the cores and the chip input and
output (I/O) pins. Test wrappers, such as the IEEE Std. 1500
wrapper [1], interface the TAM to the embedded cores and
connect the I/O of the cores to other cores.

Modular testing is advocated for core-based SOCs because
it facilitates test reuse and allows the cores to be tested
without complete knowledge about their internal structural
details. In order to reduce cost and test time, test wrapper
and TAM optimization are critical. Although a lot of research
[2]–[4] has been directed at modular testing for SOCs,
including the IEEE Std. 1500 for wrapper design, it has
largely been targeted at two-dimensional (2D) integrated
circuits (ICs). The integration of embedded cores in multi-
layer three-dimensional (3D) ICs is leading to new modular
test challenges.

The promise of 3D IC technology lies in the numerous
benefits it can potentially provide over traditional 2D ICs [5],
[6]. Due to the relentless increase in chip complexity, inter-
connects have become longer in 2D ICs, leading to increased
circuit delay and power consumption. 3D ICs will lead to a
reduction in the average interconnect length and help obviate

∗This work was supported in part by a Master’s Scholarship from the
Semiconductor Research Corporation (SRC) and NSF 0903432

the problems caused by long global interconnects [7]–[9].
Since die can be stacked in a 3D environment, on-chip data
bandwidth can be increased as well. Furthermore, since 3D
ICs can scale ”up” instead of ”out”, higher packing density
and smaller footprint can be achieved.

Although a number of 3D integration methods have
been proposed in the literature, in this work we focus
on through-silicon via (TSV) vertical interconnects, as it
offers the promise of the highest vertical interconnect density
among the proposed technologies. Using TSV technology,
3D ICs are created by placing multiple device layers together
through wafer or die stacking, and these are then connected
using vertical TSVs [8]. Fig. 1 shows an example of a 3D
IC using TSV interconnects.

3D SOC design can be done at two levels of granularity:

1) Coarse-granularity partitioning: With this approach,
each embedded core in the SOC is still a 2D design.

2) Fine-granularity partitioning: With this approach, each
core in the SOC chip is partitioned into multiple
layers [8]. For example, a repartitioning of the Intel
Core 2 processor across four die-stacked tiers showed
significant reductions in latency, resulting in an overall
47.9% increase in frequency and 47.0% performance
improvement [10].

Even though fine-granularity 3D SOC design provides the
above benefits, it introduces additional challenges on how to
test such true 3D cores. Scan-chain design in such multi-layer
cores can also span across layers so that the wire-length for
scan chains can be reduced (and therefore reduce test power
and testing time) [11]. Test-wrapper design for 3D SOC
systems with true 3D cores is more challenging compared to
the case of coarse-granularity 3D SOC design [12], because
scan chains for each individual core can now span multiple
layers and the test wrapper must interface with input/output
and scan-chain terminals located on any layer.

Though the manufacture of 3D ICs is now feasible, design-
automation and testing tools are not yet fully mature for
commercial exploitation. These tools need to be able to
exploit the benefits of 3D technologies, while taking into
account the various design-related tradeoffs. For example,
in a TSV-based 3D IC, the number of available TSVs
for test access is limited because of available chip area.
Most TSVs are likely to be dedicated for functional access,
power/ground, and clock routing.

Testing of 2D ICs and optimization of test-access archi-
tectures have been well studied [2] [13] [4]. Optimization
methods have included ILP [2], rectangle packing [14] [2],

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 70



Fig. 1. An example of a 3D IC manufactured by die stacking with TSV
connections.

iterative refinement [15], and other heuristics [4] [16]. How-
ever, these methods were developed for 2D IC technologies,
and the added design problems related to 3D technologies
were not considered.

Some early work has been reported recently on testing
of 3D ICs [12], [17]. However, no attempt has been made
thus far to design a 1500-style test wrapper for an embedded
core that spans multiple layers in a 3D SOC. The goal of
this paper is to address wrapper optimization in 3D ICs
that use TSVs for vertical interconnects and fine-granularity
partitioning. Our objective is to minimize the scan-test time
for the core under constraints on the total number of TSVs
available for testing. The embedded core is assumed to have
full scan, and the scan chains are “hard” in the sense that
they cannot be redesigned for wrapper optimization.

The wrapper optimization problem is known to be NP-
complete for 2D ICs [2], [13]. Therefore, it follows from
the “method of restriction” that this optimization problem is
also intractable for 3D ICs. Bin design methods that have
been adapted for 2D wrapper design cannot be directly used
for 3D ICs because of the need to incorporate constraints on
the number of TSVs. Moreover, the possibility of scan chains
on multiple layers adds an additional level of complexity for
optimization.

In this paper, we address wrapper chain optimization for
embedded cores in TSV-based 3D SOCs. To the best of our
knowledge, this work is the first attempt to study the test-
wrapper design for 3D SOC systems with true 3D cores. 3D
wrapper chain optimization differs from that in 2D ICs in
that scan-chains can span multiple layers, core inputs and
outputs can be on any layer, and that additional constraints
on the number of TSVs exist. Furthermore, all of the chip
pins are at the lowest layer [8], necessitating that wrapper
chains begin and end on the lowest layer. This, coupled with
TSV restrictions, adversely affects access to core elements
on the highest layers.

The rest of this paper is organized as follows: Sec-
tion II uses a simple example to motivate this work and
briefly outlines prior work. Section III presents two heuristic
approaches for solving the wrapper optimization problem.
Section IV gives experimental results for several cores from
the ITC 2002 SOC test benchmarks. Finally, Section V
presents conclusions drawn from this work.

II. PROBLEM FORMULATION

A. Motivational Example

Figure 2 shows a simple example to motivate this work.
The TAM width used to access a core determines the number
of wrapper chains that must be created. An upper limit on
the total number of TSVs that can be used for routing all of
the wrapper chains restricts how many TSVs each chain can
utilize. The length of the longest wrapper chain determines
the number of clock cycles needed to load in and read out test
data. Therefore, the objective is to reduce the length of the
longest wrapper chain (and thus scan time) while utilizing no
more TSVs than the global TSV limit. In order for loading
and reading test data in a pipelined fashion (and thus as
efficiently as possible), functional inputs must be placed first
in a wrapper chain and functional outputs must be placed last,
with the scan-chains in the middle.

There are two layers to the 3D IC of Fig. 2. Part (a) shows
the placement of the functional I/Os and the scan elements.
All pins to the IC are on layer 0, such that all wrapper chains
must begin and end on layer 0. There are two scan chains,
one with 3 registers and one with 5. The 5-register scan chain
spans both layers, with its scan-in on layer 0 and scan-out on
layer 1. For this example, let us assume a global limit of 3
TSVs. Parts (b) and (c) show 2 possible solutions using two
wrapper chains. As can be seen, both solutions use 3 TSVs
but the wrapper chains in part (c) are balanced, while those of
part (b) are unbalanced. The solution of part (c) leads to less
test time. The balancing of the lengths of wrapper chains
for large cores is a challenging design task. Optimization
methods are needed for determining the best wrapper designs
under a set of design and technology constraints.

B. Problem Formulation

The goal of wrapper optimization is to minimize the test
time for each core. The optimization problem addressed in
this paper is as follows. Given a core (placement of inputs,
outputs, scan-ins, and scan-outs, as well as lengths of scan-
chains), the TAM width, and the 3D design constraint of a
maximum number of TSVs to be used, determine the optimal
placement of core elements into wrapper chains such that the
length of the longest wrapper chain is minimized.

We have developed two faster heuristic approaches to
produce near-optimal solutions. These two models extend the
bin design method presented in [13] for 2D wrapper design.
The first heuristic presented is less close to optimality but
faster for cores with many scan-chains, while the second
heuristic is slower for cores with many scan-chains but
produces better results under tight TSV constraints.

III. 3D WRAPPER OPTIMIZATION

Scan chains can span multiple layers and their scan-in and
scan-out can be on different layers. TSVs internal to a scan
chain are not counted against the TSV constraint. The lowest
layer of the IC is layer 0, followed by layers 1, 2, etc.

71



Fig. 2. A 3D IC with two possible wraper-chain solutions.

A. Basic Heuristic Method

The goal of this heuristic method is to achieve near-
optimal sorting of elements across a specified number of
wrapper chains in polynomial time. We are given the fol-
lowing: TAM width M, a set of core elements S ={s1, s2,
... , sn}, and a maximum number of TSVs, TSV max, which
can be used for all the routing of the wrapper chains. For
the purpose of the heuristic, an element is a data structure.
Each element also contains two layer values corresponding
layer of the first register and layer of the last register of the
element. For inputs and outputs, which reside on only 1 layer
and contain only 1 register, these two values are equal. For
scan-chain elements, these two layers represent the scan-in
and scan-out and can be on any layer. Lastly, an element
has a type value which delineates the element as being an
input, output, our scan-chain. Each element will be placed
in only one wrapper chain. Fig. 3 outlines the element data
structure.

Data structure Element

1. Length /*Number of Registers*/
2. Lin /*Layer of First Register*/
3. Lout /*Layer of Last Register*/
4. Type /*Element Type*/

Fig. 3. The element data structure.

The heuristic approach to this problem is based on the bin-
design method for 2D wrapper chains [13]. In our approach,
each bin corresponds to a wrapper chain and is a data
structure. Each bin contains a variable which defines the
maximum number of TSVs that the wrapper chain can
utilize. A size (Size) is associated with a bin that stores
the length of the wrapper chain (the number of registers
contained in the wrapper chain). The length of all wrapper
chains at the start of the algorithm is 0. The number of TSVs
used at any given time by the wrapper chain is also stored.
This number must always be less than or equal to the TSV
limit. Lastly, the bin contains a set of all of the elements
E ={e1, e2, ... , eb} in the wrapper chain.

For this heuristic, we are given the following: a TAM

width M, a set of core elements S ={s1, s2, ... , sn}, a set of
layers Lin ={lin1, lin2, ... , linn} corresponding to the layer
on which a scan-in, functional input, or functional output
resides for set S, a set of layers Lout ={lout1, lout2, ...
, loutn} corresponding to the layer of the scan-out (or equal
to the corresponding Lin value for inputs and outputs) for
set S, and a set of types T ={t1, t2, ... , tn} corresponding
to the type of each element in set S.

Algorithm 1 BinDesign({c1, ... , cM}, S, Lin, Lout, T )
Initialize n elements; Initialize M bins;
Sort(elements); Sort(bins);
for i = 1 to n do

for j = 1 to M+1 do
if j == M+1 then

/*No solution can be found for this enumeration*/
return -1;

end if
if InsertElement(binj , si) then

break;
end if

end for
Sort(bins);

end for
return Size(binM );

The heuristic begins by partitioning the number of TSV
in TSV max between M wrapper chains. The algorithm
for doing this is not shown here explicitly since it is a
straightforward enumerative procedure (without repetitions).
This algorithm produces a set C ={c1, c2, ... , cM} of a
possible partitioning of TSV max across M wrapper chains.
These combinations are given as an argument to the next
phase, the bin design algorithm.

The bin design algorithm is shown in Algorithm 1. The
purpose of the algorithm is to create all elements and bins,
and then to attempt to put elements into bins until all
elements are in a bin or it fails to put an element in a bin. It
begins by initializing n element data structures such that their
variables correspond to the values in sets S, Lin, Lout, and
T . Likewise, M bins are initialized with TSV limit equal to
the respective limits of set C. It then proceeds by sorting the
elements and bins. Elements are sorted depending first on the
value of Length and second by Lin. Those elements with

72



the longest Length are placed first, and between elements
of the same Length those with the highest Lin are placed
first. Sorting the bins is based first on the value of Size
and then on TSV limit. Those with larger Size values are
placed first, and where bins are of equal size, those with the
smallest TSV limit are placed first. Since all bins begin at
Size = 0, they are first ordered by TSV limit.

The order of elements and bins is important, as it de-
termines the order in which they are considered by the
algorithm. For the bins, Size is prioritized, and we attempt to
place the elements in the smallest bins first. Adding elements
to the smallest chains first reduces the size of the largest
chains, one of the goals of our heuristic. Among bins of equal
size, we attempt to place elements in those with the lowest
TSV limit first. Since those bins with higher TSV limit
values are capable of holding a wider array of elements
without violating their constraints, it is imperative to first
attempt to utilize bins with less leeway. Elements are ordered
such that large scan-chains are considered first. Since there
tend to be more I/O than scan chains, and I/O have a Length
of 1, they are used to balance out wrapper chains that may
have large size differences caused by placing scan-chains.
Elements on higher layers are considered next, since they
have the least leeway in which bins they can be placed.

After initialization and sorting, the bin design algorithm
attempts to place elements into bins based on the sorted
priorities of both elements and bins. It does this using
the insert element algorithm shown in Algorithm 2. If the
element was successfully placed, InsertElement returns true,
otherwise it returns false. If false is returned, the bin being
checked is incremented and InsertElement is run to see if
the element can be placed in the next bin. If the algorithm
has gone through all the bins and has been unable to place
the element in a bin without violating the TSV limit of each
bin, then the enumeration of C is considered to be infeasible
and a value indicating that no solution could be found is
returned. If true is returned by InsertElement, then the bins
are resorted (since Size and TSV limit changed for the bin
the element was placed in) and the algorithm attempts to
insert the next element. The bin design algorithm returns the
Size of the longest bin.

The insert element algorithm is shown in Algorithm 2.
This algorithm takes as its arguments an element sin that
the algorithm will try to put in the bin Binj . If it can insert
sin into Binj without using more TSVs than its TSV limit,
then sin is added to E (the set of elements in the wrapper
chain represented by Binj ) and the algorithm returns true.
Otherwise, it returns false.

InsertElement begins by defining the variable used, which
keeps track of how many TSVs the wrapper chain needs to
connect all elements in the chain. It copies E to a new set, the
testSet, which also contains sin. The number of elements
in testSet is stored in the variable elementsToConsider,
which begins as totaling the number of elements in E (which
equals b) plus 1 since sin is also added to testSet.

Since inputs must appear first in the wrapper chain, In-
sertElement first connects all elements of Type = input. The

Algorithm 2 InsertElement(Binj , sin)
/*All functions are performed on Binj*/
used=0;
copy E to testSet;
Add element sin to testSet; elementsToConsider = b+1;
/*Stage 1 - Consider Inputs*/
hiLayer = 0;
for i = 1 to elementsToConsider do

if Type(testSeti) == input then
if Lin(testSeti) > hiLayer then

hiLayer = Layer(si);
end if

end if
end for
used += hiLayer;
/*Stage 2 - Consider Scan-chains*/
currentLayer = hiLayer; layerDif = 999;
while testSet contains at least 1 scan-chain do

for i = 1 to elementsToConsider do
if Type(testSeti) == scan-chain then

if |Lin(testSeti)-currentLayer| < layerDif then
layerDif = |Lin(testSeti)-currentLayer|;
bestElement = i;

end if
end if

end for
used += layerDif; layerDif = 999;
currentLayer = Lout(testSetbestElement);
remove testSetbestElement from testSet;
elementsToConsider−−;

end while
/*Stage 3 - Consider Outputs*/
hiLayer = 0;
for i = 1 to elementsToConsider do

if Type(testSeti) == output then
if Lin(testSeti) > hiLayer then

hiLayer = Lin(testSeti);
end if

end if
end for
used += hiLayer + |currentLayer-hiLayer|;
if used <= TSVlimit then

Insert sin in E;
return TRUE

end if
return FALSE

minimum number of TSVs necessary to connect all inputs
in a wrapper chain, regardless of the number of inputs, is
simply equal to the value of Lin for the input on the highest
layer. This fact is shown conceptually in Fig. 4. Here, the
minimal number of TSVs used for a wrapper chain in which
the highest input is on layer 3 is 3. Thus, InsertElement looks
at the value of Lin for all elements of Type input, storing the
highest value of Lin in the variable hiLayer. The number
of TSVs utilized at this point (the value of used) is set to
be equal to hiLayer.

InsertElement next considers scan chains, as they succeed
inputs in the wrapper chain. The variable currentLayer
keeps track of the layer on which the last element placed in
the wrapper chain resided. layerDif contains the difference
between the layer currentLayer and the Lin of the next
scan-chain to be inserted in the wrapper chain. layerDif is

73



Fig. 4. Conceptual view of the number of TSVs used for inputs in a
wrapper chain.

initialized to an arbitrarily high value. The while statement
ensures that all elements of Type scan-chain are inserted
into the wrapper chain. For all scan-chains in the testSet,
the smallest difference between currentLayer and the Lin
of a scan-chain is determined, and the index of that scan-
chain is saved in bestElement. We aim to find the smallest
layerDif in order to reduce the number of TSVs used
between elements. layerDif is added to used to reflect any
extra TSVs that may have been used connecting elements.
layerDif is returned to its arbitrarily high value, and
currentLayer is changed to the value of the current scan-
chain’s Lout to reflect the layer on which the next trace
will be placed. The element contained in bestElement is
removed from the testSet so that it is not reconsidered, and
elementsToConsider is decremented to reflect the removal.

After all of the scan-chain elements have been placed into
the wrapper chain, InsertElement places outputs. As with
the inputs, the number of TSVs used for the outputs only
depends on the highest layer on which an output resides.
Thus, the algorithm checks the testSet for the highest Lin
for an element of Type output and stores it in hiLayer. used
is incremented by the number of TSVs used to connect all
the outputs back to layer 0 plus the difference between the
scan-out of the last scan-chain used and the output on the
highest layer. This is the minimum number of TSVs that can
be used to connect all of these elements, as shown in Fig. 5.
Fig. 5 shows two possible solutions for an example wrapper
chain. The one on the left is the minimal solution resulting
in 3 TSVs, one to connect the last scan-out to the highest
output and then connect other outputs down to layer 0. The
example on the right shows a suboptimal solution using a
different method and resulting in 5 TSVs.

After all elements have been placed in the wrapper chain,
InsertElement checks to see if the TSV limit has been
violated. If not, then sin is inserted into E and the algorithm
returns true. The bin’s Size and TSV used variables are
also updated, which for conciseness are not shown in the
algorithm. Size is simply the sum of the Length variables
for all elements in E, and TSV used is equal to used at the
end of the algorithm. If the TSV limit has been exceeded,

Fig. 5. An optimal and suboptimal solution to connecting outputs in a
wrapper chain.

then sin is discarded and the algorithm returns false.

B. Heuristic Method with Look Ahead
In Algorithm 2, the method of placing scan chains in

a wrapper chain is the main obstacle towards achieving
near-optimal results. The problem with Algorithm 2 will be
explained using the simple example shown in Fig. 6. In Part
(a), the scan-out of a previous scan chain is shown, with
three other scan chains still to be connected. Determining
that the two closest scan-ins are on the same layer as the
scan-out, Algorithm 2 will select the first of the closest scan-
chains. As can be seen by the next series of connections in
Part (b), labeled in the order in which they were made, this
leads to a suboptimal result using one TSV. Part (c) shows a
more effective solution for connecting the scan chains, and
it results in the use of no TSVs.

A solution to this problem is a method that we will refer
to as look-ahead. The goal of look ahead is to determine,
given a layer on which a preceding input or scan-out resided,
which next scan-chain will result in the fewest used TSVs.
It does this by creating a set R = {R1, R2, ... , Rq} of scan-
chains that are closest in layer to the preceding element, and
then checking to see which scan-chains’ scan-out is closest
in layer to the next selectable scan-chain. This is what we
mean by look ahead, and in this case we look ahead by 1
element.

To use look ahead, we must alter how InsertElement deals
with scan-chains. Algorithm 3 shows the section of the
InsertElement algorithm that considers scan-chains modified
for use with look ahead. Whereas before we only attempted
to determine one element that is closest in layer to the
previous element, now we wish to place all of the closest
elements into set R. If an element is found with a layer
closer than layerDif , then R is cleared and the element
is copied into R. If another element is found with the same
layerDif as the current minimum, then the element is added
to R without first clearing R, since we want a set of all the
closest elements. To determine bestElement, we now use
the LookAhead algorithm. The remainder of the modified
InsertElement is carried out as before.

The LookAhead algorithm takes as its arguments the set
of elements R, the testSet, and the number of elements
elementsToConsider in testSet. For each prospective el-
ement in R, the algorithm checks all elements in the testSet
to determine which element in testSet is closest in layer to
the element in R. First, LookAhead checks to see if the layer

74



Fig. 6. A conceptual view of the shortcomings of Algorithm 2.

Algorithm 3 Stage 2 of InsertElement modified for look ahead
/*Stage 2 - Consider Scan-chains*/
currentLayer = hiLayer; layerDif = 999;
while testSet contains at least 1 scan-chain do

for i = 1 to elementsToConsider do
if Type(testSeti) == scan-chain then

if |Lin(testSeti)-currentLayer| < layerDif then
layerDif = |Lin(testSeti)-currentLayer|;
clear R; copy testSeti to R;

end if
if |Lin(testSeti)-currentLayer| == layerDif then

copy testSeti to R;
end if

end if
end for
bestElement = LookAhead(R, testSet, elementsToConsider)
used += layerDif; layerDif = 999;
currentLayer = Lout(testSetbestElement);
remove testSetbestElement from testSet;
elementsToConsider−−;

end while

difference is less than dif and that the element Ri is not, in
fact, the same element as testSetj . If this is the case, then
choosing Ri as the next element is likely to produce better
results than choosing another element in R, since fewer TSVs
would be used to connect to the next scan-chain. It should
be noted that if more than one element has a second element
with layer difference dif , then LookAhead chooses the first
element it found for bestElement, just as the umodified
InsertElement of Algorithm 2 had.

C. Analysis of Heuristics

The BinDesign algorithm relies on the use of enumeration,
and we produce a complete set of unique enumerations. For
example, if TSV max = 4 and M = 2, the set of unique
enumerations is {[0 4], [1 3], [2 2]}. This set grows quickly
as M and TSV max increases. For the sake of our analysis
of algorithms that follows, we focus on complexity for only
a single enumeration.

The BinDesign algorithm will attempt to place all n
elements in M wrapper chains. Assuming that all elements
are successfully placed, and given a worst-case scenario in

TABLE I
RESULTS ON WRAPPER OPTIMIZATION FOR CORE 7 OF SOC D281 WITH

THREE LAYERS.

Shortest Shortest CPU time CPU time
M TSV max Wrapper Wrapper (No LA) (LA)

(No LA) (LA) (minutes) (minutes)
12 N/A N/A ≈0.00 ≈0.00
14 N/A N/A ≈0.00 0.13

2 16 1633 1623 0.22 0.98
18 1064 1064 1.42 3.13
22 1064 1064 2.03 3.63
12 N/A N/A ≈0.00 ≈0.00
14 N/A N/A ≈0.00 0.33

3 16 1633 1347 0.25 1.07
18 710 752 3.67 7.52
22 710 710 6.73 10.42
12 N/A N/A ≈0.00 ≈0.00
14 N/A N/A 0.02 0.67

4 16 1633 1347 0.30 1.52
18 532 611 7.05 11.47
22 532 545 16.17 20.70
12 N/A N/A 0.02 0.02
14 N/A N/A 0.05 1.02

5 16 1633 1347 0.37 2.13
18 470 486 11.98 14.48
22 426 427 32.28 33.20
12 N/A N/A 0.02 0.03
14 N/A N/A 0.07 1.33

6 16 1633 1347 0.47 2.73
18 459 441 16.75 18.18
22 355 364 53.83 46.37

which the element is always placed in the last bin considered,
the algorithm is of complexity O(M · n). Thus, BinDesign
runs in polynomial time in n and M .

The unmodified InsertElement of Algorithm 2 determines
the number of TSVs that would be used if an element
was placed in a given bin. In a worst-case scenario, all
elements n would be scan-chains, as scan-chains require the
most computation to place. For the number of scan-chains
(n in our worst case), InsertElement checks to see which
scan-chain is closest in layer to the previous element and
then removes that scan-chain from the set of scan-chains

that we consider. This results in
n−1∑
i=0

n− i, or 1
2n2 + 1

2n

computations. Therefor, InsertElement has a complexity of
O(n2). When combined with the BinDesign algorithm, the
entire wrapper optimization algorithm without look ahead
has a complexity of O(n3) per enumeration.

With a look ahead of one element, complexity increases.
The complexity of the modified InsertElement algorithm is

75



the same as its unmodified counterpart. The difference is that
a set R of all elements closest in layer to the previous element
is presented as an argument to the LookAhead algorithm
instead of simply choosing the first of the elements. Thus, the
complexity of the LookAhead algorithm must be considered.
LookAhead searches through the entirety of the testSet a
number of times equivalent to the number of elements in R
each time LookAhead is called. Assuming a worst-case sce-
nario, in which R is the entire testSet, then this ammounts
to 1

2n2 + 1
2n iterations as with the InsertElement algorithm.

This gives the entire wrapper optimization algorithm with
look ahead a complexity of O(n5) per enumeration.

TABLE II
RESULTS ON WRAPPER OPTIMIZATION FOR CORE 13 OF SOC P93791

WITH FOUR LAYERS.

Shortest Shortest CPU time CPU time
M TSV max Wrapper Wrapper (No LA) (LA)

(No LA) (LA) (minutes) (minutes)
18 N/A N/A ≈0.00 0.03
20 N/A 4835 ≈0.00 0.10
22 4875 4835 0.03 0.13

2 24 4835 4838 0.12 0.20
34 4835 4835 0.18 0.33
18 N/A N/A 0.02 0.07
20 3371 5008 0.05 0.12
22 3328 3362 0.12 0.28

3 24 3257 3253 0.30 0.57
34 3226 3225 1.02 1.50
18 N/A N/A 0.05 0.15
20 N/A 5008 0.12 0.30
22 2598 2548 0.25 0.68

4 24 2477 2462 0.70 1.53
34 2432 2452 3.37 4.57
18 N/A N/A 0.08 0.25
20 N/A 2107 0.20 0.52
22 2520 2059 0.50 1.13

5 24 2042 2014 1.10 2.47
34 1963 1975 8.58 11.22
18 N/A N/A 0.15 0.40
20 N/A 2107 0.37 0.83
22 2520 1885 0.88 1.87

6 24 1820 1694 1.83 4.17
34 1645 1645 22.07 26.93
18 N/A N/A 0.42 0.72
20 N/A 2107 0.97 1.62
22 2520 1885 2.18 3.77

7 24 1820 1694 4.83 8.02
34 1426 1428 89.73 96.12
18 N/A N/A 1.47 1.82
20 N/A 2107 3.68 4.45
22 2520 1885 8.80 10.6

8 24 1820 1694 20.07 24.03
34 1242 1242 535.35 634.60

It should be noted that these worst-case complexities
would result in significantly worse run times than would
be seen in realistic examples. This is because there tend to
be relatively few scan-chains, even in complex cores, when
compared to the number of inputs and outputs. For example,
core 7 of SOC d281 from the ITC’02 SOC test benchmarks
contains 1510 elements, only 20 of which are scan-chains.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The optimization heuristics were run on cores from various
SOCs presented in the ITC’02 SOC test benchmarks. We
present results from four cores: cores 4 and 13 of SOC
p93791, core 5 of SOC h953, and core 7 of SOC d281. For
SOC p93791, core 4 consists of 23 scan chains, 15 inputs,

and 30 outputs, while core 13 has 46 scan chains, 111 inputs,
and 31 outputs. Core 5 of SOC h953 has 4 scan chains, 19
inputs, and 13 outputs, and core 7 of SOC d281 contains
20 scan chains, 700 inputs, and 790 outputs. The heuristics
were coded in C++. The layers on which inputs, outputs,
scan-ins, and scan-outs resided were determined randomly.

B. Results for Heuristics

TABLE III
RESULTS ON WRAPPER OPTIMIZATION FOR CORE 4 OF SOC P93791

WITH THREE LAYERS.

Shortest Shortest CPU time CPU time
M TSV max Wrapper Wrapper (No LA) (LA)

(No LA) (LA) (minutes) (minutes)
12 N/A N/A ≈0.00 ≈0.00
13 N/A 132 ≈0.00 ≈0.00

2 14 89 87 ≈0.00 ≈0.00
18 77 79 ≈0.00 0.02
20 77 77 ≈0.00 0.02
12 N/A N/A ≈0.00 ≈0.00
13 N/A 69 ≈0.00 ≈0.00

3 14 84 69 ≈0.00 0.02
18 51 53 0.03 0.05
20 51 52 0.03 0.07
12 N/A N/A ≈0.00 ≈0.00
13 N/A 59 ≈0.00 0.02

4 14 79 59 0.02 0.03
18 39 43 0.07 0.12
20 39 42 0.08 0.13
12 N/A N/A ≈0.00 ≈0.00
13 N/A 59 ≈0.00 0.02

5 14 79 59 0.02 0.03
18 37 37 0.12 0.15
20 35 33 0.12 0.23
12 N/A N/A ≈0.00 0.02
13 N/A 59 ≈0.00 0.03

6 14 79 47 0.03 0.05
18 31 31 0.18 0.25
20 28 31 0.32 0.40
12 N/A N/A ≈0.00 0.03
13 N/A 59 0.02 0.05

7 14 79 47 0.07 0.10
18 30 31 0.43 0.50
20 30 29 0.87 0.97
12 N/A N/A ≈0.00 0.07
13 N/A 59 0.08 0.12

8 14 79 47 0.18 0.22
18 30 27 1.37 1.48
20 25 27 3.32 3.43

Table I shows results from core 7 of SOC d281, Table II
shows results from core 13 of SOC p93791, Table III shows
results from core 4 of SOC p93791, and Table IV shows
results for core 5 of SOC h953 for both heuristic methods
presented in Sections III-A and III-B. Results are shown for
different values of M and TSV max. Column 1 lists the
TAM width M . Column 2 gives TSV max, the upper limit
on the number of TSVs that can be used. The third and
fourth columns present the shortest wrapper chain achieved
through all enumerations of possible TSV distributions by the
heuristic approach without and with look ahead, repectively.
The value ‘N/A’ means that the algorithm was unable to
determine a feasible solution for the given values of M and
TSV max. This would occur when an element cannot be
placed in any wrapper chain without violating that wrapper
chain’s TSV limit for all enumerations. The fifth and sixth
columns present the run time in minutes to determine a
solution for the heuristics without and with look ahead,
respectively. This CPU time includes the time required by

76



TABLE IV
RESULTS ON WRAPPER OPTIMIZATION FOR CORE 5 OF SOC H953 WITH

THREE LAYERS.

Shortest Shortest CPU time CPU time
M TSV max Wrapper Wrapper (No LA) (LA)

(No LA) (LA) (minutes) (minutes)
8 N/A N/A ≈0.00 ≈0.00
10 386 386 ≈0.00 ≈0.00

2 12 258 258 ≈0.00 ≈0.00
16 258 258 ≈0.00 ≈0.00
8 N/A N/A ≈0.00 ≈0.00
10 249 249 ≈0.00 ≈0.00

3 12 247 247 ≈0.00 ≈0.00
16 241 241 ≈0.00 ≈0.00
8 N/A N/A ≈0.00 ≈0.00
10 249 249 ≈0.00 ≈0.00

4 12 132 132 ≈0.00 ≈0.00
16 129 129 ≈0.00 ≈0.00
8 N/A N/A ≈0.00 ≈0.00
10 249 249 ≈0.00 ≈0.00

5 12 132 132 ≈0.00 ≈0.00
16 129 129 ≈0.00 ≈0.00
8 N/A N/A ≈0.00 ≈0.00
10 249 249 ≈0.00 ≈0.00

6 12 132 132 ≈0.00 ≈0.00
16 129 129 0.03 0.03
8 N/A N/A ≈0.00 ≈0.00
10 249 249 ≈0.00 ≈0.00

7 12 132 132 0.02 0.02
16 129 129 0.12 0.12
8 N/A N/A ≈0.00 ≈0.00
10 249 249 0.02 0.02

8 12 132 132 0.05 0.05
16 129 129 0.47 0.47

the enumeration method to produce all unique enumerations
for a given M and TSV max.

As expected, the run time of the heuristic that includes
look-ahead is typically greater than that without look-ahead.
We further observe that the increase in time, while not
insignificant, is also not very large. Since the LookAhead
algorithm only runs on a very small subset of the total ele-
ments, even across many enumerations the added complexity
does not incur a significant time increase. O(n5) is very
much an upper bound, and actual results are far better than
worst-case scenarios.

We conclude that the heuristic method utilizing look-ahead
is superior to that without when dealing with tighter TSV
constraints. Table II shows that, a large majority of the
time, the look-ahead heuristic is capable of determining a
solution given TSV constraints under which the other heuris-
tic is unable to produce results. Furthermore, Table II and
particularly Table I reveal that, under tight TSV constraint
in which both methods produced results, the look-ahead
heuristic performed significantly better. Under looser TSV
constraints, it is difficult to determine which heuristic will
give more optimal results. Different placement decisions lead
to different optimizations such that both methods perform
near to each other, but one method may be slightly better or
worse than the other.

As the TAM width and number of TSVs available increase,
run time also increases. The number of enumerations that
must be considered increases significantly for large M and
TSV max values. Furthermore, time needed to produce all
enumerations becomes a larger contributor to the total run

time. The number of layers used by the core has no bearing
on test time but obviously increases the number of TSVs
needed to produce results, which directly affects CPU time.

V. CONCLUSIONS

We have presented several optimization techniques for
minimizing test time by reducing wrapper chain length in
3D core-based SOCs. We have considered constraints on
the TAM width and the number of TSVs available for
testing. We have provided two heuristic approaches, one that
requires less time to run and one that produces better results
under tight TSV restrictions. Results have been presented for
four representative cores from the ITC’02 test benchmarks.
Results show that the heuristic methods solve the problem
of 3D wrapper optimization in a timely manner, producing
varying degrees of near-optimality. This early work on wrap-
per optimization is expected to pave the way for design-
fortestability tools for emerging 3D core-based ICs.

REFERENCES

[1] IEEE Std. 1500: IEEE Standard Testability Method for Embedded
Core-Based Integrated Circuits. IEEE Press, New York, 2005.

[2] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper and
Test Access Mechanism Co-optimization for System-on-chip”, JETTA,
vol. 18, pp. 213-230, 2002.

[3] Q. Xu and N. Nicolici, “Resource-constrained System-on-a-chip Test:
a Survey,” IEE Proc. Comp. Dig. Tech., vol. 152, no. 1, pp. 67-81,
2005.

[4] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng, “Efficient Test
Solutions for Core-based Designs,” TCAD, vol. 23, no. 5, pp. 758-775,
2004.

[5] K. Banerjee et al., “3-D ICs: a Novel Chip Design for Improving
Deep-submicrometer Interconnect Performance and Systems-on-chip
Integration,” Proc. IEEE, vol. 89, no. 5, pp. 602-633, 2001.

[6] R. Weerasekera et al., “Extending Systems-on-chip to the Third Di-
mension: Performance, Cost and Technological Tradeoffs,” in ICCAD,
2007.

[7] W. R. Davis et al., “Demystifying 3D ICs: the Pros and Cons of Going
Vertical,” IEEE Design and Test of Computers, vol. 22, no. 6, pp. 498-
510, 2005.

[8] Y. Xie, G. H. Loh, and K. Bernstein, “Design Space Exploration for 3D
Architectures,” J. Emerg. Technol. Comput. Syst., 2(2):65-103, 2006.

[9] G. Loh, Y. Xie, and B. Black, “Processor Design in 3D Die Stacking
Technologies,” IEEE Micro Vol 27, No. 3, 2007, pp.31-48

[10] K. Puttaswamy and G. H. Loh, “Thermal Herding: Microarchitec-
ture Techniques for Controlling Hotspots in High-Performance 3D-
Integrated Processors,” IEEE High Performance Computer Architec-
ture, pp. 193-204, 2007.

[11] X. Wu, P. Falkenstern, K. Chakrabarty, and Y. Xie, “Scan-chain
Design and Optimization for 3D ICs,”’ ACM Journal on Emerging
Technologies in Computing Systems, vol. 5, Article 9, July 2009.

[12] X. Wu, Y. Chen K. Chakrabarty, and Y. Xie, “Test-access Mechanism
Optimization for Core-based Three-dimensional SOCs,” ICCD 2008.

[13] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design for
Embedded Core Test,” Proc. Int’l Test Conf., pp. 911-920, 2000.

[14] Y. Huang et al., “Optimal Core Wrapper width Selection and SOC Test
Scheduling based on 3-D Bin Packing Algorithm,”’ In International
Test Conference, pp. 7482, 2002.

[15] S. K. Goel and E. J. Marinissen. “SOC Test Architecture Design
for Efficient Utilization of Test Bandwidth,”’ ACM Transactions on
Design Automation of Electronic Systems, 8(4):399429, 2003.

[16] Q. Xu and N. Nicolici, “Resource-Constrained System-on-a-Chip Test:
A Survey, IEE Proceedings: Computers and Digital Techniques. vol.
152, pp. 67-81, Jan. 2005.

[17] L. Jiang, L. Huang, and Q. Xu, “Test Architecture Design and Opti-
mization for Three-dimensional SoCs,”’ DATE, pp. 220-225, 2009.

77


