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Abstract— In this paper we propose a method for evaluating
test measurements for complex circuits that are difficult to
simulate. The evaluation aims at estimating test metrics, such
as parametric test escape and yield loss, with parts per
million (ppm) accuracy. To achieve this, the method combines
behavioral modeling, density estimation, and regression. The
method is demonstrated for a previously proposed Built-In
Self-Test (BIST) technique for Σ∆ Analog-to-Digital Converters
(ADC) explaining in detail the derivation of a behavioral model
that captures the main nonidealities in the circuit. The estimated
test metrics are further analyzed in order to uncover trends in
a large device sample that explain the source of erroneous test
decisions.

I. INTRODUCTION

Testing analog devices requires measuring the specified
performances one by one and comparing them with their
tolerance limits. This is the current practice because it is
a head-on approach that guarantees the detection of out-
of-specification devices while it accepts those that comply
with the specifications. Any test escape or yield loss is
due to measurement inaccuracies caused by, for example,
tester calibration, software induced measurement instability
and computation errors, contact issues in load boards and
probe cards, multi-site tester differences, RF interference,
etc. However, despite its high accuracy, specification-based
testing incurs a very high cost.

Over the last two decades, several alternatives have been
proposed towards reducing this cost. For example, structural
testing relies on indirect tests that detect the presence of
faults within the circuit [1], [2]. Other approaches include
the compaction of specification-based tests [3], BIST [4], and
alternate test techniques, wherein test measurements that are
relatively easy to obtain are used to predict either the value
of the specified performances through regression functions
[5] or directly a Go/No-Go test decision through classifiers
[6].

The aforementioned test alternatives provide a test deci-
sion that indicates the device quality, however there is hardly
ever a proven equivalence between this test decision and the
actual compliance or not to the specified performances. On
one hand, there is a lack of widely acceptable analog fault
models. On the other hand, it is highly unlikely that analog
device performances would correlate perfectly with simple
test measurements. To corroborate the claim that any test
technique is equivalent to specification-based testing, it is
needed to estimate the resulting parametric test escape and

yield loss with a high level of precision, ideally at ppm levels.
Moreover, this needs to be accomplished at the design stage
so that design decisions that are required to facilitate low
cost measurements will not need to be reconsidered at a later
stage, in particular because re-spinning the design may not
be possible at all due to cost and time-to-market constraints.

Recently, density estimation was considered for the es-
timation of parametric test metrics with ppm precision at
the design stage [7]. However, this approach necessitates
statistical Monte Carlo simulation at transistor level, which
is too time consuming for complex circuits, such as signal
converters and phase locked loops. In contrast, in this paper,
we present a generally applicable approach to the problem
of test metrics estimation. The idea will be demonstrated on
a state-of-the-art BIST technique for Σ∆ ADC [8].

The remainder of the paper is organized as follows. In
section II, we review previous work in statistical modeling
of analog circuits. In, section III, we discuss the flow of
the proposed method. Our case study is next described in
section IV and results are presented in section V. Section VI
concludes the paper with some directions for future work.

II. STATISTICAL MODELING OF ANALOG CIRCUITS

Parametric test escape TE and yield loss YL must be
evaluated based on a set of devices that incur different
combinations of design and process parameters (i.e. transistor
geometry, flat band voltage, oxide thickness etc.). The design
and process parameters are naturally sampled from their
probability density function, thus resulting in an unbiased
set of devices. Yet the size of the set needs to be very large
in practice in order to obtain good estimates. To see this,
consider a set of N devices. The Monte Carlo estimators of
TE and YL are given by

T ∗
E =

NCc
g|Tp

N
(1)

Y ∗
L =

NT c
p |Cg

N
(2)

where NA is the count of the event A, Cg is the event that
a circuit is good and Tp is the event that a circuit passes
the test (the superscript c denotes the complementary event).
For example, Cc

g|Tp is the event that a circuit is faulty given
that it passes the test. It can be shown that the variance of a
Monte Carlo estimator T ∗ of a metric T is given by
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σ
2
T ∗ =

T (1−T )
N

, (3)

which implies that an intractable number N of Monte Carlo
circuit simulations is required to reduce the standard de-
viation σT ∗ to one order of magnitude less than T . For
example, if T = 10−3 (or 1000 ppm), then N = 105 in order
to obtain σT ∗ = 10−4 (or 100 ppm). A confidence level that
T ∗ lies within ε of the true value T is given by Chebyshev’s
inequality

P{|T ∗−T |< ε} ≥ 1− σ2
T ∗

ε2 ≥ 1− 1
4Nε2 , (4)

which shows that N must be quadrupled to achieve twice
the accuracy. The foregoing discussion suggests that circuit
simulation should be substituted by fast simulation of an
approximative model of the circuit.

The problem of accelerating circuit simulation is met in
various contexts, including design centering and sizing, de-
sign space exploration, verification, test stimuli optimization,
fault simulation, test metrics estimation etc. Recent solutions
find their roots in sensitivity analysis [9], density estimation
[7], behavioral modeling [10], response surface modeling
(e.g. regression) [11], and symbolic modeling with genetic
programming [12].

Test metrics estimation with ppm accuracy is discussed in
[7]. The idea is to extract the statistical law that gives rise to
circuit simulation data. One disadvantage of this technique is
that it requires to have access to initial simulation data from a
number of circuits. This number increases exponentially with
the number of test measurements and performances, in order
to increase the approximation accuracy of the statistical law
at its tails. In practice, good estimates can be obtained with
a reasonable number of simulations, but still this number is
prohibitive for complex circuits.

III. HIERARCHICAL PARAMETRIC TEST METRICS
ESTIMATION

Our approach to test metrics estimation for complex cir-
cuits is based on a combination of behavioral modeling, den-
sity estimation, and regression. Formally, let A = [a1, ...,aNa ]
be the vector of low-level design and process parameters
and X = [P,M] = [x1, ...,xNX ] be the vector of performances
P = [p1, ..., pNP ] and test measurements M = [m1, ...,mNM ],
NX = NP + NM . The problem lies in developing a model F
of the target circuit

X = [P,M] = F (A, I) (5)

that can be easily simulated, where I denotes the stimuli
required for obtaining X .

We first divide the circuit into blocks and, for each block,
we develop behavioral models that capture the pertinent
parameters which influence P and M, including the main
non-idealities and non-linearities. Let B = [b1, ...,bNB ] denote
the vector of behavioral-level parameters. Still, it could be
the case that the N � 1 behavioral simulations cannot be
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Fig. 1. Block diagram of a second-order Σ∆ ADC.

completed in reasonable time. In this scenario, another level
of approximation needs to be added to accelerate behavioral
simulation. For this purpose, NX regression functions g j :
B 7→ x j, j = 1, ...,NX , are learned that map B to X .

To perform a statistical analysis starting from A, it is
necessary to model the mapping g

′
: A 7→ B. One approach

is to carry out standard circuit simulation following a di-
vide and conquer approach, wherein the different blocks
of the circuit are simulated separately (or in appropriate
groups in case there are block-level parameters that are
interdependent). However, this step can be very time con-
suming given the ultimate objective to simulate N � 1
circuit instances. For this purpose, we carry out only n
simulations. The resulting n observations B0

n×NB
of B serve

for estimating the probability density function fB (B) of B.
We follow the approach proposed in [7]. In particular, we
use a nonparametric kernel density estimator which can
approximate any underlying density even in the case where
its marginals have distinct parametric forms. Subsequently,
the density is sampled to generate a population B1

N×NB
of

N � 1 samples that is practically indistinguishable from the
devices generated by a circuit simulator. In essence, this
allows us to propagate the statistical distribution of A to B
and perform the statistical analysis based on the intermediate
behavioral-level parameters. The interested reader is referred
to [7] for more details regarding the density estimation and
sampling approaches.

The density fB (B) is also sampled n
′

times (typically
n
′
> n) to generate a population B2

n′×NB
that will be used

in the training set for building the regression functions g j.
Unlike the sampling of B1

N×NB
which is carried out with

probability density function fB (B), the sampling of B2
n′×NB

must be carried out such that it spans the feasible space of B.
Next, n

′
behavioral simulations are carried out using B2

n′×NB
,

which result accordingly in a population X2
n′×NX

of vectors

X . The training set
(

B2
n′×NB

,X2
n′×NX

)
is used to build the

regression functions g j.
Finally, the regression functions g j are used to obtain the

population X1
N×NX

: the j-th column of X1
N×NX

is defined by
g j

(
B1

N×NB

)
. Test metrics are calculated at ppm levels of

accuracy based on the high-volume data in X1
N×NX

using (1)
and (2).

IV. CASE STUDY: Σ∆ ADC

Oversampling Σ∆ ADCs have become very popular for
high-resolution, medium-to-low speed applications. Over-
sampling dramatically relaxes the precision requirement for
the analog circuitry at the expense of more complicated
digital circuitry. This is very convenient for nanometer tech-
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Fig. 2. BIST technique under evaluation.

nologies for which analog design is becoming ever more
difficult due to reduced power supplies. In addition, Σ∆

modulation shapes the conversion quantization noise out of
the frequency band of interest. The block-level schematic of
a second order Σ∆ ADC is shown in Fig. 1. As is common
in the analysis of Σ∆ ADC, we assume that the modulator
output is filtered by a brick-wall filter with a gain of 1 in
the signal band and 0 elsewhere. Testing Σ∆ modulators is
a costly task due to the need of generating a high precision
analog test signal and the requirement to acquire a large
number of output digital samples. To this end, a promising
BIST technique has been presented in [8] that considers
purely digital test stimuli and largely simplifies the on-chip
implementation of the sine-wave fitting algorithm. The reader
is referred to [8] for a comprehensive overview of BIST
techniques proposed to date for Σ∆ ADCs.

A. BIST Technique Under Evaluation

In this work, we evaluate the technique in [8] in terms of
the resulting test metrics. The technique aims to measure the
SNDR performance of switched-capacitor (SC) Σ∆ modula-
tors. The test stimulus is an analog sinusoidal signal encoded
as a binary stream with a 19-bit precision and stored into a
digital linear feedback shift register. As shown in Fig. 2, this
digital stimulus is first sent directly to the decimation filter
in order to provide a high precision digital reference signal.
Next, it is sent to the modulator which is now connected
to the decimation filter via the multiplexer. In this step,
the digital stimulus is converted and attenuated by an 1-
bit Digital-to-Analog Converter (DAC) using voltages Vbist
and Vre f that are provided by a bandgap generator already
existing in the modulator. Since the signal undergoes a delay
of two clock periods through the modulator, a z−2 delay
block is considered during the generation of the reference
signal. This way, the response of the converter to the test
stimulus is synchronized with the reference signal. As a
result, no phase response needs to be calculated by the sine-
wave fitting algorithm, and the response analysis resources
are largely simplified.

The modulator is implemented in an 0.13 µm CMOS
technology and it is suitable for audio converter applications
that must have 16 bits of resolution or, equivalently, an
output SNDR of at least 96 dB. Silicon results show that
excellent correlation is obtained between the embedded self-
test and a sinusoidal standard test, resulting in an SNDR error
smaller than 1 dB. However, since the converter cannot be
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Fig. 3. First-order SC Σ∆ modulator.

stimulated with a full scale analog signal encoded in the bit
stream, the capability of the BIST technique to detect all
types of parametric deviations remains to be demonstrated.
In particular, parametric deviations that induce small signal
distortions may be hard to detect with test signals that are
not full scale.

B. Behavioral model of first-order SC Σ∆ Modulator

This section presents a time-domain behavioral model of a
first-order SC Σ∆ modulator (MOD1) following the approach
proposed in [13]. Fig. 3 shows the circuit schematic along
with the clock signals that activate the switches within an
interval [tk, tk+1] of length Ts = 1/ fclk, where fclk is the clock
frequency. To compute the integrator’s output response at
each clock period, we consider the main nonidealities of
the operational amplifier (finite open-loop gain A0, finite
unity gain frequency ωt , slew-rate SR, saturation levels, input
parasitic capacitance Cp and thermal noise) as well as the
variation of the gains of the signal path G1 = Cs/Ci and
of the feedback G2 = Cd/Ci. The input signal vin is slowly
varying such that within a clock interval it does not change
appreciably, i.e vin(t) = vin(tk), for t ∈ [tk, tk+1). Without loss
of generality, consider Q = 0. The integrator’s output at each
integration phase involves taking into account the charge
sampled in the different capacitors during phase φ1 and then
applying the charge conservation at node A after φ2 → 1. At
t ∈ [tk +Ts/2, tk +Ts/2+ τ) we have

CtvA(t)−Civout(t) =
−Csvin(tk)−CdVre f +(Cp +Ci)vA(tk)−Civout(tk)(6)

where Ct = Cs +Cd +Ci +Cp.
In addition, we assume a single-pole amplifier model

−vA(t) =
vout(t)

A0
+

1
ωt
· dvout(t)

dt
. (7)

Combining (6)-(7), we obtain a first-order differential equa-
tion of the integrator output

Ct

ωt
· dvout(t)

dt
+

(
Ct

A0
+Ci

)
vout(t) =

Csvin(tk)+CdVre f

+
(

Ci +Cp

A0
+Ci

)
vout(tk)

+
Ci +Cp

ωt
· dvout(t)

dt

∣∣∣∣
t=tk+Ts/2

. (8)
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The complete solution of (8) is given by:

vout(t)≈ αvout(tk)+αvs(tk)
(

1− e−λωt ·[t−(tk+Ts/2)]
)

(9)

where

λ ≈ Ci

Ct
, α ≈ CiA0

Ct +CiA0
, (10)

and
vs(tk) = G1vin(tk)+G2Vre f . (11)

Repeating the analysis for Q = 1, the complete solution rests
the same apart from a change in the sign of Vre f in (11).
Thus, we can simply write vs(tk) as

vs(tk) = G1vin(tk)+G2Vre f (Q̄−Q). (12)

1) Finite A0: The consequence of the finite open-loop
gain of the amplifier is that only a fraction α of the previous
output of the integrator is added to each new input. Setting
ωt → ∞ in (9), we obtain the transfer function H(z) in the
z-domain

H(z) =
Vout(z)
Vs(z)

≈ α
z−1

1−αz−1 . (13)

2) Finite ωt and SR: The finite ωt and the SR result in an
incomplete or inaccurate charge transfer to the output node at
the end of each clock cycle. Recall that the evolution of the
output of the integrator within the (k +1) integration period
is given by (9). The slope of vout(t) reaches its maximum
value at t = tk +Ts/2

dvout(t)
dt

∣∣∣∣
max

= λωtαvs(tk). (14)

If SR > λωtαvs(tk), then there is no SR limitation and the
output at the end of the integration period is given by

vout(tk+1) = αvout(tk)+αvs(tk)
(

1− e−λωt τ
)

. (15)

If SR < λωtαvs(tk), then the operational amplifier is slewing
until t = t0 > tk + Ts/2, at which point the slope of vout(t)
becomes equal to SR. Thus,

vout(t) = vout(tk)+SR · t, t ∈ [tk, t0]. (16)

For t ∈ [t0, tk +Ts/2+τ], equations (6) and (7) are valid by
replacing tk with t0 (notice that vin(t0) = vin(tk)). A similar
analysis as before yields

x

Product

du/dt

Derivative

Random

number

∆τ

timing 

error
outin

Fig. 5. Clock jitter behavioral model.

vout(t)≈ vout(t0)+(αvs(tk)−SR · t0)
(

1− eλωt ·[t−t0]
)

. (17)

Imposing the continuity of the derivatives of equations (16)-
(17) at t = t0, we obtain the value of t0

t0 =
αvs(tk)

SR
− 1

λωt
. (18)

Clearly, if t0 > tk + Ts/2 + τ , equation (16) holds for the
whole clock period.

Fig. 4 shows the behavioral model of the real integrator
which implements the transfer function H(z) and the equa-
tions (15)-(18).

3) KT/C and Operational Amplifier Thermal Noise: The
main noise sources are the KT/C noise associated with the
on-resistance of the sampling switches and the intrinsic noise
of the operational amplifier. The noise is accumulated at
each period in the integrating capacitor. The equivalent noise
power at the input of the integrator is given by [14]

v2
n =

2KTcΘs

Cs
(19)

where K is the Boltzmann constant, Tc is the temperature,

Θs = 1+
Cd

Cs
+λωt

(
RsCs +Rd

C2
d

Cs
+Rα

(Cs +Cd)2

2Cs

)
, (20)

Rα is the equivalent input noise resistance of the amplifier
and Rs, Rd are the on-resistances of the sampling and feed-
back switches, respectively. The flicker noise contribution
was not modeled because there exist design techniques that
cancel its effect with respect to the thermal noise. Depending
on the converter application, flicker noise can be modeled as
discussed in [15].

4) Clock Jitter: Clock jitter results in a nonuniform
sampling time sequence. The introduced error depends on the
statistical properties of the jitter as well as the input signal.
Let δ (tk) be the timing error at sampling point tk. Assuming
a sinusoidal input signal of frequency fin, the error is given
by

vin(tk +δ (tk))− vin(tk)≈ δ (tk)
dvin(t)

dt

∣∣∣∣
t=tk

. (21)

Typically, it is assumed that δ follows a zero mean normal
distribution with standard deviation ∆τ . The effect of clock
jitter can be simulated at the behavioral level using the block
in Fig. 5.
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Fig. 7. Modulator output spectrum.

C. Behavioral model of second-order SC Σ∆ Modulator

The behavioral model of the second-order SC Σ∆ modu-
lator (MOD2) is constructed based on the behavioral model
of MOD1, as shown in Fig. 6. An ideal second stage is
included betweeen the first integrator and the comparator.
Only the nonidealities of the first stage are considered since
most nonidealities in the second stage are attenuated due
to noise shaping [13]. The total noise and clock jitter are
superimposed to the input voltage. In summary, the vector
B comprises 14 parameters, namely Ao, ωt , SR, positive
and negative saturation levels, Ci, Cs, Cd , Cp, Rα , Rd , Rs,
jitter, and comparator’s offset. The complete model is built
and simulated in MATLAB SIMULINK. A single behavioral
simulation to calculate SNDR lasts about 3 sec on an Intel
Core2 2.40-GHz PC. Fig. 7 shows the FFT of the output
bit stream of the behavioral model for two type of inputs, a
perfect analog sinusoidal (standard test) and a high resolution
digital sinusoidal encoded in a bit stream (BIST).

D. Extraction of B0
n×NB

The initial population B0
n×NB

of behavioral parameters is
extracted from transistor level simulation. Certain behavioral
parameters require special test benches. This section aims at
describing the different test benches used for the simulation.

1) A0, ωt , and capacitors: The standard test bench for
measuring A0 has an open-loop configuration and will not
work in the presence of mismatch because the equivalent
input DC offset Vo f f will often saturate the outputs, thus
resulting in erroneous values for A0 and ωt . To tackle this
problem, we have used the test bench of Fig. 8. In this
case, the DC differential output voltage is forced to be zero
without affecting the calculation of A0 and ωt . In addition,
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we consider a replica of the integrator in order to emulate
the application environment and to obtain at the same time
the variation in the values of capacitors.

2) Noise: As mentioned in section IV-B.3, the intrinsic
noise within the operational amplifier is translated to an
equivalent input noise resistance Rα . To calculate Rα , we
use the precedent test bench with the AC source replaced by
a noise source. The resulting value is

Rα =
v2

n,amp

4KTc
(22)

where v2
n,amp denotes the mean square input-referred am-

plifier noise voltage computed over its frequency band
(100kHz-100MHz). Rs and Rd in (20) are extracted using
a simple DC analysis.

3) SR: To compute the SR, the amplifier is configured
in open-loop and is set to its maximal negative differential
output voltage (we consider only the rise time). A step is
then applied at the input in order to invert the output state
of the amplifier. The time spent between 10% and 90% of
the final output value is used to compute SR.

4) Jitter: We assume a clock jitter with zero mean and
standard deviation ∆τ = 200psec.

5) Comparator offset: The offset is simply the differential
output of the comparator when it is configured in closed-loop
with unity gain.

V. TEST METRICS ESTIMATION

The experiment is carried out with n = 103, n
′
= 104 and

N = 106 (see section III). In our case, P = p1 is the standard
SNDR measurement, which uses a sinusoidal of amplitude
equal to the full dynamic range, and M = m1 is the SNDR
computed using the binary stream as test stimulus. The
specification limit is set at 96 dB, that is the converter must
have at least 16 bits of resolution. However, the BIST binary
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stimulus has a lower amplitude in order to avoid overloading
the modulator as discussed in the introduction of section IV,
which makes the corresponding test limit lower by 12 dB.
Therefore, the events Cg and Tp occur when p1 > 96 dB
and m1 > 84 dB, respectively. The elapsed time to obtain
the density estimate fB (B) and to generate N = 106 samples
from it using MATLAB was approximately 25 minutes on
an Intel Core2 2.40-GHz PC. The mappings g1 : B 7→ p1
and g2 : B 7→m1 can be trained using a Feed Forward Neural
Network (FFNN) in a few minutes and have a mean absolute
error of less than 0.5 dB when they are used to predict the
SNDR of new devices.

The resulting test metrics estimates are TE = 1.16% and
YL = 0.73% using the proposed technique. These values are
at first glance unacceptable, which implies that the BIST
technique cannot replace the standard test without affecting
test accuracy. Notice that the design yield is estimated to be
Y = 98.37%, thus about 30% of devices with excessive para-
metric deviations causing performance failure are detected.

The method allows us to explain the obtained test metrics.
In particular, we can use the large population B1

N×NB
of

one million devices to uncover trends in the behavioral-level
parameters of circuits that give rise to TE and YL. Our findings
show that the most influential behavioral-level parameters
are ωt and the gains G1, G2. Specifically, we noticed that
test escape is a consequence of having a low ωt . In this
case, the settling time λωt is small affecting significantly
the integration of the analog input sinusoidal (standard test)
and, thereby, resulting in p1 < 96 dB. In contrast, this effect
is less apparent for the binary input stimulus (BIST) since the
sampled voltage values are always the same. In this case, m1
remains well above the test limit of 84 dB, thereby resulting
in false acceptance. If we eliminate the devices with low ωt
from B1

N×NB
, it turns out that Y = 99.81%, TE = 0.25%, and

YL = 0.17%. Moreover, we noticed that yield loss is primarily
due to large positive deviations of G1 and G2. In fact, we
considered global (instead of local) capacitor mismatches,
which have resulted in a rather unrealistic value for the gains
G1 and G2. High gains cause an overload of the modulator,
which in turn reduces its capability to shape the noise out of
its bandwidth. In this case, m1 becomes too pessimistic, thus
giving rise to yield loss. After eliminating the devices with
large G1 and G2, the test metrics turn out to be Y = 99.93%,
TE = 0.069%, and YL = 0.005%.

VI. CONCLUSION

In this paper, we have proposed a complete method to
evaluate test techniques at the design stage for complex,
hard-to-simulate circuits. The underlying idea is to develop
a statistical model of the circuit under test, which can
be simulated very fast. Thereafter, a large volume of data
is generated which can be used to estimate test metrics
with parts per million accuracy. To achieve this, we use a
combination of behavioral modeling, density estimation, and
regression. The method is demonstrated on a BIST technique
for Σ∆ ADCs and allows us to pinpoint the combination of
behavioral-level parameters that give rise to parametric test

escape and yield loss. Future work will aim to study if these
behavioral-level parameter combinations are realistic for the
case of a robust design. Eventually the BIST technique might
need to be refined based on these observations. Furthermore,
we are planning to use the method in order to compare the
array of different test techniques proposed to date for Σ∆

ADCs, thus providing guidelines about the feasibility of the
approaches.
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