
Impact Analysis of Performance Faults in Modern Microprocessors

Naghmeh Karimi
ECE Department

University of Tehran

Michail Maniatakos
EE Department
Yale University

Chandra Tirumurti
Strategic CAD Labs
Intel Corporation

Abhijit Jas
Validation and Test Solutions

Intel Corporation

Yiorgos Makris
EE Department
Yale University

Abstract— Towards improving performance, modern micro-
processors incorporate a variety of architectural features, such
as branch prediction and speculative execution, which are not
critical to the correctness of their operation. While faults in the
corresponding hardware may not necessarily affect functional
correctness, they may, nevertheless, adversely impact perfor-
mance. In this paper, we investigate quantitatively the perfor-
mance impact of such faults using a superscalar, dynamically-
scheduled, out-of-order, Alpha-like microprocessor, on which we
execute SPEC2000 integer benchmarks. We provide extensive
fault simulation-based experimental results and we discuss how
this information may guide the inclusion of additional hardware
for performance loss recovery and yield enhancement.

I. INTRODUCTION

In their constant quest towards maximizing instruction
level parallelism (ILP) and, thereby, improving performance,
computer architects have equipped modern microprocessors
with an impressive arsenal of advanced features. Superscalar
machines, advanced cache management strategies, data pre-
fetching, data value and branch prediction are only a few
such techniques to be mentioned [1], [2], [3], [4], [5],
[6]. Out-of-order instruction execution capabilities, in par-
ticular, combined with advanced multi-level branch predic-
tion schemes, play a crucial role in today’s state-of-the-
art, deeply-pipelined, speculative processors [7], [8], [9].
Interestingly, many of these architectural features are geared
solely towards performance improvement and their presence
is not critical to the correctness of execution. As a result,
potential malfunctions in the corresponding hardware may
not jeopardize the outcome of the workload executed by
a microprocessor in any way other than simply delaying it
[10], [11], [12]. Hence, in this work, we will refer to faults
resulting in such benign malfunctions as performance faults.

The research reported herein aims to investigate the impact
that such performance faults may have on the execution of
typical microprocessor workload. To this end, we employ the
Register Transfer (RT-) Level model of an Alpha-like micro-
processor exhibiting most of the aforementioned advanced
architectural features, on which we simulate execution of
SPEC2000 benchmark programs. Specifically, we seek to
quantify the number of faults that cause no functional dis-
crepancy but only reduce performance, as well as the level of
the incurred performance degradation. Furthermore, we are
interested in assessing the relative importance of performance
faults across various workloads. Such information can po-
tentially guide the addition of hardware to alleviate the most
crucial performance faults and recover the lost performance,
or even to enhance yield by adding hardware that converts
actual functionality faults to performance faults.

The rest of this paper is organized as follows. In section
II, we take a closer look at the concept of performance
faults and the underlying architectural features that facili-
tate their existence. Then, in section III, we describe the
microprocessor model which serves as a vehicle for this
study. In section IV, we discuss the capabilities of the
simulation infrastructure which is used in this study. The
employed performance impact analysis method is detailed
in section V and extensive results quantifying the impact of
performance faults are presented in section VI. In section
VII, we discuss the potential utility of this study in guiding
hardware addition for performance loss recovery and yield
enhancement. Conclusions are drawn in section VIII.

II. PERFORMANCE FAULTS

Among the architectural concepts that bring about the class
of performance faults, we pinpoint three prominent ones:
pipelining, superscalar design, and speculative execution.

Instead of waiting for all necessary resources to become
available prior to execution of an instruction, pipelining
allows some of the involved tasks to be completed early.
Thus, resources that would otherwise be idle are utilized
and, then, freed for use by other instructions, increasing the
overall performance. Faults preventing this early utilization
of resources may not cause incorrect results but will reduce
the throughput, hence incurring performance degradation.

Superscalar processors increase performance by employ-
ing multiple functional units, often even of the same type,
in order to execute many instructions in parallel. Intricate
hardware-implemented algorithms are, consequently, em-
ployed to optimally schedule execution of instructions by
these functional units. Hence, faults interfering with this
process may result in a suboptimal scheduling of instructions
that yields a correct, yet performance-impacted execution.

Speculative execution aims to maximize performance by
leveraging resources that would otherwise be idle and allow-
ing instructions to proceed with execution even though valid-
ity of the corresponding resources, or even the instructions
themselves, is yet to be determined. Along with it comes an
inherent mechanism for discarding the speculatively executed
instructions in case the speculation proves to be incorrect.
Speculation happens in various aspects of modern micro-
processors, involving control, data, or both [13], [14]. The
most common forms of speculation are those predicting the
direction of program control, particularly involving predic-
tion of the direction of branch instructions. A number of
data speculation mechanisms, such as value prediction (e.g.
index counter variables), address prediction (e.g. addresses of
array elements) and memory system optimism (e.g. returning

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 91

a value from a cache before checking its validity) are also
frequently employed [15]. Given the speculative nature of
these architectural features and the inherent recovery mecha-
nism, it is evident that faults interfering with this process may
not affect execution correctness but will impact performance,
sometimes even positively!

III. STUDY FRAMEWORK

Our investigation on the impact of performance faults
builds upon a previously developed fault simulation infras-
tructure, which is presented in detail in [16]. The employed
model is the Verilog implementation of an Alpha-like mi-
croprocessor, called IVM (Illinois Verilog Model) [17], [18].
IVM implements a subset of the instruction set of the Alpha
21264 microprocessor. Consisting of approximately 40,000
state elements, the IVM is rich in architectural features
including: superscalar, out-of-order execution, dynamically
scheduled pipeline, hybrid branch prediction and speculative
instruction execution. IVM can have up to 132 instruc-
tions in-flight through its 12-stage pipeline, supported by
a dynamic scheduler of 32 entries and 6 functional units.
The complexity of IVM reflects most of the features of
modern, high-performance microprocessors. Furthermore, it
allows simulation of the execution of actual workload, such
as the SPEC2000 benchmarks. Thus, it enables a realistic
investigation of the impact of performance faults in modern
microprocessors. Along with the Verilog implementation of
IVM, we also make use of a functional simulator, which
is part of the SimpleScalar tool suite and supports the full
instruction set of the Alpha 21264 microprocessor [19]. This
capability is crucial because it enables us to circumvent the
limitations of IVM, which does not support system calls
and floating point instructions. Such cases are handled by
transferring the simulation state to the functional simulator,
executing the corresponding instructions, and transferring the
new state back to the Verilog model to resume simulation.

In this research, we focus on three key control modules of
the IVM microprocessor, namely the Scheduler, the ReOrder
Buffer (ROB), and the Fetch Unit.

IV. SIMULATION CAPABILITIES

One of the most valuable capabilities of IVM and its
complementary functional simulator is their ability to execute
SPEC2000 benchmarks, thus allowing simulation of real
workload. However, the IVM version that has this capability
is, unfortunately, not synthesizable. Thus, we cannot make
use of gate-level fault simulation tools for the purpose of
this study. Instead, we employ an RT-Level fault simulator1

which was developed and presented in detail in [16], wherein
fault injection is performed using a method similar to the
parallel saboteurs technique described in [21]. Specifically,
the Verilog model of each target module is mutated and a

1While our performance impact analysis is performed at the RT-Level, we
note that a recent study reveals a very strong correlation between the impact
of RT-Level and Gate-Level faults on the execution of workload in the IVM
processor [20]; hence, we expect that the obtained results are representative
of what would be obtained through gate-level fault simulation.

Fig. 1. RT-Level Fault Injection Method

Fault Controller module is added to control all fault injection
parameters, including the location, type, as well as the start
and stop injection times for each fault. In this method, a
unique identification number, called UID, is given to each
entity (i.e. register or wire) of the fault simulation target
module. Then during simulation, the Fault Controller is
responsible for fault injection. In each clock cycle, one bit
of one entity is accessed and set to the faulty value. When
the Fault Controller activates the fault clock (i.e. the signal
that controls the fault simulation starting and stopping clock
cycle), each module compares the broadcasted UID (i.e. the
UID of the target fault simulation signal which is set by
the Fault Controller) to the UIDs of its internal entities. If a
match is found, the module modifies the corresponding bit, as
specified by the Fault Type coming from the Fault Controller
to the module. Fig. 1 shows a high-level diagram of this
method, which allows injection of either stuck-at or transient
faults, with user-defined activation times, to any storage
element or wire defined in the RT-Level Verilog model
(dotted lines indicate hardware added for fault simulation).
As shown, each element (wire or storage element) is driven
by a multiplexer which is controlled by the Fault Controller
to inject the appropriate value to the intended location during
the active fault injection window.

V. PERFORMANCE IMPACT ANALYSIS METHODOLOGY

The aforementioned simulation capabilities provide us
with the necessary infrastructure to evaluate the impact of
faults in key speculative execution modules of a modern
microprocessor on its performance. Our main objective is to
gain insight regarding the extent of the problem, including
both the number of performance faults and the level of
performance degradation that they incur. To this end, we
employ the fault simulation-based performance evaluation
approach depicted in Fig. 2. Specifically, we start by simulat-
ing the execution of k instructions of a typical workload and
recording the corresponding number of clock cycles, CCg(k),
along with the resulting architectural state, ASg(k), and the
machine state, MSg(k), of the golden (fault-free) micropro-
cessor model. We, then, repeat the simulation injecting one
fault at a time and recording the corresponding number of
clock cycles, CC f (k), along with the resulting architectural

92

Fig. 2. Simulation Outcome Classification

state, AS f (k), and the machine state, MS f (k), of the faulty
microprocessor model. A comparison between the simulation
outcomes classifies each fault to one of the following types:

• Functionality Fault: A difference between the architec-
tural states ASg(k) and AS f (k) of the golden and faulty
model, respectively, indicates a functionally incorrect
execution of the k instructions.

• Performance Fault: When the architectural states
match, a difference between the clock cycles CCg(k) and
CC f (k) of the golden and faulty model, respectively, in-
dicates a functionally correct but performance-impacted
execution of the k instructions.

• Latent Fault: When the architectural states and pro-
gram execution durations match, a difference between
the machine states MSg(k) and MS f (k) of the golden
and faulty model, respectively, indicates that the fault
affected a part of the microprocessor that is not visible
to the programmer and did not impact the functional
correctness or the performance of executing the k in-
structions. Yet it is not guaranteed that it will not affect
future instructions executed on the microprocessor.

• Masked Fault: When no discrepancy exists between
the architectural states, program execution durations,
and machine states of the golden and faulty model,
respectively, the fault is suppressed and does not leave
any residual effect that may impact future instructions
executed on the microprocessor.

Besides being classified in one of the above types, an
injected fault may lead to a different simulation outcome,
namely stalling of the pipeline. As explained in section III,
the IVM microprocessor model lacks support for certain
instructions, such as system calls and floating-point oper-
ations [16]. Even though the window of k instructions is
carefully chosen so that no such instruction is fetched during
program execution on the golden microprocessor model, a
fault may still cause the microprocessor to incorrectly call
such instructions within the same window. In this case,
execution stalls due to the described microprocessor model
limitations, preventing classification of the fault in one of the
above types. Such faults are reported separately by marking
the corresponding runs as Stalled.

In the case of performance faults, the above method also
yields a quantitative assessment of the performance impact
by providing the difference in the number of clock cycles for

executing the k instructions, CC f (k)−CCg(k). Interestingly,
this difference may some times be negative, i.e. the execution
on the faulty microprocessor may be actually faster than
the execution on its fault-free counterpart. This is expected,
due to the speculative nature of the hardware affected by
such performance faults. For example, a fault in the branch
prediction unit which results in predicting all branches as
“Not Taken”, may increase performance when running a
program in which most of the branches should, indeed, not
be taken, yet the branch prediction unit incorrectly predicts
some of them as “Taken”. Nevertheless, since speculative
hardware is carefully designed to improve overall execution,
such oddities are the minority. Most faults in this hardware
are expected to adversely impact performance.

As a final note regarding the number and impact of
performance faults, as assessed by fault-simulating a rep-
resentative workload, we raise caution that they only serve
as an indication of the magnitude of the problem. Indeed,
a considerable number of faults reported as masked may
actually be performance faults that have not been activated
during the execution of this particular workload. For exam-
ple, speculative processors use a number of tables to predict
the branch target address. Any fault in these tables may
cause the running program to jump to an unintended address
and, subsequently, flush the pipeline when the real target
address is determined. However, only a small subset of such
faults will typically be activated during execution of a sample
workload, resulting in a reported number of performance
faults that is only a lower-bound and, most probably, an
underestimate. Therefore, in an effort to provide a more
accurate count, we also perform a structural analysis of the
targeted microprocessor modules, seeking faults akin to the
ones that have been classified as performance faults.

VI. RESULTS AND ANALYSIS

In this section, we discuss the simulation setup used for
our study and we present and analyze the obtained results.

A. Simulation Setup

Target Modules & Types of Injected Faults: In this study,
we employ three modules of the IVM microprocessor namely
the ROB, the Scheduler and the Fetch Unit. Given
the varying degree of performance-enhancing functionality of
each of these three modules, we expect to find a significantly
different number of performance faults in each of them.

93

The single stuck-at fault model is employed throughout our
simulations and faults are injected using the RT-Level model
fault injection technique of [16], which was briefly described
in section IV. The second column of Table I reports the total
number of faults in each of the three modules. The third
column reports the number of faults that cause the pipeline
to stall due to limitations in the IVM model, as was explained
in the previous section. These faults are disregarded and our
study focuses on the remaining faults, which are listed in
the fourth column of the table. Among these, a thorough
manual analysis of the functionality of each module reveals
the number of faults that could potentially be performance
faults, which are listed in the fifth column of the table. As
expected, the Fetch Unit, which encompasses the branch
prediction method of IVM, devotes a large percentage of
its real-estate to performance enhancement. The ROB, which
is in charge of ensuring in-order retirement of out-of-order
executed instructions, also comprises a considerable number
of performance faults. Even the Scheduler, through its
speculative execution functionality, allows for a tangible
possibility of such performance faults.

Simulation Workload: In order to investigate the impact of
performance faults, we used two quite different SPEC2000
benchmarks as the simulation workload for the IVM proces-
sor, namely gcc and bzip2. The use of two benchmarks
ensures variability on the instructions executed through the
processor and the control logic that they exercise. Each
benchmark is first executed on the golden (fault-free) mi-
croprocessor model to obtain the baseline performance and
then on each faulty model, in order to apply the performance
impact analysis method of section V. In each simulation run,
the functional simulator is used to execute the first 50,000
clock cycles, thus bypassing the initial system calls and other
operations not implemented in IVM and reaching a code
segment that will not stall the pipeline. Then, k = 10,000
instructions of each benchmark are executed using the RT-
Level Verilog fault simulator. The number of clock cycles
necessary to execute 10,000 instructions on the golden mi-
croprocessor model is 5,156 for gcc and 6,127 for bzip2.

Computational Power: The reported simulations were per-
formed over the course of four months on two Quad-core
Xeon 3.33GHz servers with 16GB of memory.

B. Experimental Results

The results of our study are presented and discussed below.
Since this is a simulation-based study, the reported numbers
should serve as a general indication of the magnitude of the
problem rather than an absolute quantification.

Number of performance faults: First, in Tables II and
III, we report the distribution of faults in each of the four
fault types discussed in section V for gcc and bzip2,
respectively. For each benchmark, the results are presented
individually for each of the three modules and are then
accumulated. The first observation that can be made based
on the last two columns of these two tables is that only a
small subset of faults (approx. 4%) ends up affecting either

TABLE I
STATISTICS ON RT-LEVEL FAULTS IN EACH MODULE

IVM Total Faults Faults Potential
Module Number Causing Considered Performance
Name of Faults Stalling in Study Faults

Scheduler 18,822 7,891 10,931 720 (6.58%)
ROB 61,470 18,027 43,443 16,787 (38.64%)

Fetch Unit 364,490 731 363,759 321,675 (88.43%)
Total 444,782 26,649 418,133 339,182 (81.11%)

the functionality or the performance of executing the 10,000
instructions of each of the two benchmarks. The rest of the
faults are either masked (approx. 61%) or latent (approx.
35%). This is expected, since only a small portion of the
functionality of the three modules is exercised by the code
segments of these benchmarks. As a result, most faults are
either not excited at all (or are excited but are logically
suppressed), in which case they are reported as masked, or
linger around but do not end up impacting the execution of
the benchmark within the executed number of instructions,
in which case they are reported as latent. We point out
that, under appropriate excitation, some of these masked or
latent faults will end up causing functional discrepancy, while
others will end up causing performance degradation. This can
also be corroborated by contrasting the number of identified
performance faults to the number of potential performance
faults reported in the last column of Table I.

As may be observed in these results, among the faults that
are classified as either functionality or performance faults
during the execution of the 10,000 instructions of the two
benchmarks, the vast majority only impacts performance
but not functionality. Of course, these results are skewed
by the fact that we are experimenting with modules whose
functionality is closely related to performance enhancement,
such as the Scheduler, the ROB, and the Fetch Unit.
Nevertheless, the key takeaway point from the reported
data is that there exists a significant number of faults that
will only cause performance degradation but no functional
discrepancy in the execution of a program.

Incurred performance degradation: The second question
we try to address concerns the magnitude of performance
degradation that the identified performance faults incur. Ta-
bles IV and V report the minimum, maximum, and average
performance degradation incurred by performance faults in
the execution of gcc and bzip2, respectively. The provided
figures show the difference in the number of clock cycles that
it takes to complete the 10,000 instructions in the presence
of a performance fault. We remind that the number of clock
cycles it takes to execute these instructions in the golden
model is 5,156 for gcc and 6,127 for bzip2.

As can be observed, due to the branch prediction and other
speculative execution aspects of modern microprocessors,
some performance faults actually speed up the execution of
the instructions. Hence, the minimum performance degra-
dation is negative, i.e. it is a performance improvement.
At the other end of the spectrum, the worst performance
faults incur a very large degradation, often orders of mag-

94

TABLE II
FAULT CLASSIFICATION RESULTS FOR GCC

Module Total Functionality Performance Latent Masked
Name Faults Faults Faults Faults Faults

Scheduler 10,931 113 (1.0%) 497 (4.5%) 3,788 (34.6%) 6,533 (59.7%)
ROB 43,443 1,261 (2.9%) 9,559 (22.0%) 9,810 (22.5%) 22,813 (52.1%)

Fetch Unit 363,759 9 (<0.1%) 3,425 (1.0%) 132,083 (36.3%) 228,242 (62.7%)
Total 418,133 1,383 (0.3%) 13,481 (3.2%) 145,681 (34.8%) 257,588 (61.6%)

TABLE III
FAULT CLASSIFICATION RESULTS FOR BZIP2

Module Total Functionality Performance Latent Masked
Name Faults Faults Faults Faults Faults

Scheduler 10,931 112 (1.0%) 555 (5.0%) 3,926 (35.9%) 6,338 (57.9%)
ROB 43,443 852 (1.9%) 8,737 (20.1%) 11,098 (25.5%) 22,756 (52.3%)

Fetch Unit 363,759 16 (<0.1%) 7,293 (2.0%) 130,306 (35.8%) 226,144 (62.1%)
Total 418,133 980 (0.2%) 16,585 (3.9%) 145,330 (34.7%) 255,238 (61.0%)

TABLE IV
PERFORMANCE DEGRADATION INCURRED IN GCC (BASELINE = 5,156

CLOCK CYCLES)

Module Minimum Maximum Average
Scheduler -38 (-0.7%) +4,621 (+89.6%) +570 (+11%)

ROB -13 (-0.2%) +88,694 (+1720%) +881 (+17%)
Fetch Unit -249 (-4.8%) +16,990 (+329%) +2,087 (+40.4%)

Overall -249 (-4.8%) +88,694 (+1720%) +1,189 (+23%)

nitude worse that the performance of the golden model.
On average, the identified performance faults incur a 23%
performance degradation in the execution of gcc and 13%
in the execution of bzip2. The key takeaway point from
the reported data is that the impact of performance faults is
quite significant, warranting further investigation of methods
for recovering the lost performance.

Consistency of relative impact: The third point that we
investigate concerns the relative impact of performance faults
on different benchmarks. Specifically, we first examine the
number of performance faults that are activated in the simu-
lation runs of both gcc and bzip2. The results are shown
in Fig. 3 individually for each module and cumulatively.
Overall, while only 19,959 out of the 339,182 possible per-
formance faults (5.8%) are activated when executing 10,000
instructions of either gcc or bzip2, which in a uniform
distribution would imply a very small intersection set, more
than half of them (10,107, i.e. 50.63%) are actually activated
in both benchmarks. This clearly implies that some faults
have consistently a much higher probability of activation,
independent of the workload being executed by the processor,
hence they are more critical.

By further examining the performance faults that are acti-
vated in both benchmarks, we obtain another very interesting
result that corroborates our observation regarding the relative
importance of performance faults. Specifically, for each of
the two benchmarks, we create a rank-ordered list of all
faults based on decreasing performance degradation impact.
If a fault lies in position i on the gcc list and position
j on the bzip2 list, we compute |i− j| and we report
the average over all faults, individually for each module
and cumulatively, in the third column of Table VI. As may

TABLE V
PERFORMANCE DEGRADATION INCURRED IN BZIP2 (BASELINE = 6,127

CLOCK CYCLES)

Module Minimum Maximum Average
Scheduler -201 (-3%) +1,668 (+27.2%) +47 (+0.7%)

ROB -96 (-1.5%) +86,465 (+1411%) +273 (+4.4%)
Fetch Unit -205 (-3%) +19,253 (+314%) +1,463 (+23.8%)

Overall -205 (-3%) +86,465 (+1411%) +787 (+12.8%)

be observed, while the overall fault list includes 10,107
faults, the average difference in the ranking of importance
of a fault to the two benchmarks is only 197 positions, i.e.
1.94%, clearly indicating consistency of relative impact of a
performance fault across different workloads. Furthermore,
we compare the actual degradation (i.e. percentage of ad-
ditional clock cycles) incurred by each performance fault
on the execution of the two benchmarks. Specifically, if a
fault incurs x% performance degradation on gcc and y% on
bzip2, we compute |x− y| and we report the average over
all faults, individually for each module and cumulatively, in
the fourth column of Table VI. As may be observed, the
average difference degradation incurred by the 10,107 faults
that are activated both in gcc and bzip2 in only 13.86
percentile units, further supporting our observation regarding
consistency of relative impact. Finally, it is also worth noting
that the top-10 performance faults in the impact-based, rank-
ordered lists for gcc and bzip2 are exactly the same.

Based on the above observations, the key takeaway conjec-
ture is that the activation probability and the relative impact
of performance faults are consistent across different bench-
marks. Hence, additional hardware expended to alleviate the
impact of such faults and reclaim the lost performance would
benefit the entire microprocessor workload.

VII. UTILITY OF PERFORMANCE IMPACT INFORMATION

Information regarding the relative impact of performance
faults may be utilized to guide design modifications for
recovering the lost performance. In other words, akin to
fault-tolerant design approaches, which ensure correct func-
tionality in the presence of faults, one may think of this as a
performance degradation-tolerant design approach, which en-

95

Fig. 3. Consistency of Activated Performance Faults in gcc and bzip2

sures the expected performance level. Consider, for example,
the IVM branch prediction method, which involves a local
predictor with 1024 three-bit locations and a gshare predictor
with 4096 two-bit locations. Faults in these tables do not
affect functionality but do impact performance. Nevertheless,
Error Correction Codes (ECC) could be added to these tables
to ensure their correct operation and, thereby, recover the lost
performance. As a point of reference, when executing 50,000
instructions of bzip2 on the golden IVM model, only 21
branches (0.51%) are mispredicted; in contrast, when a fault
is injected in the branch target address of an instruction,
2,356 out of the 4,117 (57.22%) branches are mispredicted,
incurring a performance loss of 194.59%. Use of ECC codes
could potentially recover this performance loss.

In addition to hardware modifications for ensuring per-
formance, one may also envision the use of additional
hardware to convert functionality faults into performance
faults, thereby improving yield. Through such hardware, a
device that in the presence of a fault would be discarded as
faulty, may be salvaged since it can operate correctly, yet
at reduced performance. For example, up to 8 instructions
may be retired from the ROB module of IVM in each clock
cycle. A fault in any one of the 8 ROB output ports will
result in a functionality fault, since the first instruction to be
stored there will never retire, stalling the pipeline. A small
self-test controller examining the operational health of these
ports and isolating the faulty one would enable the processor
to continue operating, yet at degraded performance. With this
solution, execution of 40,000 instructions of gcc, which take
33,024 clock cycles in the golden model and which do not
execute in the faulty model, may now be executed in 33,925
clock cycles, i.e. with a performance degradation of 2.72%.

VIII. CONCLUSION

Various architectural features aiming to improve micro-
processor performance give rise to a new type of faults
which do not affect correctness but only prolong program
execution. As we demonstrated through a quantitative study
employing the IVM microprocessor model and SPEC2000
benchmarks, a sizeable number of faults in various modules
of a microprocessor are, indeed, such performance faults
and the incurred performance degradation is, often, very
significant. Interestingly, the relative impact of performance
faults is consistent across different workloads. Hence, besides
extending our study to more modules and benchmarks, the
continuation of this research will also investigate hardware
methods for recovering the incurred performance loss and
improving yield.

TABLE VI
PERFORMANCE FAULT IMPACT CONSISTENCY

Module Faults in Average Average
Name Intersection Ranking Impact
Name of gcc & bzip2 Difference Difference

Scheduler 453 37 (8.16%) 1.89%
ROB 7,379 152 (2.05%) 12.32%

Fetch Unit 2,275 74 (3.25%) 21.25%
Overall 10,107 197 (1.94%) 13.86%

REFERENCES

[1] N. Jouppi, “Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers,” ISCA,
pp. 364–373, 1990.

[2] D. Kroft, “Lookup-free instruction fetch/prefetch cache organization,”
ISCA, pp. 81–87, 1981.

[3] S. McFarling, “Combining branch predictors,” TR TN-36, DEC, 1993.
[4] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, “The agree predictor:

A mechanism for reducing negative branch history interference,” ISCA,
pp. 284–291, 1997.

[5] K. Wang and M. Franklin, “Highly accurate data value prediction using
hybrid predictors,” MICRO, pp. 281–290, 1997.

[6] T. Yeh and Y. Patt, “Alternative implementations of two-level adaptive
branch prediction,” ISCA, pp. 124–134, 1992.

[7] G. Loh, “Revisiting the performance impact of branch predictor
latencies,” ISPASS, pp. 59–69, 2006.

[8] E. Hao, P. Chang, and Y. Patt, “The effect of speculatively updating
branch history on branch prediction accuracy, revisited,” MICRO, pp.
228–232, 1994.

[9] D. Jimenez, “Delay-sensitive branch predictors for future technolo-
gies,” Ph.D. dissertation, 2002, univ. Texas at Austin.

[10] S. Almukhaizim, T. Verdel, and Y. Makris, “Cost-effective graceful
degradation in speculative processor subsystems: The branch predic-
tion case,” ICCD, pp. 194–197, 2003.

[11] S. Almukhaizim, P. Petrov, and A. Orailoglu, “Low-cost, software-
based self-test methodologies for performance faults in processor
control subsystems,” CICC, pp. 263–266, 2001.

[12] S. Almukhaizim, P. Petrov, and A. Orailoglu, “Faults in processor
control subsystems: Testing correctness and performance faults in the
data prefetching unit,” ATS, pp. 319–324, 2001.

[13] T. Sato, “First step to combining control and data speculation,” IWIA,
pp. 53–60, 1998.

[14] J. Gonzalez and A. Gonzalez, “The potential of data value speculation
to boost ILP,” ICS, pp. 21–28, 1998.

[15] R. Littin, “Data and control speculative execution,” NZCSRSC, 1999.
[16] N. Karimi, M. Maniatakos, Y. Makris, and A. Jas, “On the correla-

tion between controller faults and instruction-level errors in modern
microprocessors,” ITC, pp. 24.1.1–24.1.10, 2008.

[17] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,”
DSN, pp. 61–70, 2004.

[18] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” SIGARCH Computer Archi-
tecture News, vol. 35, no. 2, pp. 460–469, 2007.

[19] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future micro-
processors: The simplescalar tool set, Tech. Rep. CS-TR-1996-1308,
1996. [Online]. Available: citeseer.ist.psu.edu/burger96evaluating.html

[20] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact comparison of RT- vs. gate-level faults in
a modern microprocessor controller,” VTS, pp. 9–14, 2009.

[21] J. C. Baraza, J. Gracia, S. Blanc, D. Gil, and P. J. Gil, “Enhancement of
fault injection techniques based on the modification of VHDL code,”
IEEE TVLSI, vol. 16, no. 6, pp. 693–706, 2008.

96

