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Abstract— A novel technique for implementing very high speed
FFTs based on unrolled CORDIC structures is proposed in
this paper. There has been a lot of research in the area of
FFT algorithm implementation; most of the research is focused
on reduction of the computational complexity by selection and
efficient decomposition of the FFT algorithm. However there has
not been much research on using the CORDIC structures for
FFT implementations, especially for large, high speed and high
throughput FFT transforms, due to the recursive nature of the
CORDIC algorithms. The key ideas in this paper are replacing
the sine and cosine twiddle factors in the conventional FFT
architecture by non-iterative CORDIC micro-rotations which
allow substantial (~ 50%) reduction in read-only memory (ROM)
table size, and total removal of complex multipliers. A new
method to derive the optimal unrolling/unfolding factor for a
desired FFT application based on the MSE (mean square error)
is also proposed in this paper. Implemented on a Virtex-4 FPGA,
the CORDIC based FFT runs 3.9 times faster and occupies
37% less area than an equivalent complex multiplier-based FFT
implementation.

I. INTRODUCTION

The Fast Fourier Transform (FFT) algorithm is a com-
putationally efficient way to implement the Discrete Fourier
Transform. This is a fundamental operation in the increas-
ingly popular multicarrier modulation technologies, such as
orthogonal frequency division multiplexing (OFDM) and dis-
crete multitone (DMT), in current and emerging high-speed
data communication systems. The implementation of an FFT
processor is one of the most challenging parts in order to
meet real-time processing requirements in such systems while
achieving reduced complexity [1].

The FFT hardware is heavily constrained by the power and
area requirements [2], [3], and thus the focus is to minimize
these two parameters without sacrificing the performance. In
line with this, designers tend to use pipelined high speed
multipliers, but these, in fact, add large area overhead. With
sub-micron processes, the leakage power is a large percentage
of the total power consumption. In order to reduce the leakage,
the designer would have to ensure the FFT hardware occupies
less area (i.e., using fewer transistors). For large FFT sizes
the major portion of the area for the FFT hardware generally
comes from the storage/memory elements for the twiddle
factor tables and pipeline registers. The computational units
such as complex multipliers and the complex adders also
contribute to the area of the FFT significantly. However, the
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contribution of the control logic for the FFT algorithms on the
area is relatively very small.

Several architectures have been proposed for FFT imple-
mentations. FFT architectures can be classified broadly based
on the decimation algorithms used, i.e., decimation in time
(DIT) or decimation in frequency (DIF). The DIF class of
algorithms has been found to introduce less computational
noise for fixed point hardware implementations. [4] compares
the computational noise for fixed point DIF and DIT imple-
mentations.

The most well-known DIF architectures are the delay com-
mutation, delay feedback [5], [6] and in-place computation
[1], [7]-[9]. Our main focus is on the delay feedback (DF)
architecture since it is the most efficient one among the three
architectures from the perspective of 100% pipeline utilization;
additionally, it has a simple controller. The DF architecture
can sustain a certain throughput and has finite latency. One
of the major advantages for the DF architecture lies in its
scalability, where a different FFT size can be readily supported
due to the multi-stage structure. Therefore, the DF architecture
is attractive for the fourth generation wireless communication
systems, such as Worldwide Interoperability for Microwave
Access (WIMAX) and 3rd Generation Partnership Project
(3GPP) Long-Term Evolution (LTE), where a scalable system
bandwidth is required.

Among these hardware-efficient algorithms is an FFT using
Co-Ordinate Rotation DIgital Computer (CORDIC) algorithm,
which employs an iterative approach with only shift and add
operations to reduce the complexity of computations that are of
transcendental nature [10]. It was the seminal work of Despain
[11]-[13] that incorporated this technology for the first time
in the FFT hardware design, which provides extremely low
complexity using CORDIC structures but only works for
modest or low data rates because of the recursive structure.
Although there are several papers in the literature on stand-
alone CORDIC implementations [13], [14], such as the radix-
4 CORDIC [15] and the recoded CORDIC architecture [16],
little is known in the literature about a standard method for
designing and incorporating high speed and high throughput
FFTs using a non-recursive CORDIC structure. Mondwurf
[17] describes an FFT implementation using an unrolled
CORDIC structure, where the angle values are stored in direct
form. These angle values are then used to calculate the micro-



rotation vector. This approach consumes larger area than the
proposed implementation since it requires ROM tables, adders,
and comparators for the computation of the micro-rotation
vectors.

This paper highlights the design of a non-recursive
CORDIC-based FFT implementation, where multipliers are
eliminated and therefore computational complexity is purely
defined by additions. Elimination of the twiddle factor ROM
tables and introduction of the micro-rotation vector ROM is
another contribution of this paper. Further, this paper describes
a way of finding the optimum number of CORDIC micro-
rotation stages, defined by the unrolling factor, based on mean
square error (MSE) for a given FFT application.

II. FFT STRUCTURES AND CORDIC
A. FFT Architectures

Fig. 1 shows a typical DF architecture for radix-2 (R2) 8-
point FFT system whose mode of operation is given as follows.
The l1st-stage uses 4-delay pipeline registers to wait for the
5th sample to arrive before it is combined with the 1st sample
that is held in the feedback pipeline registers. The difference
is multiplied by the twiddle factors and is passed to the 2nd-
stage, while the sum is circulated back in to the delay line
which was holding the initial four samples of the data. After
the four difference samples are passed to the 2nd-stage the
four samples of the sum is passed to the 2nd-stage. The sum
is not multiplied by twiddle factors. The 2nd and further stages
work in a similar fashion except the 2nd stage uses two delay
elements and the last uses one delay element. It is assumed
that one sample of data is provided every clock cycle.

Note that the delay commutation has 50% pipeline utiliza-
tion, while the in-place computation has more than 100%
buffer/memory utilization in comparison with the DF architec-
ture. However the in-place computation consumes more active
power since it has to run faster to maintain the throughput.
The in-place computation algorithm requires much less area
[8], [18] in comparison with the DF architecture. Therefore,
the leakage power dissipation is quite low for this type of
architecture. In-place computation is very prominently used
in many of the DSP processors.

B. CORDIC Structure

Transforming complex twiddle factor multiplications into
CORDIC operations can eliminate the complex multiplica-
tions, whereas taking any generic decomposition of the FFT
would still need complex multiplications. Therefore it can be
deduced that any complex multiplier based FFT architecture
has its CORDIC based equivalent, which may provide a
simpler implementation. In general, complex multiplications
of the form given as

X +jY =(z+jy e, (1

can be represented in matrix form as

X cosf sinf| |z
{Y} - [— sinf cos 9} {y} ' 2)

Notice that a complex multiplication is typically equiva-
lent to four real-valued multiplications and two real-valued
additions. The rotation angle 6 can be approximated with
a linear combination of micro-rotations each of which has
a different angle. Let A = {ag,a1,---,a,} denote the
micro-rotation direction vector, where a; € {1,—1}, and
© = {arctan(l),arctan(1/2),arctan(1/4),---} be the set
of micro-rotation angles. Consider that the length of A is
(u+1), which is defined as the unrolling factor. Based on this
approximation, the rotation matrix in (2) can be facltLorized into

a product of micro-rotation matrices, where 6 ~ > a;6;, as
i=0

m - { cos (aof)  sin (aoeoq y

Y| |—sin(aofy) cos(agby) 3
cos (ay0,) sin(a,0,)| |z ®)
* | Zsin (ayby) cos(auby)| |y|’
which can be re-written as
[X } 1 ao (1/ 20)}
_ {_ . o
Y ao (1/2°) 1 @

a (1/21»)} m |

Xu[—au<11/2“> 1 y

1
where f, = cos (6;) and 0; = tan * (22> This is further

simplified as

o= () (@ - o

Micro-rotation matrices

. u
where ¢; = 1/2°, fi is the scaling factor, and f; =
i=0
1

V1 + tan?(6;)

From the above mathematical derivations, it is easy to see
that (1) can be approximated to (5). Note that the scaling
factor is a constant value given a finite number of rotations. It
can also be easily observed that this CORDIC-based structure
does not need any twiddle factor memories, but needs to keep
the micro-rotation direction vector A = {ag, a1, ....a;, ....a, }
where each micro-rotation direction bit a; determines the
corresponding angle to be rotated either in the counter clock-
wise or clock-wise direction.

III. PROPOSED CORDIC-BASED FFT
A. Hardware Optimization for CORDIC Structure

As described in the previous section, the CORDIC structure
is, in general, recursive where the micro-rotation matrices are
multiplied for the computation of the rotation. In order to
speed up the hardware and to increase the parallelism of the
computations, the proposed FFT structure uses a hardware
optimization technique based on a single product matrix,
where the micro-rotation direction vector A for each angle
is pre-calculated. Let T, 440 be delay from the adder circuit,
and Ts¢q1c be the delay from the scaler circuit. Then the direct
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Fig. 2. Block diagram for (a) ¢th micro-rotation stage and (b) 12-stage unrolled CORDIC.

implementation of (5) leads to a slow hardware due to the
critical path T, itical = U * Tuader + Tscates Where Tseqre 18
easy to optimize for speed since it is a trivial multiplication.
However, the optimization of U % T} 44., for speed requires the
micro-rotation matrices to be combined so that the resultant
matrix can be computed in parallel. This parallel approach may
add more logic but it makes the critical path faster. This opti-
mization can be found from the following derivations, where
a single 2 x 2 composite matrix that represents the complete
rotation by the vector A can be determined depending upon
the number of micro-rotation stages, which is also called the
unrolling factor. But identifying the optimal unrolling factor
is contingent upon the acceptable quantization error for the
application. For a given unrolling factor, the scaling factor
becomes constant. Consider the unrolling factor of (u + 1),

(5) can be l‘e-writtf:n as
U 0 (A) Yy ' ( )

- (1) [ 150

where
L(u+1)/2]
Do(A) =1+ > (-DF > aim
k=1 i€ S,
[(ut1)/2] M
Ur(A) = Z (-~ Z QT
k=1 1€S2k—1

S, is the set in which each element consists of ¢ digits, each of
which is equal to or less than u, and the set has all the elements
for the possible combination using @ digits. This structure can
unroll the iterative CORDIC computation and allow a single
matrix to be calculated given that the micro-rotation direction
vector A is known in advance.

1) Example: Assuming the unrolling factor of 4, where u =
3, (7) can be written as

Uo(A) =1 - Z a;Ti + Z QT

1€S2 1€Sy

Ui(A) = Z QT — Z T,

1€S 1€S3

®)
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where S; = {0,1,2,3},S, = {01,02,03,12,13,23},S; =
{012,013,023, 123}, and Sy = {0123}. Interestingly, Uy (A)
has the sets with even 4 values and Uj(A) has the the sets
with odd ¢ values. Thus, (8) can be re-written as

Uo(A) =1 — avg1t1 — oty — apsts — aats
— a3ty — aists + ap123ts

9
U1 (A) =agto + arts + asta + asts — apiats

— Qo13ts — 23t — Q123ts,

where «; is a product of the corresponding elements in the
micro-rotation direction vector, for instance, agizs = apaias.
Similarly, 7912 = fot1t2 = t3 due to the property that ¢;t; =
ti-‘rj‘

B. Precalculation of the Rotation Vectors

The twiddle factors can be precomputed for all FFT ap-
plications. Likewise, the micro-rotation direction vectors in
CORDIC-based FFT can also be precomputed in order to
eliminate the need for recursions for calculating the micro-
rotation matrices. Specifically, the rotation angles in FFT
are not arbitrary but are incremented/decremented with a
regular pattern, which also motivates the pre-calculation of
the micro-rotation direction vectors. Eliminating recursions
not only simplifies the circuit, but also reduces the power
consumption of the circuit. Multiplication with negative one is
the two’s complement of that fixed point number. For example
a+ (—1) % b can be done by passing the b operand inverted
with carry input to the adder as one, thus eliminating the 2’s
complement operation needed for each micro-rotation stage.
The ith micro-rotation stage engine shown in Fig. 2(a) does @
left shifts of both the operands and performs an addition and
subtraction. The complete unrolled non-recursive CORDIC is
shown in Fig. 2(b).

C. Determining the Unrolling Factor

The unrolling factor needs to be determined depending upon
the application and the angle quantization error that can be
accommodated by the specific application. This error should
not be mistaken as the computational noise introduced due to
truncation and rounding in the fixed point computation blocks.
This error is inherent to the CORDIC approximation of the
FFT algorithm.

In order to evaluate the impact of the unrolling factor on
the CORDIC-based FFT operation, the ideal DFT is used as
a benchmark. A generic DFT operation is given in a matrix
form by

[ |- 2 [nlE a2 [ ]

(10)
where N is the FFT size, 2(n)+jy(n) is the nth input complex
sample, and X g4 (k)+ jYqr. (k) is the kth DFT output sample.
On the other hand, the output of the proposed CORDIC-based
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FFT can be given by rewriting (6) as
Uo(A(n, k)] [y(n)]”

{ }_CZ{ (Ao
(1D

where C = H fi &~ 0.60725 and A(n, k) is the micro-rotation

direction Vector for the angle of 27nk/N. Notice that A(n, k)
values can be pre-calculated and stored in a ROM table in
order to ease the run-time processing.

Based on (10) and (11), the mean square error criterion is
used with an error threshold to find the unrolling factor for
the proposed CORDIC-based FFT as

7 = min{MSE(u) < e}, (12)

where €;5, is the mean square error threshold and

N-1

© S (Kareb) = X (1) +

k=0

MSE(u) = (Yape (k) =Yy (K))?).

(13)
In other words, the minimum unrolling factor is chosen among
those providing a lower mean square error than the error
threshold. Note that the threshold ¢;;, is determined based
on the error margin that each application can tolerate. Fig. 3
shows the mean square error as a function of unrolling factor
based on simulations.

IV. CoOMPLEXITY COMPARISON AND FPGA
IMPLEMENTATION

A. Computational Complexity for Radix-2, N-point FFT

The number of stages for a radix-2 FFT is log,(/N) where
N is the size the radix-2 FFT. The number of stages that need
true multiplication is (log,(IN) — 2). The number of adders
per butterfly stage is 4 and the number of adders needed for
a complex multiplication is 2. The total number of adders
would be (6log,(IN) —4), since the last two stages for a DIF
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TABLE I
COMPARISON OF COMPUTATIONAL ELEMENTS.

multipliers adders
R2SD-FFT | 4(log,(N) — 2) 6log,(N) — 4
R2SD-FFT | None 2(U + S)(logy(N) —
(CORDIC) 2) + 4log,(N)

TABLE 11
COMPUTATIONAL COMPLEXITY OF N-POINT RADIX-2 FFT ALGORITHM.

multiplications additions
R2SD-FFT | 2N (log,(N)—2) | 3N log,(N) — 4
R2SD-FFT | None N(U + S)(logy(N) —
(CORDIC) 2) + 2N log,(N)

algorithm do not need multiplications and hence 4 adders can
be removed from 6 log,(IV), while the total number of adders
per stage is 6. The number of real multipliers per stage is 4.
Let S be the number of adders needed for the CORDIC
scaling operation and U be the unrolling factor. There are
2 adders per micro-rotation. Then the adders needed for the
unrolled CORDIC operation are 2(U + S). The total number
of adders needed just for butterfly computations is 4 log, (N).
The total number of adders for the CORDIC FFT now be-
comes (log, (N) —2)(2(U + S)) + 41og,(N). The number of
arithmetic blocks needed for computation is shown in Table
I. The computational complexity can then be calculated by
multiplying these values with N/r, where » = 2 is the radix
of the butterfly structure. Hence we have Table II for the
computational complexity, where R2SD-FFT stands for radix-
2 single delay feedback FFT. Notice that no multipliers are
needed for the CORDIC based FFT. In order to make the
comparison of the computational complexity of the CORDIC
based FFT with the complex multiplier based FFT, we would
have to equivalently represent the complex multiplier in terms
of adder circuits. It can be easily seen that any B bit fixed
point multiplication would require B — 1 adders. Hence the
total number of adders for the complex multiplier based FFT
is (6logy(N) — 4) + 4B(log,(N) — 2); notice that N > 4.
Fig. 4 compares the complexity of the CORDIC FFT with the
complex multiplier-based FFT for various FFT sizes.

B. Read Only Memory (ROM) Requirements

One of the key advantages of the CORDIC based FFT is the
reduction of the twiddle factor memories. The twiddle factor
memory for each stage depends upon three factors; arithmetic
precision required for computation, number of stages in the
DIT algorithm, and the number of points in the FFT. Assume
B bits are used to represent each real and imaginary part of the
twiddle factor, then we have 2B bits for a single twiddle factor.
The 1st stage of the N-point FFT needs N/2 twiddle factors,
the 2nd stage needs N/4 twiddle factors, etc. Usually data
path implementation allows one bit of data growth every stage;
hence to improve accuracy one bit of twiddle factor growth is
also allowed. The twiddle factor memory size accounting for

N
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one bit growth is 2(B(N/2)+(B+1)(N/4)+(B+2)(N/8)+
...+ (B+1loga(N) —2)), whereas twiddle factor memory size
with no growth is 2B(N/24+N/4+N/8+...42) = 2B(N —2)
bits.

The rotation vector memory for a U unrolled CORDIC
algorithm uses (U + 1) bits per rotation vector (one extra bit is
need to indicate the quadrant information). Since the CORDIC
can only compute rotations that lie in the range —7/2 to /2,
the total rotation vector memory requirement for the CORDIC
based FFT would be (U +1)(IN —2). The general trend of the
ROM requirements for R2SD-FFT and the R2SD-CORDIC-
FFT is shown in Fig. 5.

C. On Accuracy of CORDIC based FFTs

Fig. 3 shows simulation results for 1024 point CORDIC
based FFTs with various unrolling factors. As shown in
Section III, the MSE provides vital information about the
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unrolling factor desired for CORDIC FFT implementation.

The simulation results point out that the error is reasonably
low for an unrolling factor (UF) of seven. The MSE decreases
with an increase in unrolling factor; however it is also observed
that there is a local minimum at the unrolling factor of
seven, with a slightly higher error for unrolling factors 8 and
9. However, this tapers down as seen in Fig. 3 for higher
unrolling factors. In our case of UF = 7, the MSE is of
the order of 107''. An interesting observation was found
during the simulation; the unrolling factor is proportional to
the logarithm of the MSE. Based on this observation, for any
given applications a rigorous functional test algorithm can be
derived to obtain the minimum unrolling factor that guarantees
the MSE performance for the CORDIC based FFT.

D. Comparison of Area and Speed

We synthesized a complex multiplier based 1024 point
FFT and a seven times unrolled CORDIC based 1024
point FFT, targeted to an FPGA board (Xilinx part number
xc4vix 140ff1517-12). For fair comparisons, we prevented the
use of the FPGA’s internal DSP multipliers during the syn-
thesis process. The area complexity inside the FPGA is based
on the Xilinx look-up-table (LUT) count. Table IV shows the
percentage savings on various FPGA resources.

TABLE IIT
FPGA TIMING REPORT.

FFT1024_CORDIC
5.048ns(198.098 MHz)

FFT1024
19.707ns(50.74MHz)

Max clock period

TABLE IV
FPGA UTLILIZATION REPORT.

FPGA FFT1024 FFT1024 (com- | % saving
RESOURCE _CORDIC plex multiplier)

BUF 3 3 0
FDC 374 354 -6
FDCE 26641 26640 0
GND 17 25 32
MULT_AND 582 2170 73
MUXCY_L 659 6420 90
MUXFS 2 21 90
VCC 2 10 80
XORCY 683 6212 89
MUXCY 0 149 100
LUTI 0 406 100
LUT2 26732 32617 18
LUT3 679 2907 77
LUT4 335 7141 95
1/O ports 69 69 0
1/O primitives 68 68 0
IBUF 25 25 0
OBUF 43 43 0
BUFGP 1 1 0
I/0 Register bits | 0 0 0
Register bits 27015 26994 0
Total LUTS 27746 44507 38

V. CONCLUSION AND FUTURE WORK

A non-iterative CORDIC-based FFT is designed and eval-
uated in this paper. The unrolled CORDIC operations allows
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parallel processing as well as a pre-calculation for the micro-
rotation matrix and the direction vector, which results in a
high speed and high throughput FFT processor. The minimum
unrolling factor was obtained from simulation. Since the
micro-rotation stages use adder circuits which are not shared
among the real and imaginary parts, it is further possible to
optimize the design of micro-rotation stages at the logic level.
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