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Abstract—This work proposes a new yield computation technique
dedicated to HLS, which is an essential component in timing variation-

aware HLS research field. The SSTAs used by the current timing
variation-aware HLS techniques cannot support the following two critical
factors at all: (i) non-Gaussian delay distribution of ‘module patterns’ used
in scheduling and binding and (ii) correlation of timing variation between
module patterns. However, without considering these factors, the synthesis
results would be far less accurate in timing, being very likely to fail in
timing closure. Even though there are advances in the logic level for
SSTAs that support (i) and (ii), the manipulation and computation of

(i) and (ii) in the course of scheduling and binding in HLS are unique
in that there are no concepts of module sharing and performance yield
computation in the logic level. Specifically, we propose a novel yield
computation technique to handle the non-Gaussian timing variation of

module patterns, where the sum and max operations are closed-form
formulas and the timing correlation between modules used in computing
performance yield is preserved to the first-order form. Experimental

results show that our synthesis using the proposed yield computation
technique reduces the latency by 24.1% and 28.8% under 95% and
90% performance yield constraints over that by the conventional HLS,
respectively. Further, it is confirmed that our synthesis results are near

optimal with less than 3.1% error on average.

I. INTRODUCTION

The timing closure problem is one of the most important problem

to be solved in high-level synthesis (HLS). One critical factor that

makes the timing closure problem difficult to solve is the timing

variations. Conventionally, to avoid the effects of timing variation

on the violation of clock period constraint, the worst case delays of

functional modules have been used in scheduling of HLS. As tech-

nologies scale down to deep sub-micron regime, the rapid increase

of the timing variation makes the worst case design too pessimistic

[1]. To accurately estimate the impact of the process variation on

circuit timing, many effective statistical static timing analysis (SSTA)

techniques have been developed for the gate level analysis. The SSTA

techniques are classified into two types: path based SSTAs (e.g., [2],

[3]) and block based SSTAs (e.g., [4]–[7]). However, there are a

few SSTA techniques for the higher level design. There will be a

great chance of enhancing performance yield1 of resultant design

as well as performance in the stage of HLS, because the quality

of results of scheduling and binding is significantly affected by how

much the timing information of hardware modules allocated and used

in the design is accurate. Despite such importance of accurate SSTA

information of modules in HLS, so far the timing variation-aware

HLS techniques have used the SSTAs that are available in the gate
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1The performance yield is defined as the probability of the design meeting
the timing or clock period constraint [1], [8].

level, missing the capability of supporting the unique requirements

in HLS: non-Gaussian delay distributions of module patterns2 and

correlation of timing variation between module patterns. Note that

two modules, for example an adder and a multiplier, allocated for

execution of operations in DFG (data flow graph), have not only

their own delay distributions but also their joint timing correlation,

because the delay distributions of the circuit (gate) primitives in

the modules are inherently correlated. The two requirements of

supporting non-Gaussian delay distribution and timing correlation

between modules are in fact the essential parts for the accurate

computation of performance yield in the scheduling and binding (i.e.,

resource sharing).

Recently, the work in [9] took into account the timing varia-

tion in HLS. The work pointed out the uniqueness of the timing

variation-aware HLS, introducing the concept of performance yield

computation. However, the proposed method assumed Gaussian delay

distributions of modules and no correlation of timing variation among

the modules. In addition to that, the performance yield constraint is

not fully combined with the scheduling and resource binding process.

Once an iteration of scheduling and binding of simulated annealing

(SA) is completed, an SSTA is applied to the scheduled and bound

DFG to obtain delay distribution, which causes the low chance of

finding a globally optimized solution of scheduling and binding

in SA. The work in [10] refined and enhanced the performance

yield computation used in [9]. However, for the computation of

performance yield for an instance of binding result, it didn’t consider

the correlation of timing variations between modules. Furthermore,

they still assumed Gaussian delay distributions for the modules,

lacking timing accuracy of modules. On the other hand, the work in

[11] proposed a timing variation-aware HLS technique to reduce the

latency under the performance yield constraint. It used a discretized

probability density function (PDF) to speed up the performance yield

computation for every rescheduling and rebinding instance. Though

the method can handle any delay distribution of module patterns

including non-Gaussian, it didn’t take into account the correlation

of timing variations between modules.

In this work, we propose a novel yield computation technique

that is able to effectively support the non-Gaussian distributions

of module patterns and the timing correlation between them. By

achieving this timing accuracy for the performance yield computation

for every instance, consisting of module patterns, of scheduling and

binding, any HLS framework that uses our proposed technique in the

performance yield computation can make right (or reliable) decisions

on guiding scheduling and binding in timing variation-aware HLS.

2Module patterns are the sub-graphs of operations in a DFG (data flow
graph) that are scheduled to be executed in one clock step (i.e., as operation
chaining) or multiple clock steps (i.e., as multi-cycling). More discussion will
be given in the following sections.
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II. STATISTICAL STATIC TIMING MODEL AND ANALYSIS

Since the functional modules used in HLS are composed of logic

gates, the delay distributions of the modules can be obtained by

applying a logic level SSTA to them.
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Fig. 1. Modeling delay distributions of a functional module: (a) FU with
four output signals; (b) graphs of the delay distributions of f3, f2, f1, and
f0 in (a).

For example, Fig. 1(b) shows the delay distributions of the four output

signals f3, f2, f1, and f0 of a functional unit (FU ) in Fig. 1(a). Thus,

four random variables are needed to describe the delay distributions

of the output signals (i.e., one for each output signal). As the number

of FU ’s outputs increases, the number of random variables also

increases, which makes the manipulation and computation of the

compositions of delay distributions in HLS very complicated and

time-consuming. Therefore, to process the delay variations efficiently,

we use a single random variable for a functional module rather than

use multiple random variables. The single random variable represents

the distribution of the longest delay from an input signal to an output

signal in the module. For example, for FU in Fig. 1 the random

variable is DFU = max{Df3
, Df2

, Df1
, Df0

} where Dfi
(i=0, 1,

2, 3) represents the delay variable from an input of FU to output fi.

To describe the delay distributions of functional modules, we adopt

the first-order canonical model. (It should be noted that our proposed

technique can be easily extended to the second or higher-order delay

model.) By using the model, the delay variable of a functional module

is expressed as

D = d0 +

N
∑

i=1

diXi + dN+1Xr (1)

where d0 is the nominal delay of the module, Xi and Xr are the

random variables to model the process parameter variations, and di is

the first-order sensitivity of D to Xi. Xi is the correlated component

of the process parameter, such as channel length and threshold

voltage. On the other hand, Xr is the independent random component

(to represent the RDF (random dopant fluctuation)). There are two

atomic operations in the block-based parameterized SSTA: sum and

max where the max operation is much harder to implement. Most

SSTA techniques have been assumed that all Xi’s and Xr follow

Gaussian distributions to simplify the computation of the sum and

max operations. However, the Gaussian distribution model is limited

in modeling the delay distributions of functional modules. In this

work, we accept non-Gaussian delay distributions, in the form of

that in Eq.(1), for Xi’s and Xr . There have been many efficient

gate level SSTA techniques developed for non-Gaussian variation

sources (e.g., [6], [7]). In particular, using the method in [7] allows

the result of sum or max operation for the distribution in the form of

Eq.(1) to be also the form of Eq.(1). Our key contributions compared

to the gate level SSTA techniques are that our work (i) efficiently

formulates the correlation of delay variables between module patterns

(in Section III) and (ii) integrating an incremental computation of

non-Gaussian delay distributions required by rescheduling/rebinding

into the performance yield computation in HLS (in Section V).

MUL2MUL1

ADD1

+

× ×

DMUL2DMUL1

D = sum(max{DMUL1,DMUL2},DADD1)

Fig. 2. Example showing the derivation of delay variable of a module
pattern consisting of three modules where two (MUL1, MUL2) of them
are connected to the other (ADD1) as inputs.

For example, Fig. 2 shows a module pattern with two multipli-

ers being connected to an adder as inputs. The delay variable of

the module pattern, denoted as D, is expressed by a composition

of max and sum operators, and the delay variables, DMUL1,

DMUL2 and DADD1 of the functional modules. That is, D =
sum(max{DMUL1, DMUL2}, DADD1).

III. PERFORMANCE YIELD COMPUTATION IN HLS

This section describes how the performance yield for an instance

of scheduling and binding is formulated to guide the direction of

rescheduling or rebinding in the framework of HLS. Let us consider

an instance of scheduling and binding in Fig. 3(a) produced by

the conventional variation-unaware HLS. The modules available are

shown in Fig. 3(b). The conventional HLS produces latency of 7

clock cycles by using the worst case module delays. Although the

performance yield of the scheduling and binding result is 100%, the

latency is too conservative.

On the other hand, the timing variation-aware HLS is able to

perform more aggressive scheduling and binding. Let us consider

the instance of scheduling and binding in Fig. 3(c) in which three

operation sub-graphs op1 → op2, op3 → op4, op5 → op6 are

scheduled at two clock steps (i.e., (3,4), (5,6), and (5,6), respectively)

instead of three clock steps. Further, operations op2 and op3 share

adder ADD1 in Fig. 3(d) and operations op1 and op4 share multiplier

MUL1 in Fig. 3(d). On the other hand, op5 and op6 in the sub-

graph op5 → op6 use MUL2 and ADD2 in Fig. 3(d) for their

executions, respectively. We assume that all the remaining operations

are definitely executed within the specified clock steps. Consequently,

we may save 1 clock cycle at the expense of some performance yield

loss. Here, the important issue is how to accurately compute the

performance yield of the scheduling and binding instance in Fig. 3(c),

using reliable delay distributions of module patterns in Fig. 3(d). Let

D1 (= sum(DMUL1, DADD1)) and D2 (= sum(DMUL2, DADD2))

be the delay variables of the two module patterns in Fig. 3(d). Then,

the performance yield of the scheduling and binding instance is

expressed as P (D1 ≤ 2tclk, D2 ≤ 2tclk). Given PDFs for D1 and

D2, we need to compute P (D1 ≤ 2tclk, D2 ≤ 2tclk).

To simplify the computation of the performance yield, the pre-

vious timing variation-aware HLS techniques (e.g., [11]) compute

P (D1 ≤ 2tclk, D2 ≤ 2tclk) by replacing it with P (D1 ≤ 2tclk) ·
P (D2 ≤ 2tclk) by assuming that the delay distributions of two
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Fig. 3. (Conventional) process variation-unaware HLS vs. process variation-
aware HLS: (a) scheduling and binding result using the worst case module
delays by variation-unaware HLS; (b) modules bound to the DFG in (a); (c)
scheduling and binding result using statistical module delays by variation-
aware HLS; (d) module patterns bound to the DFG in (c).

different modules are independent.3 In reality, however, their delay

distributions are correlated because they neighbor on each other in the

same die. Obviously, the assumption is not reasonable, and thus, the

simplified computation is neither accurate nor useful. To precisely

compute the performance yield, we should take into account the

correlation between the distributions of D1 and D2. The correct and

meaningful formulation of the performance yield computation is

P (D1 ≤ 2tclk, D2 ≤ 2tclk) =

∫ 2tclk

0

∫ 2tclk

0

f(d1, d2)dd1dd2

(2)

where f(d1, d2) is the joint probability density function (JPDF) of

D1 and D2.4

As the number of module patterns increases during the process

of scheduling and binding, an efficient and accurate computation of

their JPDF is very critical. The next section provides the details on

the efficient computation of the JPDF.

IV. AN EFFICIENT JPDF COMPUTATION

It is easy, in HLS, to derive the JPDF of two “Gaussian” random

variables, D1 and D2, by calculating the covariance between D1

and D2, and the JPDF still follows a Gaussian distribution (e.g., [9],

3For example, let us assume that P (D1 ≤ 2tclk) = P (D2 ≤ 2tclk) =
90% in Fig. 3(c). Then, the performance is P (D1 ≤ 2tclk) · P (D2 ≤
2tclk) = 81%.

4The performance yield can also be computed by using max operation
in SSTA. With D = max{D1/2, D2/2} defined, P (D1 ≤ 2tclk, D2 ≤
2tclk) = P (D ≤ tclk). However, max operation is more expensive than
JPDF computation because max operation uses JPDF [7].

[10]). However, it is difficult to obtain a closed form for the JPDF

of “non-Gaussian” D1 and D2. Our solution is based on the use of

Fourier series as follows: The JPDF of multiple random variables

can be approximated by its first K orders of Fourier series. The

benefit of the use of Fourier series in JPDF computation is threefold.

First, we are able to efficiently and accurately compute the JPDF

by manipulating parameter K. Second, any distribution including

both Gaussian and non-Gaussian can be used. Further, Fourier series

of the JPDF provides a closed form for the JPDF, which reduces

performance yield computation to a simple checking on a lookup

table.

A. JPDF Computation via Fourier series

This section presents an efficient method to compute the JPDF

of D1 and D2 in the canonical form, as shown in Eq.(1). (The

method can be trivially extended to compute the JPDF of three or

more random variables.) Suppose D1 and D2 are the delay random

variables of two module patterns. Since the variables model the timing

quantities, we can safely assume that they are bounded in certain

intervals:

0 ≤ D1 ≤ l, 0 ≤ D2 ≤ h. (3)

Their upper bounds are set as l = µ1 +4σ1 and h = µ2 +4σ2 where

µi and σi represent mean and standard deviation of Di, respectively.

By applying a sequence of sum and max operations to the module

patterns by using the SSTA technique in [7], we can produce the

PDFs of D1 and D2 that are in the canonical form of Eq.(1):

D1 = d0 +

N
∑

i=1

diXi + dN+1Xr, (4)

D2 = e0 +

N
∑

i=1

eiXi + eN+1Xr. (5)

Let f(d1, d2) be the JPDF of D1 and D2. Then, we approximate

f(d1, d2) in the region of [0, l; 0, h] via its first K orders of Fourier

series as

f(d1, d2) ≈
K
∑

p,q=−K

αpq · eζpd1+ηqd2 (6)

where ζp = jp(2π/l), ηq = jq(2π/h) with j =
√
−1. The Fourier

coefficient αpq is derived by

αpq =
1

lh

∫ h

0

∫ l

0

e−ζpd1−ηqd2 · f(d1, d2)dd1dd2. (7)

Since the JPDF f(d1, d2) is zero outside the region [0, l; 0, h], Eq.(7)

can be simplified as

αpq =
1

lh
E[e−ζpD1−ηqD2 ]

=
1

lh
E[e

−ζp(d0+
∑

i
diXi+dN+1Xr)−ηq(e0+

∑

i
eiXi+eN+1Xr)

]

=
ec0,pq

lh
E[e

−

∑

i
ci,pqXi−cN+1,pqXr ] (8)

where c0,pq = ζpd0 + ηqe0, ci,pq = ζpdi + ηqei, and cN+1,pq =
ζpdN+1 + ηqeN+1. Since all Xi’s and Xr are independent, αpq can

be restated as

αpq =
ec0,pq

lh
E[e−cN+1,pqXr ]

N
∏

i=1

E[e−ci,pqXi ]. (9)
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As it can be seen in Eq.(9), we have to compute E[e−cX ] where c
is a constant and X is a random variable. By definition,

E[e−cX ] =

∫ ω

−ω

e−cxf(x)dx (10)

where f(x) is the PDF of X whose range is bounded by −ω ≤ Xi ≤
ω. (In reality, each variation source Xi does not vary from −∞ to

+∞ as Gaussian does.) Without loss of generality, we assume that

all variation sources are centered with zero mean (i.e., E[Xi] = 0).

So, we can approximate ex via the first M terms of its Maclaurin

series as

E[e−cX ] ≈
∫ ω

−ω

(

M
∑

n=0

(−cx)n

n!

)

· f(x)dx. (11)

With M = 3, E[e−cX ] can be approximated as

E[e−cX ] ≈
∫ ω

−ω

(

1 − cx +
c2x2

2
− c3x3

6

)

· f(x)dx

=

∫ ω

−ω

f(x)dx − c

∫ ω

−ω

xf(x)dx

+
c2

2

∫ ω

−ω

x2f(x)dx − c3

6

∫ ω

−ω

x3f(x)dx

= 1 − cE[X] +
c2

2
E[X2] − c3

6
E[X3]. (12)

Therefore, we can compute E[e−cX ] with only several moments

(E[Xn]) of X . For each variation source Xi, the three moments

(E[Xi], E[X2
i ], E[X3

i ]) are precomputed and saved in 2D-table.

In fact, it is not necessary to compute E[Xi] because its value is

always zero. Since the number of variation sources (N ) typically

ranges from 5 to 20, the table size is relatively small. Consequently,

the αpq computation requires only 2(N + 1) times of a small sized

2D-table lookup. In addition, the αpq computation can be done in a

constant time.

B. Complexity of JPDF computation

The complexity of JPDF computation depends on the number of

the Fourier coefficients, because computing all the Fourier coeffi-

cients means that JPDF computation has been done. The number of

the Fourier coefficients is determined by the order of Fourier series

to approximate JPDF (K) and the number of module patterns under

the consideration of performance yield computation. In practice, we

obtained good approximations of JPDF with K = 4. Since we have

to consider the delay distributions for module patterns, their JPDF

becomes L-dimensional function with L delay distributions for L
module patterns. (For example, when there are three module patterns,

their JPDF becomes 3-D function.) Thus, the JPDF computation

requires L-dimensional Fourier series. Moreover, the number of the

Fourier coefficients is bounded by (2K + 1)L. As indicated in

the prior section, the Fourier coefficient computation can be done

in a constant time. Thus, the complexity of JPDF computation is

bounded by O((2K + 1)L). Empirically, K = 4 is enough and L
typically ranges from 1 to 4 depending on hardware resource and

performance yield constraints. Since too many module patterns (i.e.,

L is large) significantly degrade the performance yield, we found that

our proposed JPDF computation method was durable and efficient in

almost all benchmark designs.

No

Yes

Is stopping criteria met?

Best solution found

Evaluate cost function

Compute performance yield

Generate an initial schedule and binding

(using the proposed technique)

Generate delay distributions of modules

(ii) Rebinding module patterns

Perform rescheduling (FDLS)

DFG and Resource library L

Build module pattern library M

(i) Determine #clocks for module patterns

Fig. 4. The flow of the simulated annealing based iterative improvement
HLS framework (HLS-FS).

V. SCHEDULING AND RESOURCE BINDING GUIDED BY

PERFORMANCE YIELD

This section describes when the performance yield computation

using the proposed technique takes place and where the computed

performance yields are used in the framework of HLS. In short,

our technique can be integrated into any iterative HLS algorithms.

Here, we introduce one typical (simulated annealing based) iterative

improvement HLS framework, called HLS-FS (HLS combined with

Fourier series based yield computation technique), whose overall

flow is shown in Fig. 4, to explain when the computation of yield

performance occurs and where the computed results are used.

The HLS framework (HLS-FS) in Fig. 4 accepts, as input, a

DFG, a library L of hardware modules to use, and the performance

yield bound to be satisfied, and generates, as output, a scheduled

and module bound DFG with the shortest latency while meeting the

performance yield constraint. First, a gate level SSTA is applied to

modules in L to produce the delay distributions of the modules in

the canonical form in Eq.(1). The next step is then to find sub-graphs

in the DFG and construct a module pattern library M. The module

patterns in M will be bound to the sub-graphs in the subsequent

steps.

An example of DFG and its module pattern library M are shown

in Fig. 5. Let us assume that either sub-graph op1 → op2 or sub-

graph op2 → op3 in the DFG can be implemented with module

pattern ml3. Hence, we include the module pattern to M for the two

sub-graphs. In this example, the number of modules on the critical

path of module pattern, defined as the length of the module pattern,

is at most 2. The module patterns with length = 1 (e.g., ml1 and ml2)

consist of single modules. Essentially, we do not examine all possible

sub-graphs in DFG, because a module pattern whose length is long

causes the performance yield to get down significantly. (Refer to the

analysis and experimental results in [11].) Moreover, it requires an
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Fig. 5. A simple DFG and the module patterns in library M.

excessive running time to extract all sub-graphs as the size of DFG

increases. In practice, we found that the longest lengths among the

module patterns for the best solutions are in the range [2, 4]. Thus, it

does make sense to consider only the module patterns whose lengths

are less than or equal to 4, which allows a huge saving of computation

time in extracting unnecessarily large sub-graphs and computing the

associated JPDF.

Then the next step is to perform one of two perturbation moves in

the simulated annealing process.

(i) Determining the number of clock steps for module patterns: Ac-

cording to the performance yield constraint and the delay distributions

of module patterns, the numbers of clock steps for executing the

module patterns should be determined. For example, suppose the

delay distribution of a multiplier module provides the information that

92% of the implementations of the multiplier in wafer can complete a

multiplication operation in 4 clock cycles and the remaining 8% needs

5 clock cycles to complete the operation. Then, if the performance

yield constraint is given to 90%, we may set the delay of the

multiplier module to 4 clock steps to improve the latency rather than

5 clock steps.

(ii) Rebinding module patterns: Since there are multiple module

patterns in M, we attempt to explore binding alternatives. For

example, two adder modules ADD1 and ADD2 in M have different

delay distributions, but the numbers of clock steps determined at (i)

for the adders are the same. Then, the selection of one adder from the

two adders to bind an addition operation in DFG does not affect the

latency, but affects the performance yield. If the performance yields

by ADD1 and ADD2 are both not less than the performance yield

constraint, it is better to choose the one that would lead to improve

the resulting performance yield. However, at this point we cannot

surely tell which binding is superior to the other. Consequently, it is

necessary to try all possible rebindings to find a best binding result.

By setting the number of clock steps of module patterns and/or

binding module patterns, the next step is to compute the performance

yield of the current scheduling and binding instance of DFG. In

this step, the JPDF of the module patterns used in the instance is

computed by using our proposed technique (in Section IV). Then, the

performance yield (in Section III) is computed. If the performance

yield does not meet the performance yield constraint, we perform the

rebinding step again.

The succeeding step is to perform rescheduling. We use the forced

directed list scheduling (FDLS) [12]. The acceptance/rejection of the

new scheduling solution is determined by the probability e−∆L/T

where ∆L = Lnew − Lbest. Lnew and Lbest represent the latency

of the new schedule and the latency of the best solution found so

far, respectively. T indicates the current temperature in the simulated

annealing. To speed up the overall process, we have adopted the fast

simulated annealing scheme in [13]. Finally, if the stopping criteria

is met, the best solution found so far is returned.

VI. EXPERIMENTAL RESULTS

Our timing variation-aware HLS system HLS-FS that combined

the Fourier series based performance yield computation method was

coded in C++ and the experiments were performed on a Linux

machine (Quad-Core Intel Xeon Processor@1.86GHz, 4GB RAM).

We have tested our system on the high-level synthesis benchmarks

in [14]. The tested designs are: Auto Regression Filter (ARF),

Elliptic Wave Filter (EWF), Finite Input Response Filter 1 (FIR1),

jpeg Inverse Discrete Cosine Transform (JIDCT), and jpeg Forward

Discrete Cosine Transform (JFDCT). Because the benchmarks do

not have any timing variation information, we assume each variation

source follows either a Gaussian distribution, a uniform distribution,

or a triangle distribution. To assess the accuracy of our technique, we

compare the synthesis results with those produced by an exhaustive

HLS optimization, which tries all possible schedulings and bindings,

and applies the Monte Carlo simulation for the JPDF computations.

TABLE I
COMPARISONS OF RESULTS PRODUCED BY THE EXHAUSTIVE

OPTIMIZATION HLS-MC USING MONTE CARLO SIMULATION AND

HLS-FS UNDER THE PERFORMANCE YIELD CONSTRAINT OF 95%.

Design HLS-MC (exhaustive) HLS-FS (ours)
(# of latency red- running latency red- running

operations) uction/yield time uction/yield time

Uniform variation sources
ARF(28) 22.5%/95.7% 8375s 21.0%/97.3% 0.3s

EWF(34) 21.7%/96.1% 5446s 20.5%/97.5% 0.1s

FIR1(44) 23.6%/95.9% 9573s 22.6%/96.8% 0.5s

JIDCT(122) 29.2%/95.5% 59304s 24.4%/96.6% 1.2s

JFDCT(134) 32.3%/95.2% 76884s 26.1%/96.2% 2.5s

Average 25.9%/95.7% 22.9%/96.9%

Triangle variation sources
ARF(28) 22.7%/96.3% 8078s 21.8%/97.7% 0.1s

EWF(34) 22.1%/96.3% 6827s 21.6%/97.9% 0.1s

FIR1(44) 24.7%/95.5% 15926s 23.6%/97.9% 1.3s

JIDCT(122) 31.0%/95.5% 80512s 25.7%/97.1% 2.3s

JFDCT(134) 32.4%/95.3% 83729s 26.3%/96.8% 2.5s

Average 26.6%/95.8% 23.8%/97.5%

Gaussian variation sources
ARF(28) 26.8%/96.0% 8683s 24.3%/96.5% 0.3s

EWF(34) 24.5%/96.4% 7470s 24.0%/96.5% 0.4s

FIR1(44) 28.0%/95.9% 12883s 25.0%/96.4% 1.6s

JIDCT(122) 31.5%/95.8% 67202s 27.3%/96.4% 2.6s

JFDCT(134) 34.4%/95.8% 74467s 28.0%/96.1% 3.5s

Average 29.0%/96.0% 25.7%/96.4%

Total Average 27.2%/95.8% 24.1%/96.9%

Table I shows the comparisons of results produced by the ex-

haustive HLS method, HLS-MC, which searches all schedulings and

bindings and uses Monte Carlo simulation of JPDF computation,

and HLS-FS under the performance yield constraint of 95%. The

latency reduction in the table represents the reduction of the latency
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over the latency used by a conventional HLS which uses the worst

case module delay in scheduling. (We used FDLS [12].) In compared

with the latency reduction by HLS-MC, HLS-FS is able to find near

optimal solutions with only 3.1% error of latency on average. In

addition, even under the non-Gaussian timing variations (i.e., uniform

or triangle variations) as well as the Gaussian variations, HLS-FS can

generate solutions with less than 1.1% error in the performance yield

computation. Nevertheless, HLS-FS saves a huge running time. This

clearly indicates that our HLS framework that uses the Fourier series

based yield computation method is very accurate and efficient.

TABLE II
COMPARISONS OF RESULTS PRODUCED BY THE EXHAUSTIVE

OPTIMIZATION HLS-MC USING MONTE CARLO SIMULATION AND

HLS-FS UNDER THE PERFORMANCE YIELD CONSTRAINT OF 90%.

Design HLS-MC (exhaustive) HLS-FS (ours)
(# of latency red- running latency red- running

operations) uction/yield time uction/yield time

Uniform variation sources
ARF(28) 27.3%/91.4% 41848s 26.1%/92.7% 1.9s

EWF(34) 25.6%/91.8% 30357s 24.8%/93.1% 2.6s

FIR1(44) 29.1%/91.5% 52479s 27.4%/92.3% 3.5s

JIDCT(122) 34.6%/91.2% 478850s 30.3%/92.5% 7.6s

JFDCT(134) 37.2%/90.5% 635293s 31.5%/91.2% 9.2s

Average 30.8%/91.3% 28.0%/92.4%

Triangle variation sources
ARF(28) 26.5%/91.8% 43214s 23.5%/93.1% 1.3s

EWF(34) 26.1%/91.8% 39347s 24.5%/93.6% 3.7s

FIR1(44) 29.0%/91.1% 47908s 27.9%/92.5% 3.9s

JIDCT(122) 36.2%/91.0% 420398s 31.6%/92.1% 8.1s

JFDCT(134) 37.7%/90.3% 685833s 32.5%/92.0% 8.2s

Average 31.1%/91.2% 28.0%/92.7%

Gaussian variation sources
ARF(28) 30.5%/91.6% 57127s 29.5%/92.7% 2.9s

EWF(34) 30.2%/91.8% 36345s 28.3%/93.0% 5.2s

FIR1(44) 31.3%/90.9% 76452s 30.8%/92.6% 6.9s

JIDCT(122) 36.8%/91.3% 475306s 31.3%/92.1% 7.1s

JFDCT(134) 38.3%/90.7% 678769s 32.0%/91.8% 9.4s

Average 33.4%/91.3% 30.4%/92.4%

Total Average 31.8%/91.2% 28.8%/92.5%

Table II shows other comparisons under the performance yield

constraint of 90%. By relaxing the yield constraint from 95% to

90%, the search spaces of rescheduling and rebinding alternatives by

HLS-MC and HLS-FS are increased. As shown in the table, HLS-

MC failed in finding some solutions because of the explosive growth

of the search space. However, HLS-FS is still able to find accurate

solution quickly, reducing the latency by 28.8%.

Finally, Table III shows comparison results produced by the

previous timing variation-aware HLS-tv in [11] that uses a discrete

delay modeling and does not consider the correlation of module

patterns, and HLS-FS under the performance yield constraint of

90%. As shown in Table III, HLS-FS outperforms HLS-tv on all

tested benchmarks. As we expected, HLS-FS is able to reduce the

latency by 7% further while achieving better performance yield than

that by HLS-tv. This clearly reveals that the accurate computation

of performance yield is very important in the timing variation-aware

HLS and HLS-FS does the right thing in terms of accuracy and

efficiency.

VII. CONCLUSION

In this paper, we presented a solution to the fundamental problems

of timing variation-aware high-level synthesis (HLS) namely, sup-

porting (i) non-Gaussian delay distributions of functional modules

and connected sets of modules and (ii) correlation of timing vari-

ation among the modules and connected sets of modules. Without

considering (i) and (ii) in the framework of variation-aware HLS,

the synthesis results would be far less accurate in timing, failing in

timing closure. It should be noted that even there are advances in the

logic level for SSTAs that support (i) and (ii), the manipulation and

computation of (i) and (ii) in the course of scheduling and binding

in HLS are unique in that there are no concepts of module sharing

and performance yield computation in the logic level.

TABLE III
COMPARISONS OF RESULTS PRODUCED BY THE PREVIOUS

VARIATION-AWARE HLS-tv [11] AND HLS-FS UNDER THE PERFORMANCE

YIELD CONSTRAINT OF 90%.

Design HLS-tv [11] HLS-FS
(# of latency red- running latency red- running

operations) uction/yield time uction/yield time

Uniform variation sources
ARF(28) 18.8%/92.4% 2045s 26.1%/92.7% 1.9s

EWF(34) 18.4%/92.5% 338s 24.8%/93.1% 2.6s

FIR1(44) 19.0%/91.9% 4873s 27.4%/92.3% 3.5s

JIDCT(122) 21.3%/91.7% 6236s 30.3%/92.5% 7.6s

JFDCT(134) 24.6%/91.6% 6645s 31.5%/91.2% 9.2s

Average 20.4%/92.0% 28.0%/92.4%

Triangle variation sources
ARF(28) 20.5%/92.5% 3718s 23.5%/93.1% 1.3s

EWF(34) 21.0%/92.7% 349s 24.5%/93.6% 3.7s

FIR1(44) 22.4%/92.0% 4929s 27.9%/92.5% 3.9s

JIDCT(122) 23.4%/91.3% 6650s 31.6%/92.1% 8.1s

JFDCT(134) 24.8%/91.2% 7685s 32.5%/92.0% 8.2s

Average 22.4%/91.9% 28.0%/92.7%

Gaussian variation sources
ARF(28) 21.7%/92.6% 1574s 29.5%/92.7% 2.9s

EWF(34) 19.0%/93.0% 368s 28.3%/93.0% 5.2s

FIR1(44) 22.3%/92.1% 4683s 30.8%/92.6% 6.9s

JIDCT(122) 24.8%/92.0% 6509s 31.3%/92.1% 7.1s

JFDCT(134) 25.1%/91.0% 6535s 32.0%/91.8% 9.4s

Average 22.6%/92.1% 30.4%/92.4%

Total Average 21.8%/92.0% 28.8%/92.5%
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