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Abstract— With the increasing importance of run-time leakage
power dissipation (around 55% of total power), it has become
necessary to accurately estimate it not only as a function of
input vectors but also as a function of process parameters.
Leakage power corresponding to the maximum vector presents
itself as a higher bound for run-time leakage and is a measure
of reliability. In this work, we address the problem of accurately
estimating the probabilistic distribution of the maximum run-
time leakage power in the presence of variations in process
parameters such as threshold voltage, critical dimensions and
doping concentration. Both sub-threshold and gate leakage
current are considered. A heuristic approach is proposed to
determine the vector that causes the maximum leakage power
under the influence of random process variations. This vector
is then used to estimate the lognormal distribution of the total
leakage current of the circuit by summing up the lognormal
leakage current distributions of the individual standard cells
at their respective input levels. The proposed method has been
effective in accurately estimating the leakage mean, standard
deviation and probability density function (PDF) of ISCAS-
85 benchmark circuits. The average errors of our method
compared with near exhaustive random vector testing for mean
and standard deviation are 1.32% and 1.41% respectively.

I. INTRODUCTION

Technology scaling into the deep nanometer geometries has

seen an increase in process variability due to lithographic

inaccuracies and this problem magnifies with every gener-

ation. Though the advantages of scaling are evident and it

is necessary to continue with this trend, it is also important

to consider variability data in order to make accurate esti-

mations of performance measures. It has become highly im-

portant to accurately estimate performance measures such as

timing, leakage power and noise in the design phase itself in

order to increase the parametric yield after fabrication. It has

been shown that a 30% variation in circuit frequency induced

by parameter variations can result in nearly 20X variation in

leakage power [1]. Variations in process parameters such as

channel length (Lch), threshold voltage (Vth), channel doping

concentration (Nch), gate oxide thickness (Tox) and gate width

(Wgate) are the major contributors to variability in timing and

leakage power. It has also been shown that this dependence

on process parameters is linear in the case of timing [2] and

exponential in the case of leakage power [3].

Substantial work has been done in the area of analy-

sis, estimation and optimization of statistical static timing

[2],[4],[5],[6],[7],[8] but statistical leakage power measure-

ment and optimization is still emerging [3],[9],[10],[11].

Moreover, statistical leakage power estimation has become

increasingly important because of the exponential depen-

dence of leakage on several process parameters. The tradi-

tional methods of leakage power estimation, such as nominal

analysis, underestimate leakage power by a large margin

whereas corner analysis, on the other hand, overestimates

leakage power dissipation. As a result of under-estimation,

there may be a failure in meeting the power yield and this

may also cause reliability issues in chips that do meet the

power yield during their life span. Over-estimation on the

other hand may result in designing unnecessary guard bands

and failure to meet timing specifications [12]. Therefore, it

is extremely important to accurately estimate leakage power

as a function of process variations.

The terms leakage power and leakage current are synony-

mously used in this paper since leakage power is the product

of leakage current which is the variable term and the supply

voltage which is treated as a constant in this work. Leakage

current comprises of several components [13] of which sub-

threshold and gate leakage are the prominent ones [14]. With

leakage power contributing more than 55% of the total power

in present day technologies (32nm and beyond) and this

trend being predicted to only increase in future technologies

[15],[16], accurate estimation methods considering all the

important types of leakage has become a necessity.

A chip can settle in an idle state for a considerable amount of

time or can enter stand-by mode several times during its life-

span. It enters an idle state or stand-by mode with a different

set of input vectors each time. In this scenario, it is not

assured that the leakage power specifications are met each

time. Excessive leakage power dissipation for a long period

of time results in a drastic increase in the thermal profile of

most chips during their operation and makes them susceptible

to failure. Maximum leakage power estimation provides an

upper bound and guarantees that the design constraints are

met irrespective of the circuit input state [17]. Maximum

leakage can also be used to find hot-spots in a physical

design. It can also be used to estimate the worst case battery

life of a portable device [17].

Traditionally, leakage power was considered important only

in the stand-by mode whereas dynamic power was consid-

ered important in the active mode of operation. But, due

to the shrinking physical dimensions, the contribution of

dynamic power to the total power has reduced with the
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growth of leakage power [18]. With its increasing impor-

tance, leakage contribution during run-time has become a

deciding factor to determine the maximum power bound

for reliability of a chip and as a measure of its ever

increasing thermal profile. This leakage power is called run-

time leakage [19] and is becoming as important as dynamic

power dissipation [20]. Runtime leakage is vector dependent

and changes each time the input vector changes. It has been

well established that the maximum leakage of a circuit can

be greater by a few orders of magnitude than the minimum

leakage and is dependent on the input vectors associated with

them [21]. But, this dependence of maximum leakage power

on input vectors alone is not correct anymore. In the presence

of variability, the input vectors that cause the maximum

or the minimum leakage current changes. Hence, maximum

leakage now depends not only on the input vectors but also

on process parameter variations.

Though some work has been done in the area of statistical

leakage power estimation [3],[9],[10],[11], no methods have

been proposed so far to estimate the run-time maximum

leakage power distribution as a function of both process

variations and input vectors. The work presented in this paper

addresses this problem and gives an approach to accurately

estimate it. This method can also be extended to determine

the minimum leakage vector which can be used as a sleep

vector in standby mode.

II. MOTIVATION: DEPENDENCE OF LEAKAGE ON

INPUTS IN THE PRESENCE OF VARIATIONS

Consider a CMOS inverter in 32nm technology, with nominal

values of process parameters given by Table I [22]. This

inverter has maximum leakage current when input state is ‘0’.

However, when process parameters are changed to PMOS Lch

= 1.837λ and NMOS Lch = 1.985λ with other parameters at

their nominal values, the maximum leakage inducing input

is ‘1’. In fact, when 500 Monte Carlo simulations vary

the process parameters around their nominal values with

variability given by Table II [15], we observe that the mean

leakage when the input vector is ‘1’ is far greater than the

mean leakage when the input is ‘0’. In fact, the mean leakage

for input ‘1’ is almost double when compared to the mean

leakage for input ‘0’. The reason for the inverter to change

its maximum leakage state is because the Isub of PMOS in its

OFF state (input ‘1’) exceeds that of NMOS in its OFF state

(input ‘0’) when the channel length of PMOS is less than

the NMOS channel length. This is because of the increased

sensitivity of PMOS sub-threshold current to channel length

variations as compared to NMOS [23].

This example can be extended to a simple combinational

circuit as shown in Figure 1. In the absence of process

variations, the maximum leakage state for this circuit is

‘01’ whereas in the presence of variations, Monte Carlo

simulations show that the input state for maximum leakage

changes to ‘11’. This change in input vector changes the total

leakage from INV (0) + INV (1) + AND (101) to 2*INV

(1) + AND (001). Our experiments have shown that, for

Fig. 1. Example Circuit

TABLE I

NOMINAL VALUES OF PROCESS PARAMETERS IN 32NM TECHNOLOGY

Process Parameters Nominal Values

NMOS Lch 32nm (2λ )

PMOS Lch 32nm (2λ )

NMOS Wgate 112nm (7λ )

PMOS Wgate 224nm (14λ )

NMOS Toxe 1.65nm

PMOS Toxe 1.75nm

NMOS Vth 0.5088V

PMOS Vth 0.4500V

NMOS Nch 4.12e+18

PMOS Nch 3.07e+18

larger cells, the maximum leakage vector differs from the one

calculated using the conventional method in cases where the

effects of process variations dominate the bias voltage effects

or where there is increased sensitivity to a process parameter.

This shows that the maximum leakage inducing input vector

is highly dependent on the specific values of process parame-

ters. In this paper, we are interested in finding the maximum

leakage inducing vector in the presence of such process

variations and use this vector to estimate the maximum

leakage power distribution.

III. LEAKAGE POWER DEPENDENCE ON

PROCESS PARAMETERS

Two components dominate leakage - sub-threshold (Isub) and

gate leakage (Igate) currents. Sub-threshold leakage is the

most dominant leakage mechanism occurring in the OFF

state of a transistor and gate leakage is the most dominant

leakage mechanism in its ON state [24]. Considering both

these types of leakage and the interactions between them,

the total leakage of a circuit can be approximated using (1).

Itotal = Isub + Igate (1)

Isub and Igate vary with variation in process parameters such

as channel length (Lch), threshold voltage (Vth), channel

doping concentration (Nch), gate oxide thickness (Tox) and

gate width (Wgate). The equation for sub-threshold leakage

current is given by (2) [24]. The threshold voltage is given

by (3) and the dependence of L on Vth is given by (4) [11].

For definition of variables refer [24].

Isub = I0 exp

(

Vgs −Vth

ηVt

)[

1− exp

(

−Vds

Vt

)]

(2)

Vth = V f b +
∣

∣2φp

∣

∣+
λb

Cox

√

2qNchεs(
∣

∣2φp

∣

∣+Vsb)−λdVds (3)

452



TABLE II

VARIABILITY DATA FOR 32NM TECHNOLOGY

Process Parameters Variability

Critical Dimensions (Lch, Wgate, Tox) 12%

Threshold Voltage (Vth) (Including doping variability) 58%

Vth,i = Vth0 + 0.05−Vdd e−δLe,i (4)

The equation for gate leakage current is given by (5) [16].

Igate = WAg

(

Vdd

Tox

)2 [

exp

(

−Bb

Tox

Vdd

)]

(5)

500 Monte Carlo simulations performed on an example

ISCAS-85 benchmark circuit, C1355 with 546 gates (32nm

technology using predictive models [22]) is shown in Fig-

ure 2. The nominal values for the process parameters that

were varied are given by Table I. Typical variation data is

shown in Table II [15]. Such significant variations in process

parameters will induce large variations in performance and

power.

It was observed in our experiments that, the mean of the

distribution is almost four times the nominal value for

leakage current in the case of this benchmark circuit. When

the parameters were individually varied in hspice and Monte

Carlo simulations were performed, it was observed that the

leakage current of this circuit was dependent on the process

parameters given by the relationships (6) and (7). This agrees

with the analytical expressions and previous work in [3],[9]-

[11].

Isub ∝
1

eLch
, Isub ∝

1

eVth
, Isub ∝

1

Nch

, Isub ∝ W (6)

Igate ∝
1

Tox
2
, Igate ∝ W (7)

Due to the dependence of leakage current represented by

equations (6),(7), leakage current can no longer be repre-

sented by a single nominal or a corner case value. It is in fact

a log-normal probabilistic distribution with mean µ which is

significantly greater than the nominal value and has standard

deviation D [3].

IV. MAXIMUM LEAKAGE VECTOR IN THE

PRESENCE OF PROCESS VARIATIONS

Exact determination of the input vector that induces max-

imum (or minimum) leakage requires exhaustive simula-

tions with all input vectors. Several approaches have been

proposed to estimate this vector with reduced complexity

focusing on sleep vectors for leakage minimization in stand-

by mode [25], [26], [17]. Rao et al. [27] proposed an

approach where the minimum (or maximum) leakage vector

is determined by taking cell functionalities into account but

the effects of process variations were not considered. This

technique cannot be used in the presence of process varia-

tions, as demonstrated in Section II. In this work, we propose

Fig. 2. Leakage power distribution - C1355

Fig. 3. Illustrative example

a heuristic to accurately estimate the maximum leakage

vector considering both cell functionalities as well as process

variations. The vector thus obtained is then used to determine

the maximum sum leakage distribution of a circuit. This

method can also be modified to find the minimum leakage

vector and hence the minimum sum leakage distribution.

Below, we adapt some of the definitions Rao et al. provided

in [27] to accommodate process variations. The definitions

are also supported by an illustrative example given by Figure

3. Only the most dominant leakage state is considered for

the purposes of illustration as opposed to the implemented

algorithm which considers the top two maximum leakage

states. This was done to keep the illustration simple. The

notations used in the illustration are given by Table III.

A. Definitions

It is assumed that the circuit under consideration can be

decomposed into standard cells. A graph is constructed with

cells as the nodes and nets as the edges. The leakage value

associated with each state of a standard cell is calculated as a

weighted sum of the mean leakage current and the standard

deviation of that particular state as given by (8). The mean

and standard deviation are determined by performing 500

Monte Carlo simulations by varying the process parameters

as shown in Tables I and II for each input combination for

each cell. The mean and standard deviation of leakage for

an inverter and a two input OR gate are given by Table IV.

It is seen in Figure 2 that the probability density function

of a circuit has an increased average leakage value given by

its mean and a spread represented by the standard deviation.

When λ is chosen to be equal to 1, the heuristic chooses
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TABLE III

NOTATIONS

Symbol State

0 State ‘0’

1 State ‘1’

X Don’t Care

C Conflict between ‘0’ and ‘1’

TABLE IV

LEAKAGE MEAN AND STANDARD DEVIATION OF STANDARD CELLS

Cell Mean (10−7) Standard Deviation (10−7)

INV (Input ‘0’) 2.25 5.26

INV (Input ‘1’) 4.62 12.46

OR2 (Input ‘00’) 7.79 14.41

OR2 (Input ‘01’) 5.00 7.65

OR2 (Input ‘10’) 2.52 4.54

OR2 (Input ‘11’) 2.03 4.36

cells with greater mean values but completely ignores the

standard deviation and hence the spread of the leakage

profile. When λ is chosen to be equal to zero, the mean

leakage value is completely ignored and the heuristic chooses

cells with greater spread. This could result in choosing cells

with smaller means. Hence, λ is chosen to be 0.5 in our

experiments to give equal importance to both leakage mean

and standard deviation.

Pi = λ µi +(1−λ )Di (8)

where, Pi is the probabilistic cell leakage in input state i,

µi is the mean leakage of the cell in input state i,

Di is the standard deviation of leakage in input state i,

λ , the weighting factor is a real number and λ ∈ [0,1]

Node Controllability: The controllability of a node in a

circuit is defined as the minimum number of inputs that

have to be assigned to specific values in order to force the

node output to a specific state. Every node is assigned two

values, CC0 (controllability to force the cell output to 0)

and CC1 (controllability to force the cell output to 1).

Controllability List: The constraints imposed on the pri-

mary input vector in order to force a node output to a specific

state is defined as the controllability list. The two constraint

lists associated with every node output is CC0 list and CC1

list.

For example in Figure 3, CC0 list of N3 would require

either N1, N2 or PI2 to be ‘0’. We choose the net which

has the least fanout. In case of equal fanout nodes, we

pick a net randomly and set it to ‘0’. In this example

we have chosen N1=0 which requires PI=1 and PI2=X

and PI3=X on the primary input lines. Table V gives the

CC0 and CC1 lists for all internal nets in the example circuit.

Probabilistic Worst Input Condition (PWIC): The worst

input condition for a cell represents the minimum number of

primary inputs and their specific values that force the cell to

its highest leakage in the presence of process variations.

TABLE V

DETERMINATION OF CCO, CC1, CC0 LIST AND CC1 LIST

Net CC0 list - PI1 PI2 PI3 (CC0) CC1 list - PI1 PI2 PI3 (CC1)

N1 1XX (1) 0XX (1)

N2 X1X (1) X0X (1)

N3 1XX (1) 0CX (C)

N4 XX0 (1) XX1 (1)

TABLE VI

DETERMINATION OF PWIC

Cell PWIC1

INV-1 1XX

INV-2 X1X

AND3 0CX

BUF XX1

OR2 1X0

It was observed in our experiments that every gate has two

dominant worst leakage states. The remaining states dissipate

far less leakage compared to these two dominant states. It

was also observed that when the top two worst leakage

states were considered the accuracy of the algorithm was

improved. Hence, we define Worst Input Conditions, PWIC1

and PWIC2 where PWIC1 yields the worst value for leakage

and PWIC2 yields the second worst value.

For example, in the case of cell OR2, PWIC1=00 and

PWIC2=01. To force the inputs of OR2 to PWIC1, N3 and

N4 must be forced to ‘0’. This translates to CC0 of N3 &

CC0 of N4 which is equal to 1XX & XX0 = 1X0. Table VI

gives the PWIC1 constraints for all the cells in the example

circuit.

Probabilistic Worst Leakage Advantage (PWLA): If the

PWIC of a cell cannot be satisfied, the cell may settle into

one of its low leakage states. The increase in leakage when

a cell is forced to its PWIC can be quantified by a metric

called Probabilistic Worst Leakage Advantage. PWLA is

given by the difference in the leakage of the worst leakage

state and the average of the low leakage states and can be

represented using (9). Since we have chosen two dominant

PWICs, we define PWLAs associated with each of them.

Table VII shows the PWLAs for the standard cells in the

illustration.

PWLA = PPWIC −AVG(PPLLS) (9)

where, PPWIC is the probabilistic cell leakage in PWIC,

PPLLS is the probabilistic cell leakage of low leakage states.

For example, in the case of cell OR2,

PWLA1 = P00 −0.5(P11 + P10)

PWLA2 = P01 −0.5(P11 + P10)

where, Pi j is the probabilistic leakage when the cell is in

state i j.

Conflicting and Dominated Cells: When the PWIC of a

cell is satisfied, it will result in certain nodes in the circuit

being forced to particular states because of the way the gates
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TABLE VII

DETERMINATION OF PWLA

Cell PWLA1 (10−6)

INV-1 0.957

INV-2 0.957

AND3 1.363

BUF 1.028

OR2 1.549

TABLE VIII

CONFLICTING AND DOMINATED CELLS

Cell Conflicting Cells Dominated Cells Infeasible?

INV-1 AND3 - NO

INV-2 - - NO

AND3 INV-1, OR2 - YES

BUF OR2 - NO

OR2 AND3, BUF INV-1 NO

function. Cells Ci and C j are said to be conflicting cells

if they have opposing requirements for primary input Pm.

Cell Ci is said to dominate cell Ck if the input requirements

for Ck to be in its worst input state is a subset of that

required for cell Ci to be in its worst input state. Table VIII

shows the conflicting and dominated cells for the illustrative

example. For example, OR2 and BUF in the illustration

are conflicting cells because BUF requires PI3=1 to force

it to its PWIC while OR2 requires PI3=0 to force it to its

PWIC. On the other hand OR2 dominates INV-1 because

satisfying PWIC1 of OR2 (1X0) would also mean satisfying

the PWIC1 of INV-1 (1XX).

Cost Function: When the PWIC of a cell is satisfied, the

PWICs of its conflicting cells are violated, while the PWICs

of its dominated cells are satisfied. Therefore, the cost of

satisfying the PWIC of a cell Ci is calculated as given

by Cost(Ci). As a special case, costs of cells which have

infeasible requirements for a primary input are assigned a

large negative value, as they can never be forced to their

PWIC. The costs of the standard cells in the illustration is

given by Table IX.

Cost(Ci) = PWLA(Ci)+∑(PW LA(DominatedCells(Ci)))

− ∑(PWLA(Con f lictingCells(Ci)))

For example, Cost(BUF) = PWLA(BUF)-PWLA(OR2). The

costs associated with both the PWICs are calculated in our

method.

B. Heuristic to Determine the Maximum Leakage Vector

This section gives the outline of HeuristicMax, the heuristic

proposed to determine the maximum leakage vector in the

presence of process variations. The heuristic is given by

Algorithm-1.

The complexity of determining the controllability and con-

trollability lists in HeuristicMax was reduced by sorting the

nets in the increasing order of its depth. A cell in the higher

level was processed only after processing all the cells in

the lower levels. By sorting, the need to back traverse all

Algorithm HeuristicMax( Circuit Graph )

Input: CMOS circuit represented by a graph

with cells as nodes and nets as edges

Output: Primary input vector for maximum leakage

in the presence of process variations

Variables: Cells[cells], Nets[nets], Inputs[PI]

forall Nets do
Sort in increasing order of depth from the primary

inputs;
end

for i=1 to nets do
Determine CC0 and CC1 lists;

end

for i=1 to cells do
Generate PWICs;

Compute PWLAs using table lookup;
end

for i=1 to cells do
Generate conflicting cell list;

Generate dominated cell list;
end

Make all primary inputs undefined;

Create a cell list with all cells;

while (cell list is not empty) and (primary inputs

undefined) do
Compute cost functions;

Assign a large negative value to the cost of cells

with infeasible inputs;

Satisfy the input constraint of the cell with the

highest cost;

Remove the selected cell and its dominated cells

from the cell list;

Remove the conflicting cells from the cell list and

push them to a violated cell list;

Update conflicting and dominated cell lists for the

remaining cells in the cell list;
end

for i=1 to PI do

if Inputs(i) = X then
Determine Leakage(1) = Total leakage

contributed by cells with unsatisfied PWIC

when Inputs(i)=1;

Determine Leakage(0) = Total leakage

contributed by cells with unsatisfied PWIC

when Inputs(i)=0;

if Leakage(1) > Leakage(0) then
Inputs(i) = 1;

else
Inputs(i) = 0;

end

end

end
Algorithm 1: Algorithm HeuristicMax
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TABLE IX

DETERMINATION OF CELL COST

Cell Cost (µA)

INV-1 -0.406

INV-2 0.957

AND3 LARGE NEG

BUF -0.520

OR2 0.114

TABLE X

UPDATED VALUES

Cell Conflicting Cells Dominated Cells Cost

INV-1 AND3 - -0.406µ
AND3 INV-1, OR - LARGE NEG

BUF OR - -0.520µ
OR2 AND3, BUF INV-1 0.114µ

the way to the primary inputs was eliminated and hence the

complexity was reduced.

In the illustrative example, INV-2 is selected and its input

constraint - X1X is satisfied in the first iteration. The

conflicting and dominated cell lists are updated and the new

costs are determined for the remaining cells as given by

Table X. In the second iteration OR2 is selected and its input

constraint - 1X0 is satisfied which finally defines the primary

inputs as 110.

V. ESTIMATION OF TOTAL LEAKAGE CURRENT

DISTRIBUTION

The leakage current distribution of a standard cell in state i

can be represented by a log-normal distribution with mean

µi and standard deviation Di. This distribution has a corre-

sponding normal distribution having mean mi and standard

deviation σi obtained by taking the natural logarithm of all

the points in the log-normal distribution [28].

A. Sum of Log-normals

A standard cell in state i with Gaussian mean mi and Gaus-

sian standard deviation σi, has probability density function

represented by (10).

f (x) =
1

xσi

√
2Π

e

(ln(x)−mi)
2

−2σi
2

(10)

Given the probability density function of all the standard

cells, we can determine the total leakage power distribution

of a circuit. In theory, the sum of log-normals is not known

to have a closed form. An approximation of the same can be

made using the Fenton-Wilkinson’s method of estimating the

sum of several log-normal distributions [28]. Given f(x) of all

the standard cells in the circuit, the sum leakage distribution

is given by equating the first two moments, α1 and α2.

Equation (11) gives the relationship between α1, α2, mi

and σi. Equations (12)-(13) give the relationship between

µi, Di, mi and σi. The mean µ and variance D2 of the

sum log-normal distribution are given by (14)-(15) and the

distribution function is given by (16).

α1 = emi eσi
2/2, α2 = e2mie2σi

2

(11)

µi = α1 = emi eσi
2/2 (12)

Di
2 = α2−α12 = e2mieσi

2

(eσi
2

−1) (13)

µ = µ1 + µ2 + ...+ µi + ...+ µn (14)

D2 = D1
2 + D2

2 + ...+ Di
2 + ...+ Dn

2 (15)

f (x) =
1

xσ
√

2Π
e

(ln(x)−m)2

−2σ2 (16)

B. Overall Approach

1. Calculate the maximum leakage vector using the heuristic

described in Section IV.B.

2. Set the primary inputs of the circuit to the maximum

leakage vector.

3. Forward-propagate the primary inputs and define the

input states of all the gates in the circuit.

4. Estimate the probabilistic leakage distribution

corresponding to the maximum vector using the method

described in Section V.A.

VI. RESULTS

The approach described in this paper was implemented using

C++ and was tested on ISCAS-85 benchmark circuits using

predictive models for 32nm technology [22]. The nominal

values for the process parameters that were varied are given

by Table I. Typical variation data is shown in Table II. Vdd

for 32nm technology is 0.9V. The cells were characterized

using 500 Monte Carlo simulations in hspice.

A. Leakage Power Distribution Corresponding to the Maxi-

mum Leakage Vector in the Presence of Variations

This sub-section gives the results for the heuristic imple-

mented to determine the leakage power distribution corre-

sponding to the maximum leakage vector in the presence of

process parameter variations. The results are given by Table

XI. This method was compared against random vector testing

using 100,000 random vectors except for C17 which has 5

primary inputs, was exhaustively tested with 25 input vectors.

The average error for mean leakage current and standard

deviation was found to be 1.32% and 1.41% respectively.

Only the smaller benchmarks were verified against Monte

Carlo simulations using 100 random vectors due to the

large run-time of Monte Carlo simulations. The results are

shown in Table XII. In the presence of process parameter

variations, the mean leakage was several times larger than

the nominal analysis as expected. The comparison results

are given in Table XIII. The mean leakage power obtained

using our method was on an average 3.4X greater than the

leakage current obtained using the method in [27]. It was

observed that when the top two worst leakage states were

considered instead of one worst leakage state, the accuracy
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TABLE XI

COMPARISON OF MEAN AND STANDARD DEVIATION OBTAINED USING

OUR HEURISTIC (H) WITH RANDOM VECTOR TESTING (R)

Bench- H µ R µ Error H D R D Error

mark (µA) (µA) (%) (10−5) (10−5) (%)

C17 2.4 2.4 0.0 0.27 0.27 0.0

C432 65.8 70.5 6.6 1.28 1.38 7.2

C499 123.3 127.5 3.3 1.52 1.60 5.0

C880 144.6 154.7 6.5 1.77 1.85 4.5

C1908 320.4 325.9 1.7 3.01 3.01 0.0

C2670 530.2 526.0 -0.1 3.46 3.50 1.3

C3540 709.7 731.3 2.9 4.14 4.21 1.6

C5315 997.9 979.1 -1.9 4.87 4.79 -1.7

C6288 653.2 642.2 -1.7 2.84 2.82 -0.1

C7552 1451.9 1394.4 -4.1 6.02 5.80 -3.7

Average - - 1.32 - - 1.41

TABLE XII

COMPARISON OF HEURISTIC MEAN WITH MONTE CARLO MEAN

Benchmark H µ(µA) MC µ(µA) Error(%) Runtime Saving(X)

C17 2.4 2.4 0.0 30,965

C432 65.8 66.5 1.1 59,520

C499 123.3 125.2 1.5 195,818

C880 144.6 148.5 2.6 337,042

of the algorithm improved on an average by 3.2% for mean

and 2.7% for standard deviation.

B. Pessimistic Approach

A pessimistic approach was also implemented in which the

maximum sampled value from the Monte Carlo simulations

was used to calculate the maximum bound on leakage rather

than the mean and standard deviation of the leakage profile.

The results obtained using this approach are given by Table

XIV and the comparison between the pessimistic approach

and the algorithm in [27] is given by Table XV.

C. Maximum Leakage Vector in the Presence of Variations

The maximum input vector obtained using the approach in

[27] was used to calculate the leakage of the benchmark

circuits in the presence of parameter variations. This leakage

current was compared with the leakage current obtained

using the vector computed by our heuristic which considers

the effect of variations. The comparison results are given by

Table XVI. The average error in the mean leakage current

was found to be 7.7% when parameter variations were not

considered for the determination of maximum leakage vector.

D. Complexity and Usage

The implemented heuristic is quadratic in complexity. Leak-

age estimation using exhaustive hspice Monte Carlo simu-

lations to determine the maximum leakage vector and the

leakage power associated with it takes a few hours to days

depending on the number of random vectors considered and

the size of the benchmarks. Our method can estimate the

same with less than 1.5% error in a matter of few seconds or

a few minutes depending on the size of the benchmark. The

runtime savings when compared to Monte Carlo simulations

with a sweep value of 500 for 100 random vectors is given

TABLE XIII

COMPARISON OF MEAN OBTAINED USING OUR APPROACH (H) WITH THE

LEAKAGE CURRENT OBTAINED USING [27]

Benchmark Gates PIs [27] (µA) H µ (µA) Increase

C17 6 5 0.57 2.4 4.20X

C432 160 36 19.64 65.8 3.35X

C499 202 41 38.55 123.3 3.19X

C880 383 60 44.43 144.6 3.25X

C1908 880 33 97.60 320.4 3.28X

C2670 1193 233 163.96 530.2 3.23X

C3540 1669 50 215.07 709.7 3.30X

C5315 2307 178 297.79 997.9 3.35X

C6288 2416 32 225.36 653.2 2.90X

C7552 3512 207 431.21 1451.9 3.37X

TABLE XIV

COMPARISON OF MAXIMUM LEAKAGE OBTAINED USING THE

PESSIMISTIC APPROACH WITH RANDOM VECTOR TESTING

Benchmark Heuristic Max(mA) Random Max(mA) Error(%)

C17 0.065 0.068 4.4

C432 1.743 1.718 -1.4

C499 4.285 4.287 0.1

C880 4.380 4.562 3.9

C1908 10.114 10.590 4.5

C2670 17.568 18.128 3.1

C3540 22.387 21.152 -5.8

C5315 31.379 31.139 -0.1

C6288 15.915 15.361 -3.6

C7552 46.334 45.898 -0.1

by Table XII. The CPU runtime of the overall approach is

given by Table XVI.

HeuristicMax accepts an RTL description of the CMOS

circuit. It is assumed that all the cells in the standard cell

library have been pre-characterized for leakage mean and

standard deviation using Monte Carlo hspice simulations

and are available to HeuristicMax in a look up table. The

pre-characterization is a one time effort. The value of λ is

specified by the user. Using these inputs, HeuristicMax de-

termines the maximum leakage vector and the leakage power

associated with it. It can easily be used to accurately estimate

the maximum leakage power of large circuits because of its

small runtime when compared to the large run-time of Monte

Carlo simulations.

E. Determination of Minimum Leakage Power Vector

HeuristicMax can be modified to determine the minimum

leakage vector in the presence of process variations. In

this modified approach, a probabilistic best input condition

(PBIC) is defined. PBIC puts the standard cell into its

least leakage state. The penalty for a cell for not settling

into its PBIC,is defined as probabilistic cell leakage penalty

(PCLP), given by the difference in the average of the high

leakage states and the average of the low leakage states.

Conflicting and dominated cells are defined in a similar

way as HeuristicMax, but with reference to the PBIC. The

calculation of costs is also similar to HeuristicMax but

involves the usage of PCLP instead of the PWLA. The

modified heuristic to determine the minimum leakage vector

tries to minimize the cost penalty and hence finds the leakage

vector corresponding to the minimum leakage power.
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TABLE XV

COMPARISON OF LEAKAGE OBTAINED BY THE PESSIMISTIC APPROACH

(P) WITH LEAKAGE OBTAINED BY [27]

Benchmark Gates # PIs [27] (µA) P (µA) Increase

C17 6 5 0.569 64.7 113.7X

C432 160 36 19.643 1742.8 88.7X

C499 202 41 38.554 4284.7 111.1X

C880 383 60 44.437 4380.0 98.6X

C1908 880 33 97.607 10114.3 103.6X

C2670 1193 233 163.965 17568.0 107.2X

C3540 1669 50 215.071 22387.1 104.1X

C5315 2307 178 297.791 31378.8 105.4X

C6288 2416 32 225.360 15915.1 70.7X

C7552 3512 207 431.215 46334.1 107.4X

TABLE XVI

COMPARISON OF LEAKAGE MEANS USING THE MAX VECTOR OBTAINED

BY OUR APPROACH (H) WITH THE MAX VECTOR OBTAINED BY [27]

Benchmark H µ (µA) [28] µ (µA) (%) Error Runtime (s)

C17 2.40 2.20 9.1 0.44

C432 65.80 63.75 3.2 8.37

C499 123.33 114.69 7.5 14.29

C880 144.57 133.72 8.1 59.94

C1908 320.40 297.16 7.8 184.54

C2670 530.23 498.42 6.4 2363.53

C3540 709.73 641.03 10.7 983.59

C5315 997.96 923.39 8.1 6022.29

C6288 653.28 601.64 8.6 1522.49

C7552 1451.9 1341.3 8.3 16283.24

Average - - 7.77 -

VII. CONCLUSION AND FUTURE WORK

In this work, we have developed a heuristic to accurately

estimate the maximum run-time leakage power bound as a

function of both the input vectors and variations in process

parameters. The implemented method has been effective in

accurately estimating the PDF, mean and standard devia-

tion of the total leakage current distribution of ISCAS-85

benchmark circuits and the average errors when compared

with exhaustive random vector testing for mean and standard

deviation are 1.32% and 1.41% respectively. The algorithm

in [27] is found to under-estimate the leakage power by a

factor of 3.4X as it does not consider the effect of parameter

variations. In this work, process variations were considered

to be random. The effects of spatial correlations can be

included to increase the accuracy of this approach. Layout

level analysis further helps to determine the accuracy of the

proposed estimation technique.
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