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Abstract— The IEEE Standards Committee recently ap-
proved the IEEE 754-2008 Standard for Floating-point Arith-
metic, which includes specifications for decimal floating-point
(DFP) arithmetic. A growing number of DFP solutions have
emerged, and developers now have many DFP design choices
including arbitrary or fixed precision, binary or decimal signif-
icand encodings, 64-bit or 128-bit DFP operands, and software
or hardware implementations.

There is a need for accurate analysis of these solutions
on representative DFP benchmarks. In this paper, we expand
previous DFP benchmark and performance analysis research.
We employ a DFP benchmark suite that currently supports
several DFP solutions and is easily extendable. We also present
performance analysis that (1) provides execution profiles for
various DFP encodings and types, (2) gives the average number
cycles for common DFP operations and the total number of
each DFP operation in each benchmark, and (3) highlights the
tradeoffs between using 64-bit and 128-bit DFP operands for
both binary and decimal significand encodings. This analysis
can help guide the design of future DFP hardware and software
solutions.

I. INTRODUCTION

People predominantly perform math using decimal num-

bers. However, due to the speed and efficiency advantages

of binary hardware, most computer systems support bi-

nary arithmetic rather than decimal arithmetic. Converting

decimal numbers to binary and performing operations on

them using binary hardware can lead to inaccuracies. For

example, the binary floating-point (BFP) single-precision

number closest to the decimal fraction 0.1 is actually equal to

0.100000001490116119384765625. In certain applications,

small errors like this can compound and lead to incorrect

and unacceptable results [1]. One study by IBM estimates

that binary representation and rounding errors of decimal

numbers in a telephone billing application can accumulate

to a yearly billing discrepancy of over $5 million dollars

[2].

Decimal floating-point (DFP) number systems represent

floating-point numbers using a radix (i.e., exponent base) of

ten rather than two. DFP therefore exactly represents decimal

numbers, provided those numbers fit in the format’s preci-

sion. Two prevailing DFP number encodings have emerged.

One, originally proposed by Intel, encodes the significand

of the DFP number as an unsigned binary integer, and is

commonly called the binary integer decimal (BID) encoding.

The other, originally proposed by IBM, encodes the signifi-

cand as a compressed binary coded decimal (BCD) integer,

and is commonly called densely packed decimal (DPD). The

IEEE 754-2008 Standard for Floating-point Arithmetic [3]

specifies these DFP encodings and their operations, rounding,

and exception handling. The standard allows DFP numbers to

be encoded either in BID or DPD, and specifies arithmetic

operations on 64-bit and 128-bit DFP numbers, known as

decimal64 and decimal128, respectively.
The availability and accessibility of DFP has increased

recently, making it likely that DFP will move into more

general-purpose applications and computer systems. With the

addition of built-in DFP types to versions 4.2 and newer of

the GCC compiler, programmers have increased access to

decimal types. Furthermore, IBM has added dedicated DFP

hardware to the Power6, z9, and z10 servers [4], [5], [6]

and has developed significant compiler and software interface

support for DFP arithmetic on these systems [7]. We expect

dedicated DFP hardware to be provided by more processors

in the future.
As DFP becomes more prevalent, there is an increasing

need for accurate evaluation and understanding of both

hardware and software DFP solutions. A benchmark suite

that aids this evaluation would help to eliminate the gap

in understanding of the tradeoffs between different DFP

solutions and give insight into which operations could benefit

most from hardware acceleration. Since hardware imple-

mentations are not widely available for all DFP formats,

current analysis must use available software libraries. Several

questions related to IEEE 754-2008 formats and encodings

require further investigation, including:

• Which DFP operations are most frequent and require a

significant fraction of the overall execution time in DFP

applications?

• What are the potential performance benefits of imple-

menting certain DFP operations in hardware?

• What are the differences in performance between

decimal64 and decimal128 for the DPD and BID en-

codings?

• For specific operations, do DPD or BID software li-

braries offer better performance? How many cycles does

it take to implement specific operations in each of these

libraries?

• As new solutions emerge, what level of performance do

they provide to DFP applications?
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This paper describes extensive modifications made to

previous DFP benchmarks [8] to help answer these questions

and provide more modular support for various emerging DFP

solutions. In particular, the benchmarks have been updated to

support the IBM decFloats modules [9], the Intel DFP Math

Library [10], and built-in GCC DFP types [11]. Although the

benchmarks previously supported only the IBM decNumber

arbitrary-precision library, they now have the added ability

to use fixed-precision 64-bit and 128-bit DFP types with

either BID or DPD encodings. The addition of built-in DFP

types in GCC is especially important, because it allows the

benchmarks to be compiled and run on machines with native

DFP instruction set and hardware support, such as those

provided in recent IBM Power and System z processors [4],

[5], [6].

The performance of DFP operations can vary significantly

depending on the input values. Thus, to accurately analyze

DFP solutions, it is necessary to do so with representative

workloads. The enhanced benchmarks were run with rep-

resentative input sets for each DFP solution for both 64-

bit and 128-bit formats and performance statistics of several

metrics were recorded. These statistics include the average

number of cycles for each DFP operation, number of each

DFP operation in each benchmark, performance differences

between decimal64 and decimal128 types, percentage of

operations that require rounding, total benchmark execution

time, and execution time profile.

Contributions of this paper include: (1) the first benchmark

suite to implement a wide range of DFP solutions, (2) an

analysis of the tradeoffs between various DFP solutions and

formats on representative benchmarks, and (3) an improved

understanding of potential DFP operations for hardware

acceleration. A particularly important unanswered question

is, what are the implications of moving from decimal64

to decimal128? This paper helps to answer this and other

questions through quantitative analysis.

In the remainder of the paper, Section II gives an overview

of the benchmarks and DFP solutions employed. Section III

describes the methodology of our DFP benchmark frame-

work, which allows the benchmarks to be used with multiple

DFP solutions. Section IV explains the implementation of

frequently executed DFP operations. Section V presents and

analyzes DFP performance results of the benchmarks for

various DFP solutions. Section VI gives our conclusions.

II. OVERVIEW OF BENCHMARKS AND DFP SOLUTIONS

The expanded DFP benchmark suite now supports the

seven DFP types shown in Table I. The IBM decNumber

library features both fixed-precision and arbitrary-precision

types for the DPD encoding. The Intel DFP Math library

features fixed types for the BID encoding. The abbreviations

in bold are used throughout the paper in place of full names

for the DFP types.

The benchmarks also support built-in GCC types and

operations for either DPD or BID encodings, depending on

the compiler’s configuration. The GCC compiler uses either

the IBM decNumber library for DPD encodings or the Intel

TABLE I

SUPPORTED DFP SOLUTIONS

Library Supported types

IBM decNumber decNumber - Arbitrary-precision DPD (DN64/DN128)
decDouble - Fixed-precision decimal64 DPD (DPD64)
decQuad - Fixed-precision decimal128 DPD (DPD128 )

Intel DFP Math Fixed-precision decimal64 BID (BID64)
Fixed-precision decimal128 BID (BID128)

Built-in GCC Fixed-precision decimal64 DPD
Fixed-precision decimal64 BID

DFP Math library for BID encodings. Therefore, the built-in

DFP types are included in the presented analysis

Five benchmarks are implemented using the decimal API

framework. The five benchmarks are described below, ex-

cept for the telephone billing application, Telco, which is

described elsewhere [2]. More detailed information about the

other four benchmarks is also available [8] [12].

A. Banking System Benchmark (Banking)

Banking is an important area that is represented by the

benchmarks, and requires DFP computations and decimal

rounding. Banking systems deal with a variety of tasks,

communicate with database systems, and perform daily

maintenance routines to keep account information up to date.

To emulate daily server activity in an bank, we enhanced

an existing banking system benchmark [8], which includes

checking, certificate of deposit, credit card, and mortgage

accounts.

B. Euro Conversion Benchmark (Euro)

When the euro was introduced, the European Central Bank

(ECB) specified several regulations and monetary policies for

euro currency conversion [13]. Currency conversion between

the euro and legacy currencies, as well as between two legacy

currencies, were specified to require decimal arithmetic [13].

The currency conversion benchmark is based on the require-

ments from the ECB, which include:

1) having a unilateral conversion rate from the euro to

each legacy currency unit,

2) not using an inverse conversion rate,

3) having six significant digits, including trailing zeros, in

the conversion rates from the euro to other currencies,

4) not rounding or truncating conversion rates, and

5) having an intermediate result in euros when converting

between two legacy currency units, in which the inter-

mediate result may be rounded to no less than three

decimal digits.

The Euro benchmark performs a series of conversions be-

tween currencies using historical exchange rates. To convert

between two non-euro currencies, the value is first converted

to euros using DFP multiplication. Then it is converted from

euros to the second currency using DFP division.

C. Risk Management Benchmark (Risk)

Risk management is a corporate finance field that seeks to

measure and manage risk to earn greater returns over a time

period. It usually involves several statistical calculations such
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as variance and covariance computations. The risk manage-

ment benchmark is based on existing spreadsheets [14], but

uses DFP libraries and types. It computes risk parameters

in the capital asset pricing model (CAPM) and predicts

prices for a company against a stock market valuation. It

calculates risk measures, variance statistics, and expected

returns using historical data to determine risk parameters for

publicly traded companies.

D. Tax Preparation Benchmark (Tax)

The tax preparation benchmark calculates federal taxes for

an individual for the 2006 tax year. This benchmark was

modified from the Open Tax Solver from Sourceforge [15].

The code follows the instructions provided in IRS documents

1040, Schedules A, B, C, and D. The code was modified

to incorporate DFP arithmetic. The inputs to the program

are given by W2 and 1099 forms handed out by employers,

universities, banks, etc. The benchmark inputs are generated

using directed pseudo-random numbers with constraints to

model a realistic setting, which presents the distribution

of adjusted gross income on a sample size of about 132

million tax returns for the 2004 tax year [16]. To support

the decimal libraries and types, various changes are made to

the code. Appropriate library functions are called to perform

DFP arithmetic operations and comparisons. Since the inputs

are already in the DFP format, reading and storing the

inputs does not result in any loss of precision. Furthermore,

all DFP calculations are performed with decimal rounding,

making the final results more accurate. The tax preparation

benchmark reads users’ tax form data from a file. After the

calculations are made, results are stored in a different file.

Hence, the amount of file I/O is directly proportional to the

number of tax returns.

III. METHODOLOGY

In this section, we present the methodology and usage

model of the decimal API framework. This section describes

how the benchmarks are enhanced to support multiple DFP

solutions. A DFP solution contains two main components

that are abstracted in our benchmark API framework:

• Decimal Types - The variables containing decimal data.

The format and size of this variable can be different for

each implementation.

• Operators - Operations such as addition, subtraction,

comparison and rounding. For most DFP solutions,

these operations are explicitly called as functions with

DFP parameters.1

A. Decimal Types

Our benchmark framework uses the C programming lan-

guage, so the #define directive configures these abstractions

for each DFP solution. Benchmark applications use a generic

type called dec t that is parameterized to use the chosen

decimal format. In the example below, directives in a header

file choose between the IBM decFloats fixed-precision types

1The GCC compiler supports operator symbols such as +, -, >, and <

for DFP arithmetic using its built-in types.

and the Intel DFP Math Library fixed-precision types. Ei-

ther DECNUMBER FIXED or BID must be defined as a

compiler directive for the following code.

# i f d e f i n e d (DECNUMBER FIXED)
# d e f i n e d e c t decDouble / / IBM d e c F l o a t s

# e l i f d e f i n e d ( BID )
# d e f i n e d e c t BID UINT64 / / I n t e l BID

# e n d i f

The #define directives are pre-processed by the compiler,

so there are no performance artifacts introduced by general-

izing the benchmark code in this way.

B. Operators

DFP operations such as Add, Subtract, and Compare are

typically performed using explicit function calls. For this

reason, generic functions are defined for each operation.

These generic functions are configured differently for each

DFP solution, as in the code below.

# i f d e f i n e d (DECNUMBER FIXED)
# d e f i n e ADD( Z , X, Y, C) decDoubleAdd ( Z , X, Y, C)

# e l i f d e f i n e d ( BID )
# d e f i n e ADD( Z , X, Y, C) b i d a d d ( Z , X, Y, C)

# e n d i f

In the above example, ADD(Z, X, Y, C) defines the

operation Z = X + Y. Each of these function calls requires

a context (C), which stores rounding modes and status flags

for each DFP operation. This is contained in a special type,

context t, that is also defined for each DFP solution.

IV. DFP OPERATIONS

This section discusses some of the common DFP opera-

tions, and how they are implemented for the DFP solutions

employed in the benchmarks.

A. Multiply

For the general case, performing a DFP multiply in-

volves three steps. First, the significands are multiplied.

Next, the exponents are added. Finally, if the result exceeds

the available precision of the target type, the value is

rounded. For DPD-encoded operands, the major challenge

is the significand multiplication, which is performed as a

series of multiplications and summations of binary coded

decimal (BCD) digits. In contrast, the BID-encoded types

take advantage of highly optimized binary multipliers for the

significand multiplication. However, BID rounding is much

more expensive because it uses a wide multiplication of

the intermediate result by an integer power of 1
10 . These

constants are pre-computed and stored in a table that is

indexed by the number of digits to round off [17]. We expect

the average number of cycles required for a BID multiply to

be very sensitive to the amount of rounding that is performed

in the benchmark.

B. Add/Subtract

In the addition operation, the two input operands must be

aligned to have the same exponent by shifting one or both

significands. Unlike BFP, DFP types are non-normalized,

meaning one or more of the significant digits can be zero, and
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a single decimal number can have multiple possible DFP rep-

resentations. In this situation, IEEE 758-2008 specifies which

representation operations should return. In DPD, alignment is

relatively simple. The shift operation is performed on BCD

numbers, for which a 1-digit shift corresponds to a 4-bit

shift. In BID, however, a decimal shift requires a multiply

by a pre-computed power of 10.

After alignment, the significands are added. If overflow oc-

curs as a result of the addition, the exponent is incremented.

The result must then be rounded if it does not fit in the

precision of the destination operand. In both BID and DPD,

the significand addition is relatively straightforward. In BID,

when rounding is needed, it is the most costly part of the

operation.

C. Quantize

The quantize operation modifies one DFP operand to

have a specific exponent equal to that of the other DFP

operand. The process is fundamentally the same as either

alignment or rounding, depending on the relative difference

of the exponents. However, the required left or right decimal

shifts are less costly than rounding because of a narrower

operand width. For example, in decimal128 multiplication,

the intermediate result to be rounded may be up to 226

bits. A decimal128 quantize only needs to consider a 113-bit

significand.

D. Copy/Zero

The copy and zero operations correspond to loading one

DFP variable with the value of another, or loading a DFP

variable with the DFP representation of zero. Although they

occur frequently, these operations are relatively simple to

implement in either hardware or software.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the bench-

marks from Section II on representative input sets. The goals

of this section are to characterize the performance of vari-

ous DFP encodings and types on individual operations and

overall runtime. This provides insight into where hardware

acceleration might be best applied.

Previous work has analyzed the execution profiles of a

set of benchmarks for decimal64 types in the arbitrary-

precision decNumber library [8]. Since then, software li-

braries have emerged that support fixed-precision decimal64

and decimal128 types and are easily accessible in new

versions of GCC. Developers are moving to fixed-precision

types for performance reasons, with large amounts of code

being developed for the decimal128 type. This paper presents

a broader analysis that includes fixed-precision types and

128-bit sizes. These new profiles provide a more complete

representation of which operations should be considered for

hardware implementations of DFP.

The benchmarks, described in Section II, are written in

C and compiled using GCC version 4.1.2 with the -O3

flag. This version of GCC does not feature built-in DFP

datatypes, so the IBM decNumber library version 3.61 and

TABLE II

SAMPLE INPUT

Banking 100,000 Accounts, 100,000-150,000 events/day, 30 days

Euro 1 million conversions to/from the euro

Risk Management Risk factor calculations for 30 companies

Tax Preparation 100,000 2006 Federal tax returns

Telco Billing for 1 million calls

TABLE III

NUMBER OF DFP OPERATIONS PER BENCHMARK (IN THOUSANDS)

Banking Euro Risk Tax Telco

Add 34,068 1,780 3,673 17.277 20,000
Compare 16,770 1,832 3,420
Copy 25,051 2,022 5,374 17,716 3,620
Divide 21,213 2,772 64 295
Max 582
Min 399
Minus 100
Multiply 26,970 2,842 3,668 1,611 12,500
Power 2,954 2
Quantize 23,694 3,512 171 12,500
Sqrt 1
Subtract 24,472 1,832 1,951 19,513
ToIntegral 24,864 3,612
Zero 12,170 1,000 375 320,763 7,499

the Intel Decimal Floating-Point Math Library version 1.0

update 1 were used for DPD and BID formats respectively.

The benchmarks were executed on an Intel(R) Core(TM)2

Duo E8400 64-bit 3GHz processor running Debian Linux.

Runtimes of individual DFP operations were calculated using

the x86 Time Stamp Counter register [18]. Profiling was

performed using gprof.

In our comparisons, the benchmarks are run on identical

input values, though the formats for these input values varied.

The input values are based on historical data [8]. A summary

of our input data is given in Table II.

First, we discuss some of the benchmark characteristics,

and present the number of times each DFP operation is exe-

cuted in each benchmark. Next we analyze the performance

of individual DFP operations for various formats. Then we

discuss the impact of the different DFP types on the overall

performance of the benchmarks. This includes a comparison

of total runtime between DFP types and execution profiles

for DPD and BID fixed-precision types. Because rounding

constitutes a large percentage of total runtime for DFP

applications, we investigate it further.

A. Operation Frequency

Table III displays the number of times (in thousands) each

DFP operation is executed for each of the benchmarks in

our experiments. The Telco and Risk benchmarks operate

mostly on data with the same exponent, which means the

alignment portion of the Add operation is not needed. The

performance of these benchmarks is significantly affected

by how each DFP solution handles the special case of pre-

aligned inputs. For example, the decNumber library has a

fast path for this situation, so it performs well on these two

benchmarks. The Euro benchmark has a large proportion

of DFP divides compared to other DFP operations, so the

performance of this benchmark is strongly affected by the

DFP solution’s implementation of division.
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TABLE IV

AVERAGE NUMBER OF CYCLES PER OPERATION

DN64 DN128 DPD64 DPD128 BID64 BID128

Add 157 161 154 233 109 213
Copy 23 30 9 10 9 12
Divide 1,039 1,552 627 940 370 1,420
Max 372 437 136 190 182 547
Min 346 348 222 274 204 368
Minus 129 125 40 49 5 14
Multiply 239 253 296 453 117 544
Quantize 220 220 138 211 147 391
Sqrt 21,331 33,998 25,599 38,559 713 7,194
Subtract 227 237 289 580 126 313
ToIntegral 385 385 178 269 148 519
Zero 6 6 5 6 1 1

B. Cycles Per Operation

Table IV shows the average number of cycles per operation

for the various DFP solutions across the five DFP bench-

marks. For decimal64, the BID encoding performs best for

almost all operations. It can be concluded that, for BID64,

the performance gain from the currently available high-speed

64-bit binary hardware outweighs the performance loss from

expensive rounding. The exception is Quantize, which almost

always requires rounding or shifting (unless the operands are

already aligned), and thus performs best for fixed-precision

DPD types.

The performance slowdown of fixed-precision types when

moving from decimal64 to decimal128 is shown for each

operation in Figure 1. BID has a larger slowdown than

DPD for every operation. The test system did not have a

128-bit integer datapath, so BID128 was not able to take

advantage of available binary hardware as much as BID64.

For operations such as Multiply and Divide in BID128,

rounding quickly becomes very costly. As a result, many

operations in BID64 take fewer cycles than in DPD64, but

the same operations in BID128 take more cycles than in

DPD128.

For most operations with arbitrary-precision DPD types,

moving from decimal64 to decimal128 increases the cycle

count by a very small amount. This is because there is signif-

icant overhead involved with supporting arbitrary-precision

that is present in both precisions. Also, the implementations

for both sizes are very similar and extra computation is done

only when the precision is used. The arbitrary-precision DPD
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Fig. 1. Slowdown from decimal64 to decimal128 by operation.

types performed surprisingly well for Add and Multiply

compared to the equivalent operations in the fixed-precision

DPD types. This is due to several fast paths that are built into

the decNumber arbitrary-precision functions for common

cases.
Subtract takes significantly more cycles than Add for

most DFP solutions. Besides requiring an extra negation, we

also observed a greater proportion of unaligned operands in

subtractions compared to additions. The required alignments

contributed to the cycle counts.
Finally, Zero is similar in both DPD and BID fixed types.

The discrepancy in number of cycles occurs because the BID

Zero implementation was inline with the code, whereas the

DPD operation employed a function call.

C. Benchmark Profiles

Tables V and VI show execution profiles for DPD64 and

DPD128; Tables VII and VIII show execution profiles for

BID64 and BID128. In the BID profiles, Power and Sqrt

are left out because they are not provided in the library,

and were instead approximated using the corresponding

BFP functions. Also, the BID Zero operation could not be

measured using gprof because the operation is inline with

the benchmark code and does not require a function call. Its

percent of the overall execution time is approximated using

the average number of cycles per Zero call, the number of

times Zero is called, and the total number of cycles elapsed

in the benchmark.
The profiles suggest which operations would have the

most impact on performance if implemented in hardware.

Because Add, Subtract, and Multiply are so common, these

are good candidates for hardware acceleration. Quantize

and RoundToIntegral could have significant impact on per-

formance if put into hardware, particularly for the BID

significand encoding. Though Divide is less common, its

long execution time contributes significantly to runtime in

many applications. Divide could therefore benefit from ac-

celeration, especially for the decimal128 format.
Multiply and Divide take a smaller portion of total ex-

ecution time in BID64 than DPD64. This is because BID

uses existing high-speed binary integer multipliers to perform

these operations. However, in moving to BID128, Multiply,

Divide, and Quantize become a significantly greater per-

centage of total execution time because of the rounding

performed in these operations. As a result, Add and Subtract

take a much smaller proportion of total execution time for

BID128. In contrast to BID, DPD128 spends more time

in Add and Subtract than DPD64, and about the same

percentage of time in Multiply and Divide as DPD64.
For decimal64 types, almost all of the benchmarks spend

more than 70% of their total execution time performing

DFP operations. This increases to 80% for decimal128 types,

indicating a large potential performance boost due to DFP

hardware, especially for decimal128 types.

D. Total Runtime

Table IX shows the total runtime of each benchmark

normalized to the runtime of BID64 for each solution. Figure
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TABLE V

EXECUTION PROFILE FOR DPD64

Banking Euro Risk Tax Telco

Add 14.6% 9.6% 15.5% 24.2% 20.5%
Compare 3.0% 5.2% 3.8%
Copy 0.4% 0.3% 1.5% 0.8%
Divide 18.2% 31.3% 0.6% 2.0%
ToIntegral 8.0% 16.1% 0.0% 0.7%
Max 0.1% 0%
Min 0.5%
Minus
Multiply 16.0% 19.9% 26.8% 6.0% 44.0%
Power* 6.4% 4.2%
Quantize 15.0% 24.4%
Sqrt 0.3%
Subtract 11.8% 11.0% 35.2% 3.3%
To/From Num 0.2% 0.3% 0.0%
ToString 5.3%
Zero 0.1% 0.0% 0.0% 14.7% 0.3%

Total Decimal 78.8% 93.4% 97.9% 56.7% 95.3%

TABLE VI

EXECUTION PROFILE FOR DPD128

Banking Euro Risk Tax Telco

Add 17.2% 12.3% 19.1% 23.4% 21.2%
Compare 3.1% 3.7% 4.6%
Copy 0.3% 0.3% 0.0% 0.9% 0.6%
Divide 18.1% 30.8% 0.7% 1.5%
ToIntegral 7.6% 14.4% 0.5%
Max 0.1% 0.0%
Min 0.6%
Minus 0.0% 0.0%
Multiply 18.1% 19.7% 19.9% 6.5% 43.7%
Power* 7.5% 6.4%
Quantize 11.4% 24.2%
Sqrt 0.4%
Subtract 13.4% 13.5% 40.0% 3.3%
To/From Num 0.2% 0.0% 0.0%
ToString 0.1% 4.1%
Zero 0.1% 0.0% 0.0% 25.8% 0.0%

Total Decimal 84.4% 94.7% 97.9% 67.1% 95.6%

2 shows the slowdown going from decimal64 to decimal128

for each DFP library. The BID solution used here has

no available DFP Power operation, so the corresponding

BFP operation is used as an approximation. This impacts

performance slightly for the Banking and Risk benchmarks,

since Power is much faster in BFP than in DFP.

In general, the fixed-precision types perform better than

arbitrary-precision types. In Risk and Telco, arbitrary-

precision types perform very well because those bench-
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Fig. 2. Runtime Slowdown from decimal64 to decimal128.

TABLE VII

EXECUTION PROFILE FOR BID64

Banking Euro Risk Tax Telco

Add 13.3% 8.1% 17.2% 19.8% 34.8%
Compare 3.2% 8.5% 5.4% 0.2%
Copy 0.6% 0.5% 0.0% 1.4%
Divide 14.2% 26.8% 1.6% 1.7%
ToIntegral 10.7% 24.1% 1.1%
Max 0.3%
Min 1.2%
Minus 0.0% 0.0%
Multiply 14.5% 15.1% 12.5% 1.8% 16.7%
Quantize 26.1% 31.2%
Sqrt 0.0%
Subtract 11.0% 9.4% 38.7% 2.8%
ToBinary 1.2% 0.0% 0.0%
ToString 11.3%
Zero 0.1% 0.0% 0.0% 2.6% 0.3%

Total Decimal 69.1% 92.5% 96.6% 37.8% 94.5%

TABLE VIII

EXECUTION PROFILE FOR BID128

Banking Euro Risk Tax Telco

Add 11.4% 6.9% 10.6% 18.8% 20.5%
Compare 3.4% 6.1% 7.1%
Copy 0.5% 0.4% 0.0% 1.9%
Divide 23.6% 37.3% 1.0% 4.8%
ToIntegral 12.8% 19.5% 1.2%
Max 0.3%
Min 1.3%
Minus 0.0% 0.0%
Multiply 24.5% 18.9% 27.5% 7.1% 38.4%
Quantize 30.6% 33.1%
Sqrt 0.2%
Subtract 10.1% 8.2% 26.4% 3.1%
ToBinary 1.0% 0.2%
ToString 3.0%
Zero 0.1% 0.0% 0.0% 2.5% 0.0%

Total Decimal 87.7% 97.3% 96.5% 47.8% 95.6%

marks contain mostly aligned additions and the decNumber

arbitrary-precision library has a fast path for this case. The

BID64 library is the fastest for most benchmarks, due to

its ability to best take advantage of the existing binary

hardware. However, BID pays a large penalty for the increase

to decimal128 precision. We attribute this to rounding and

shifting that requires large integer multiplies, and the lack of

correspondingly wide (greater than 64-bit) binary hardware

on the tested processor model.

E. Rounding

Rounding is an important aspect of DFP calculations. It

can be very complex and computationally intensive, espe-

cially for operands that use the BID encoding. For example,

rounding an intermediate result of a multiplication in BID

uses a multiply of width of approximately 2k by 2k, where

k is the maximum number of digits in the intermediate

result significand [17]. Therefore, the frequency of rounding

impacts overall performance. This section examines whether

the frequency of rounding changes given the additional

precision from decimal64 to decimal128 for our benchmarks.

Table X shows the frequency of rounding for common

decimal operations across the benchmarks. It is important

to note that, for these operations, rounding only occurs if

the infinitely precise result requires more precision than is

provided by the result format. The quantize operation is often
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TABLE IX

BENCHMARK RUNTIME NORMALIZED TO BID64

Banking Euro Risk Tax Telco

DN64 2.12 2.38 1.02 1.01 1.25
DPD64 1.66 1.59 1.12 0.96 1.17
BID64 1 1 1 1 1
DN128 2.65 3 1.16 1.41 1.51
DPD128 2.58 2.56 1.71 1.33 1.74
BID128 2.7 2.99 1.43 1.28 2.08

TABLE X

ROUNDING IN DECIMAL OPERATIONS

Banking Euro Risk Tax Telco
64 128 64 128

Add/Sub 6.839% 6.837% 0.09% 0.00% 0.06% 0.03% 0%
Divide 6.20% 6.20% 32.8% 32.8% 96.3% 2.84% 0%
Multiply 25.64% 24.6% 11.09% 0.00% 0.19% 0.26% 0%

used after DFP operations to round values to a specified

quantum (e.g., the nearest hundredth). For a given operand

size, the frequency of rounding is not implementation-

dependent, so results are only shown for the decNumber

arbitrary-precision library.

Separate columns are shown within Banking and Euro

for decimal64 and decimal128. These are the only bench-

marks in which rounding frequency differed between the

two operand sizes. For these two applications, the frequency

of rounding decreases for decimal128 because the increased

precision eliminates the need for rounding in some cases.

This effect is particularly noticeable in the Euro benchmark

in which all addition, subtraction, and multiplication round-

ing is eliminated by the use of decimal128 precision. This

can be explained by the nature of the input data for this

benchmark. Euro works on monetary amounts multiplied by

six-digit conversion rates. If the original monetary amount

exceeds 10 decimal digits (e.g., $100,000,000.00), the inter-

mediate result of the multiply can exceed the 16-digit preci-

sion allowed by decimal64 and will require rounding if the

decimal64 format is used. However, to exceed the precision

of the decimal128 format, the original monetary amount must

be at least 28 decimal digits, which is uncommon for this

application.

The results in Table X indicate that, for the majority of our

benchmarks, the precision provided by decimal64 is suffi-

cient. Furthermore, rounding as part of addition, subtraction,

and multiplication is not very frequent in these benchmarks.

Hardware DFP implementations may therefore benefit from

a variable-latency approach in which the operations can

complete early if rounding is not needed.

VI. CONCLUSION

In this paper we analyzed various DFP solutions on

representative benchmarks to better understand their perfor-

mance tradeoffs. We showed that the number of cycles per

operation, execution profile, and overall performance can be

significantly different depending on the chosen DFP solution.

This information is essential for hardware and software

designers in choosing how to accelerate DFP.

We also quantified the performance loss that results when

moving from decimal64 to decimal128 types. This penalty

can be especially high for BID because of the use of

expensive rounding methods in decimal128. However, the

benchmarks demonstrate that rounding frequency is often

similar for both decimal64 and decimal128. This suggests

that most pre-rounded results that exceed the precision of

decimal64 also exceed the precision of decimal128; there-

fore, if applications do not need the extra precision of

decimal128, they can gain significant performance benefits

by using decimal64 instead.

Finally, the profiles indicate that, for most benchmarks,

more than 70% of the total execution time is spent in

decimal operations when using decimal64 types, and more

than 80% when using decimal128 types. For applications

that use decimal128 instead of decimal64, there is increased

potential for speedup through hardware acceleration.

REFERENCES

[1] M. F. Cowlishaw, “Decimal floating-point: Algorism for computers,”
in IEEE Symposium on Computer Arithmetic, 2003, pp. 104–111.

[2] IBM. (2005, Mar.) The telco benchmark. [Online]. Available:
speleotrove .com/decimal/telco.html

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754-2008,
2008.

[4] L. Eisen, J. W. Ward, H.-W. Tast, N. Mäding, J. Leenstra, S. M. Müller,
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