
PCAM: A Ternary CAM
Optimized for Longest Prefix Matching Tasks

Mohammad J. Akhbarizadeh, Mehrdad Nourani, Deepak S. Vijayasarathi, and Poras T. Balsara
Center for Integrated Circuits & Systems

The University of Texas at Dallas

Richardson, TX 75083

feazadeh, nourani, dxv033000, porasg@utdallas.edu

Abstract— An optimized Ternary CAM concept is introduced
for application in the longest prefix matching tasks of the Internet
search engines. It employs w+1 RAM bits for a word of size w.
A conventional TCAM needs 2w RAM bits for the same word size.
Based on this concept an 8 bit Prefix-CAM cluster is designed out
of 9 SRAM bits, four of which merge to store a 32-bit IPv4 pre-
fix. A complete Prefix-CAM module employs 22% less transistors
than a conventional TCAM, for equal storage size and equal func-
tionality. We confirm the 22% area saving by implementing the
layouts for Prefix-CAM and TCAM words. Our design also re-
duces interconnect area by reducing address decode lines.

I. I NTRODUCTION

Nowadays, more hardware architects than ever look into
Content Addressable Memory (CAM) for high performance ta-
ble lookup tasks [1], [2], [3]. Various types of CAM intellectual
property cores are available in the market for rapid integration.
CAD tools, design automation environments and FPGA based
systems have become CAM-aware more than ever. A specif-
ically interesting type of CAM, called Ternary CAM (TCAM)
can storedon’t-carevalues in addition to 0’s and 1’s. This gives
TCAM the ability to store variable size data (called prefixes).
TCAM can look up a given key in its entire contents to find
all matching prefixes and is capable of finding the longest (i.e
the most specific) match among those, all in one clock cycle
[4]. This property has special application in high speed Inter-
net routers where classification and forwarding engines need to
find a longest matching prefix with wire-speed rates, in huge
and ever growing lookup tables. While simplicity and high per-
formance are the main reasons for designers to choose TCAM
for such applications, high power dissipation and low storage
density remain to be the two major concerns with this technol-
ogy. This design primarily addresses the latter problem.

The rest of this paper is organized as follows. Section II starts
with clarifying necessary assumptions and definitions that will
be used throughout the paper. Then, conventional TCAM de-
sign is explained to be used as a reference model for comparison
purposes. The motivation behind this work is also explained in
the same section. Section III explains the main contribution of
this paper. we first derive the optimized logic equations then
describes the circuitry for our novel Prefix-CAM. Finally, two
additional functional units necessary for this design are intro-
duced. Section IV summarizes our experimental results and
practical observation. We will conclude the paper in Section V.

II. BACKGROUND

A. Assumptions and Definitions

In this paper, a prefix is assumed to be at most 32-bits long,
which is the maximum required size for an IP version 4 (IPv4)
routing table. However, this will not restrict our design to one
application. Packet classification or IPv6 can also benefit from
the optimized circuit introduced in this work. Also, we discuss
the static TCAM where memory cells are SRAM, though most
of the discussions and results are also valid for typical dynamic
TCAMs.

An arbitrary prefix can be shown in binary radix as a string
of 1s and 0s, followed by an * that marks all other bits at the
right side of prefix asdon’t-care(to be masked). We will also
show prefix P as a value (V) and mask (M) pair, i.e.P[w�1 :
0] = (V [w�1 : 0];M[w�1: 0]), wherew is the maximum width
of prefix. Also,P[w� 1 : 0] = pw�1pw�2:::p0, V [w� 1 : 0] =
vw�1vw�2:::v0 andM[w� 1 : 0] = mw�1mw�2:::m0. Therefore,
bit i of prefix is denoted bypi = (vi ;mi). A mask bitmi is 1
wherever the prefix value isdon’t-careand 0 where the value
is valid. So, if P[31:0]=10011000101* then, P=(98A00000H,
001FFFFFH). In the current example,p30= (0;0), p31= (1;0),
andp0 = (0;1).

B. The Reference Model

0

1

2

. . .

PREFIX 0

PREFIX 1

PREFIX 2

PREFIX N-1N-1

TCAM words

TCAM module of size N

. .
 .

Data
(One entry
per prefix)

Destination IP

(key)

SRAM
Index

E
n
c
o
d
e
r

P
r
i
o
r
i
t
y

Fig. 1. Basic Structure of a TCAM module.

Figure 1 shows the basic structure of a TCAM used in many
of the state of the art Internet forwarding and classification en-
gines. In this structure, the entries are sorted based on the prefix
length. Longer prefixes are placed in memory locations with
higher addresses. A given destination address to be searched, is
distributed among all memory locations at the same time. Then,
the results of the masked comparisons, performed by all TCAM

words simultaneously, are taken into a huge priority encoder
that gives priority to the higher memory locations. Therefore,
the index of the longest prefix will be chosen in case of multiple
matches. This index may then be used to extract corresponding
classification or forwarding information such as egress number
from a SRAM module that has N entries, one entry for each
TCAM prefix.

The block diagram of a single TCAM bit is shown in Fig-
ure 2. It is a straight-forward SRAM based combination of a
Value Bit (CAM) and a Mask Bit. CAM bit itself is comprised
of a SRAM cell and an XOR gate. The XOR gate compares
the content of the SRAM cell with the input comparand (given
as the differential signal CMP and CMP). Mask Bit is also a
SRAM cell. When Mask Bit is at logic 1, the CAM Bit is valid.
When Mask Bit is at logic 0, the CAM Bit is don’t-care. A
TCAM word of width w (one line in Figure 1) replicates such
cell w times, connected together through WL, MWL, and ML.
ML is the single output of each TCAM word that is taken to the
priority encoder to determine the match index (see Figure 1).

At the beginning of every search operation, the Match Line
is precharged to the VDD level. For each TCAM cell in a word,
the input data bit to be searched (called keyor comparand) is
given as a differential value on CMP and CMP lines. If every
TCAM cell in a word either matches the comparand bit or is
masked then Match Line stays charged, which indicates a word
match. If for any cell in the TCAM word the Mask bit is 1 and
the CAM Bit does not match the comparand, then the compar-
ison circuit connects the Match Line to ground. That would
discharge the Match Line that indicates a word mismatch. The
above explanation can be symbolized as the following equation:

ML =
w�1

∑
i=0

xi �mi (1)

In this equation xi = di � cmpi is the result of comparison
between CAM cell content and comparand bit. The comparison
logic of a TCAM word is a pseudo NMOS implementation of
Equation 1 on element of which is shown in Figure 2. Despite
some variations that try to improve power dissipation, search
speed, flexibility, or density, the same design concept is used
by most of the respective works, as observed by the authors.
Examples can be found in [1], [4], [5], and [6].

C. Motivation and Key Novelty

One of the problems of TCAM in addition to high power dis-
sipation, is its low storage density, due to the high number of
transistors per each cell. Each TCAM cell requires 16 transis-
tors [5] (14 in some literature [6]), as opposed to 6 for SRAM
or 2 for DRAM [7]. This has inspired some researchers to offer
heuristics that optimize TCAM usage [8]. In the state of the
art Ternary CAM technology, any bit in a word can be masked
independently. This flexibility comes at a cost. Each cell in-
cludes two SRAM (DRAM) bits to be able to store each of the
three possible states of the cell, namely 0, 1, and don’t-care.
However, most of the networking applications of TCAM do not
require such flexibility. The major application for high density,
fast, low power TCAM products is in the classification and for-
warding engines of broadband Internet routers . The absolute

SRAM

BL

(WL)

(MWL)

BL

BL WL BL

Match Line

SRAM Bit

XOR

d

d

x

d

(ML)

d

x

d

m

x

Word Line

BL BLCMP CMPWL

CMP

CAM

Bit)
(Mask

CMP

Mask Work Line

Fig. 2. Conventional TCAM cell.

majority of such applications need to store and search for pre-
fixes, mostly IP (Internet Protocol) prefixes [9], [10]. All of the
masked bits in a prefix are adjacent and are gathered at the right
side. For example, 1100110010* is a 10 bit IP prefix shown
in binary. The 22 lower bits of this prefix are masked. On the
other hand, 11x01* is not a valid prefix because it has a masked
bit surrounded by valid bits.

Currently, in a TCAM module with a width of w (i.e each
word stores a prefix with a maximum length of w), 2w SRAM
bits are needed per each word (see Figure 2). On the other
hand, all the valid combinations of w bit IP prefixes accu-
mulate to 2w+1 � 1 values (the number of all 1 bit prefixes
plus all 2 bit prefixes, all the way to the w bit prefixes, or
∑w

i=0 2i = 2w+1 � 1). This can be represented with no more
than w+ 1 RAM bits, instead of 2w. For w= 32, that means
48.4% reduction in memory usage. This is an initiative to in-
troduce a modified TCAM design that effectively saves silicon
area while providing a performance similar to state of the art
TCAM.

Our design will alter the structure of a TCAM word, i.e. the
way prefixes are stored and masked comparison is performed
(shown in Figure 2). However, the general TCAM architecture
(shown in Figure 1) is maintained. Therefore, all behavioral
schemes of state of the art TCAM (i.e. prefix sorting , updating
algorithms, etc.) are perfectly applicable to our Prefix-CAM.

III. THE PREFIX CAM

The design challenge ahead of us was that any w-bit prefix
has to be encoded prior to being stored in a TCAM word that
has only w+ 1 SRAM bits. The employed encoding method
must need minimal logic for masked comparisons. The com-
parison logic is the overhead and must be small enough to pre-
serve a major portion of the area released by eliminating the
mask bits. The rest of this section is a step by step development
of such design. The design is called Prefix-CAM, or PCAM for
short.

-1

SRAM

b

d

0
b 0

x
1

x
1

b
2

b
3

b 2
x

3

CAM

d x

CAM

d x

CAM

d x

CAM

d x

CAM

d x

CAM

d x

CAM

d x

x

2b

b0

Match Line

1

d x

CAM

4
b

5
b

6
b 4

x
5

x
6

x
7

x

b-1

b

7
b

Fig. 3. PCAM Cluster-9 that stores a 8-bit prefix. For clarity of the figure, word line (W L), bit lines (BL[7 : �1];BL[7 : �1]), and comparand lines (CMP[7 :
0];CMP[7 : 0]) are hidden.

Word Line

Match Line

cm
p[

31
:2

4]

bl
3[

7:
-1

]

bl
3[

7:
-1

]

cm
p[

31
:2

4]

bl
0[

7:
-1

]

cm
p[

7:
0]

cm
p[

7:
0]

bl
0[

7:
-1

]

bl
2[

7:
-1

]
Cluster-9 0Cluster-9 1Cluster-9 2Cluster-9 3

and priority encoder
to sense amplifier

ML0ML1ML3 ML2

bl
1[

7:
-1

]

cm
p[

15
:8

]

bl
1[

7:
-1

]

cm
p[

15
:8

]

bl
2[

7:
-1

]

cm
p[

23
:1

5]

cm
p[

23
:1

5]

Fig. 4. 32-bit PCAM word.

A. The Prefix Encoding Method

Let B[w� 1 : �1] = bw�1 � � �b0;b
�1 be the array of SRAM

cells storing a w+ 1 bits encoded bit-string for which the
generic w-bit prefix is P[w�1 : 0] = (V [w�1 : 0];M[w�1 : 0]).
The encoding method is defined by the following equation:

bi =

8>><
>>:

m0 when i =�1
1 when mi+1mi = 11; i 2 f0; � � �;w�2g
0 when mi+1mi = 01; i 2 f0; � � �;w�2g
vi when mi = 0; i 2 f0; � � �;w�1g

(2)

Since in a prefix, all the bits to the right of a masked bit are
also masked, the above definition means a bit is masked when
all its right hand bits are set to 1. Also, in the definition consider
that if pi is masked and pi+1 is not, then bi = 0 (i.e. the most
significant masked bit is equal to zero). Considering this point,
the above definition can be simplified for implementation as
follows:

bi =

8<
:

m0 when i = �1
mi+1 +mi �vi when i 2 f0; � � �;w�2g
vw�1 when i = w�1

(3)

For example, if the 8-bit prefix P = 10010� =
(10010000;00000111) then B = 100100111 (3 bits masked).
On the other hand, if the 9-bit encoded prefix B = 010110001
is given then the above definition tells us that our decoded 8-bit
prefix would be P= (01011000;00000001)= 0101100� (1 bit
masked). A similar encoding method is used by [11] in a route
lookup scheme without TCAM.

B. Circuit Design for the Prefix-CAM

We start our steps towards the new design from the reference
TCAM circuit (see Figure 2). In a TCAM word made by
replicating that circuit w times the match-line (ML) logic is

given by Equation 1. Now notice that the encoded mask logic
as explained in the previous subsection is1 :

mi =
i

∏
j=0

bj�1; i 2 f0; � � �;w�1g (4)

After replacing all mi in Equation 1 with the right side of
Equation 4 and applying DeMorgan’s Law we get:

ML =
w�1

∑
i=0

xi �
i

∑
j=0

bj�1 (5)

For w = 8, the required number of SRAM cells to imple-
ment Equation 5 is 9, versus 16 in conventional TCAM (43.8%
reduction). Also, this implementation translates to a total of
17.2% reduction in transistor usage. If w grows beyond 8 the
area gain starts falling to a point that it even becomes negative.
On the other hand, still more transistors can be saved by care-
fully factorizing the expression in Equation 5, which gives us
Equation 6:

ML = x0 �b�1 + (x1 +x2 +x3) � (b�1 +b0)
+ x2 �b1 + x3 � (b1 +b2) + (x4 +x5

+x6 +x7) � (b�1 +b0 +b1 +b2 +b3)
+x5 �b4+(x6 +x7) � (b4 +b5)+x7 �b6

(6)

Even after factorizing, 8 is the optimum value for w, as our
calculations and experimentations showed. Figure 3 demon-
strates the net-list resulted from Equation 6. Word line (WL),
bit lines (BL[7 :�1];BL[7 :�1]), and comparand lines (CMP[7 :
0];CMP[7 : 0]) are hidden in this figure to make it less crowded
and easy to comprehend. The CAM and SRAM cells in this
figure are the same as the CAM and SRAM cells in Figure
2, only x and d in that figure are here advertised as xi and bi ,

1The symbols +, �, ∏, and ∑ are used as Boolean notations.

respectively. Let us call this circuit Cluster-9. When imple-
mented, Equation 6 requires only 21 NMOS transistors. That
results in a total of 99 transistors for a Cluster-9, which is
22.7% less than a conventional TCAM word of size 8. In
a PCAM module, 4 of such clusters should be put together,
connected only through match line and word line, to make
room for a 32-bit IPv4 prefix. This is visualized in Figure 4.
For example, prefix 129.110.64/14=(816E4000H,00003FFFH)
would be encoded to four slices to be stored in four Cluster-9s,
i.e. B0 = 011111111, B1 = 010111111, B2 = 011011100, and
B3 = 100000010.

C. Encoder and Decoder Units

A TCAM part constructed around the Prefix-CAM idea has
to offer a conventional interface to the outside world. The pre-
fixes written to and read from this TCAM should have the clas-
sic (Value,Mask)representation. Therefore, encoding and de-
coding are needed to convert the classic prefixes to encoded
ones for writing and transforming the encoded words to (V;M)
pairs for reading.

1) Encoding unit for write operations: The encoder im-
plements the set of Equations 3. This unit should not
be mistaken with the priority encoder unit that exists at
the output stage of all TCAM modules to resolve multi-
ple matches. When w= 8, four such blocks are required
to implement a 32-bit prefix encoder. Figure 5(a) shows
such 4-block configuration. This configuration works di-
rectly in conjunction with the 32-bit PCAM word of Fig-
ure 4. To revisit the example given at the end of Section
III-B, Encoder0generates B0 (to be stored in Cluster0of
Figure 4), Encoder1generates B1 (to be stored in Clus-
ter1 of Figure 4), and so on.
Since a small combinational logic block combines pre-
fix value and prefix mask into a single encoded word, the
write operation can be done in one cycle. The same op-
eration would require two cycles to fulfill, through the
shared bit-line interconnects, in a conventional TCAM,
one cycle to write the value and a second cycle to write
the mask.

2) Decoding unit for read operations: Addressed read op-
eration is not a primary feature expected from a TCAM
device. TCAMs normally output their search result only.
Yet, at times it may come handy to be able to read a par-
ticular location within TCAM given the address of that
location. In such case, to convert the read prefix to its
classic (V;M) form for output, a decoder block is neces-
sary.
The decoder implements Equation 4 for the prefix mask
(M). The prefix value (V) is then obtained from the equa-
tion:

vi = bi �mi; i 2 f0; � � �;w�1g: (7)

For a PCAM of width 32 when w= 8, four such decoder
blocks are necessary to fully decode one word. Figure
5(b) shows such preparation. All Cluster-9 blocks of or-
der 0 (as shown in Figure 4) connect their bit lines to De-
coder0which will produce P[7 : 0] = (V[7 : 0];M[7 : 0]),
and so forth.

B
L

0[
7:

-1
]

Encoder3

M
[3

1:
24

]

V
[3

1:
24

]
B

L
3[

7:
-1

]

B
L

3[
7:

-1
]

B
L

2[
7:

-1
]

B
L

2[
7:

-1
]

M
[7

:0
]

B
L

1[
7:

-1
]

B
L

1[
7:

-1
]

V
[7

:0
]

B
L

0[
7:

-1
]

M
[1

5:
8]

Encoder2 Encoder1 Encoder0

V
[2

3:
16

]

M
[2

3:
16

]

V
[1

5:
8]

(a) Encoder for 32-bit PCAM write operations.

B
L

3[
7:

-1
]

B
L

3[
7:

-1
]

V
[3

1:
24

]

M
[3

1:
24

]

Decoder3 Decoder2 Decoder0

M
[2

3:
16

]

V
[2

3:
16

]

V
[1

5:
8]

Decoder1

M
[1

5:
8]

V
[7

:0
]

M
[7

:0
]

B
L

2[
7:

-1
]

B
L

2[
7:

-1
]

B
L

0[
7:

-1
]

B
L

1[
7:

-1
]

B
L

1[
7:

-1
]

B
L

0[
7:

-1
]

(b) Decoder for 32-bit PCAM read operations.

Fig. 5. Encoder and Decoder blocks for a 32-bit PCAM module

The encoded prefixes within PCAM can be read in one
cycle. Furthermore, the decoder block implements sim-
ple combinational logic that can be done within the same
cycle. Therefore, prefix reading can be performed in one
cycle. The same operation would need two clock cycles
in conventional TCAM with shared bit line, one cycle to
read the value and a second cycle to read the mask.

Note that neither Encoder nor Decoder has any negative im-
pact on common TCAM updating algorithms. PCAM fits in
the basic TCAM architecture (Figure 1) thus complying with
all the updating algorithms that pertain to this architecture. For
examples of such updating algorithms see [12].

IV. EXPERIMENTAL RESULTS

A. Layout Implementation

Layouts for a PCAM word as well as an equivalent TCAM
word were implemented using Cadence [13]. The design
rule was the Taiwan Semiconductor Manufacturing Company
(TSMC) 0.18 micron library provided by Mosis [14] with
V DD= 1:8v. Figures 7(a) and 7(b) show the layouts for an 32-
bit conventional TCAM word and a 32-bit PCAM word com-
posed of four Cluster-9 units, respectively. The layouts are
shown in the same scale so that their size correspondence is pre-
served. To make it easy for the reader to compare them visually,
the layouts are composed in a square shape formed of four sim-
ilar rows. For the TCAM word, each row has 8 cells. For the
PCAM word, each row consists of a Cluster-9 unit. The cell sta-
bility and noise tolerance issues are already incorporated in the
layout design. Both layouts use 2 layers of metal in most parts.
Metal 3 is used only in one occasion in each layout. The PCAM
layout in Figure 7(b) is an effort to meet the same ratio of area
saving as estimated by counting the number of transistors. A
close look at this layout shows that given more effort, it would
be possible to get a tighter layout that saves even more area than
the initial estimation. The NMOS and PMOS devices of the
CAM cells in both layouts are sized similarly. The mask SRAM
bits in TCAM are sized similar to the SRAM bits in CAM

cells (see Figure 2). The NMOS comparison logic transistors
in PCAM (the transistors shown in Figure 3) have the same size
as the comparison logic transistors in TCAM (the transistors
that connect ML to ground in Figure 2). The TCAM layout size
is ATCAM= 65:70�65:50= 4303:35nm2 and the PCAM layout
size is APCAM = 65:15� 51:38 = 3335:68nm2. Thus, the per-
centage of reduced area is ATCAM�APCAM

ATCAM
�100 = 22:48%. This

confirms the estimation obtained by counting the transistors.

TABLE I
DEMONSTRATION OF A PCAM WORD FUNCTIONALITY IN FOUR STEPS.

Step 1 Step 2 Step 3 Step 4
8-b prefix 010101* 010101* 010101* 01010*

9-b encoded 010101011 010101011 010101011 010100111
key (CMP) 01010101 01010110 01010010 01010010

ML HI HI LOW HI

NANO SECONDS
5 10 15 20 25 30 35 40 45 50 55

VWL

/B-1

/B0

/B1

/B2

CMP0

CMP1

VMP2

ML

Fig. 6. Simulation waveforms for four test samples.

Table I summarizes one of the test scenarios used to verify
the functionality and timing behavior of PCAM. An 8 bit prefix
is used for simplicity. The experiment is visualized in Figure 6,
showing only the affected signals. Notice that for PCAM con-
tent complemented signals are shown, i.e. b

�1, b0, b1 and b2.
At the beginning of step 1 the encoded prefix 010101011 (en-
coded form of the 6-bit prefix 010101*) is present in memory.
The first two bits of the prefix are masked. At this step the key
01010101 is placed on the comparand lines which generates a
match (last line of the table). This can be observed at t = 10ns
on the waveforms of Figure 6. To show that masked bits do not
affect the search operation, step 2 toggles the first 2 bits of the
key (CMP0 and CMP1). As expected, 01010110 also generates
a match (t = 20nson the same figure). Step 3 changes the third
bit of the key (CMP2). The result will be a mismatch (t = 30ns
on the waveform) because this location is not masked. In step
4 the prefix is changed to 010100111. Now 3 bits are masked
instead of 2, which will cause the same key in step 3 to generate
a match (t = 40nson the waveform).

Extensive simulation was performed for different mask
lengths and various sequences of input to compare the timing
and power performance of PCAM against the reference TCAM.
The worst-case timing results are summarized in Table II, for
both PCAM and the reference model. This table shows the

TABLE II
COMPARING PCAM AND THE CONVENTIONAL TCAM.

- �25oC 25oC 75oC
PCAM TCAM PCAM TCAM PCAM TCAM

tr [ns] 1.23 1.12 1.56 1.41 2.01 1.89
t f [ns] 2.25 2.06 2.60 2.34 3.11 2.65

tplh[ns] 0.57 0.61 0.71 0.78 0.94 1.07
tphl [ns] 1.00 0.93 1.24 1.15 1.54 1.42
Pd[uw] 119.3 111.5 102.4 94.5 91.2 85.1

TABLE III
SIMULATION RESULTS FOR ENCODER AND DECODER BLOCKS.

Unit tp [ns] Size [MFET]
Encoder 0.84 310
Decoder 2.35 211

major delay factors: rise time (tr), fall time (t f), and propa-
gation delays (tplh and tphl) as well as the worst case dynamic
power dissipation (Pd) for three different temperatures. ML al-
ways drives a double standard inverter load. VOLmax� 0:24
and VOHmin � 1:78 for both TCAM and PCAM. Delays are
all reported in nano-seconds and power dissipation is reported
in micro-Watts. Pd is obtained by toggling all the comparand
lines every 4 nanoseconds in a way that the match line altered
in every period.

As the table shows, PCAM catches up with the reference
model both in terms of speed and dynamic power consumption.
Cutting the number of transistors does not have any noticeable
negative effect on the performance of PCAM. Moreover, the
reduced number of transistor causes a reduction in the average
static power consumption due to leakage current. In deep sub-
micron technologies, the static power consumption is the dom-
inant factor in the overall power and increases exponentially
with the reduction of transistor size. Therefore, PCAM has the
important advantage of less static power consumption in deep
sub-micron technologies.

B. The Encoder and Decoder Blocks

The encoder block of Figure 5(a) was modeled in VHDL.
The model was simulated and synthesized using Synopsys De-
sign Analyzer tool [15] and 0.18 micron TSMC library from
Artisan Components, Inc. So was the decoder block of Figure
5(b). None of these blocks affects search performance. The
encoder affects the critical path of write circuitry while the de-
coder affects the read critical path. The delays (in nanosecond)
and sizes (in number of MFET transistors) of both blocks are
summarized in Table III. The sizes of both blocks are negligi-
ble compared to the total size of a regular TCAM (see Section
IV-C for more details).

C. Estimation of Conserved Area

� Area preserved due to reduced number of devices:
Most of the area on a TCAM layout is occupied by the
TCAM words. Other units such as the sense amplifiers,
priority encoder, and IO buffers occupy less than 5% of the
die area. The area occupied by the two additional PCAM
units Encoder and Decoder is only a miniscule portion of

(a) 32-bit conventional TCAM word (b) 32-bit PCAM word

Fig. 7. Layouts for 32-bit TCAM and PCAM words.

this 5%. Therefore, the area saving for one TCAM word
can be reflected closely in a large TCAM module fabri-
cation. Our estimations show that a reasonably designed
32K PCAM layout can achieve at least 21% area reduc-
tion compared to a TCAM with the same size.

� Area preserved due to reduced address decode inter-
connects: There are two address decode interconnects for
each individual TCAM word, one to control data read and
writes (often called the word line) and one to control mask
read and writes (often called mask word line). Because
PCAM eliminates the mask bit, the mask word line is not
needed anymore. That accounts for half of the address
decode interconnects. Therefore, we expect a VLSI im-
plementation of PCAM to have 50% less address decode
interconnects than conventional TCAM.

V. CONCLUSION

This paper introduces Prefix CAM design, which is a ternary
CAM optimized for prefix storage and lookup applications.
Such applications include high speed Internet packet classifi-
cation and forwarding, where lookup tables are huge and the
appetite for higher storage density is always growing. To ad-
dress this concern, our design removes the explicit mask bits
from TCAM cells hence reducing the number of RAM cells in
PCAM by 43.8% compared to a conventional design. Some
logic is then added to compensate for the reduced number of
memory cells. Eventually, the number of transistors and thus
the layout area are reduced by 22%. This approach also re-
moves all mask word lines, which are long interconnects going
to each and every TCAM word. PCAM structure can also re-
duce the static power consumption which is important for deep
sub-micron technologies. All these improvements are achieved
without compromising performance or functionality, compared
to the conventional TCAM.

REFERENCES

[1] H. Miyatake, M. Tanaka, and Y. Mori, “A Design for High-Speed
Low-Power CMOS Fully Parallel Content-Addressable Memory
Macros,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6,
June 2001.

[2] T. Pei and C. Zukowski, “Putting Routing Tables in Silicon,”
IEEE Network Magazine, January 1992.

[3] A. McAuley and Paul Francis, “Fast Routing Table Lookup Using
CAMs,” IEEE INFOCOM’93, March 1993.

[4] V. Srinivasan, B. Nataraj, and S. Khanna, “Methods For Longest
Prefix Matching In a Content Addressable Memory,” US Patent
6,237,061, January 1999.

[5] R. Kempke and A. McAuley, “Ternary CAM Memory Architec-
ture and Methodology,” U.S. Patent no. 5,841,874, August 1996.

[6] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A Ternary
Content-Addressable Memory (TCAM) Based on 4T Static Stor-
age and Including a Current-Race Sensing Scheme,” IEEE Jour-
nal of Solid-State Circuits, vol. 38, no. 1,, January 2003.

[7] J. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996.
[8] H. Liu, “Routing Table Compaction in Ternary CAM,” IEEE Mi-

cro, January, February 2002.
[9] M. Ruiz-Sanchez, E. Biersack and W. Dabbous, “Survey and Tax-

onomy of IP Address Lookup Algorithms,” IEEE Network Mag-
azine, March 2001.

[10] A.P.J. Engbersen, J. van Lunteren, “Prefix-Based Parallel Packet
Classification,” IBM Research Report, Zurich Research Labora-
tory, March 2000.

[11] H. Mohammadi, N. Yazdani, B. Robatmili, and M. Nourani,
“HASIL: Hardware Assisted Software-Based IP Lookup for
Large Routing Tables,” in International Conference on Networks
(ICON), September 2003.

[12] D. Shah and P. Gupta, “Fast Updating Algorithms for TCAMs,”
IEEE Micro, February 2001.

[13] Cadence Design Systems Inc., “Virtuoso Layout Editor Users
Guide - Version 4.4.6,” June 2000.

[14] The Mosis Service., http://www.mosis.com.
[15] Synopsys Inc., “User Manuals for SYNOPSYS Toolset Version

2002.06,” 2002.

