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Abstract 

 
Decimal arithmetic is regaining popularity in the 

computing community due to the growing importance of 
commercial, financial, and Internet-based applications, 
which process decimal data. This paper presents an 
iterative decimal multiplier, which is operates at high 
clock frequencies and scales well to large operand sizes.  
The multiplier uses a new decimal representation for 
intermediate products, which allows for a very fast two-
stage iterative multiplier design.  Decimal multipliers, 
which are synthesized using a 0.11 micron CMOS 
standard cell library, operate at clock frequencies close 
to 2 GHz. The latency of the proposed design to multiply 
two n-digit BCD operands is (n + 8) cycles with a new 
multiplication able to begin every (n + 1) cycles. 
  
1.  Introduction 

 
Recently, support for decimal arithmetic has 

received increased attention due to the growing 
importance of financial, commercial, and Internet-based 
applications, which often cannot tolerate errors from 
converting between decimal and binary formats. Since 
many decimal numbers, such as 0.2, cannot be exactly 
represented in binary, these applications often store data 
in decimal format and process data using decimal 
arithmetic software [1].  Although decimal arithmetic 
software eliminates conversion errors, it is typically 100 
to 1,000 times slower than binary arithmetic 
implemented in hardware [1]. Due to the growing 
importance of decimal arithmetic, specifications for it 
have recently been added to the draft revision of the 
IEEE 754 Standard for Floating-Point Arithmetic [2].   

This paper presents an iterative decimal multiplier, 
which operates at high clock frequencies and scales well 
to large operand sizes.  The multiplier uses a novel 
decimal representation for intermediate products, which 
allows for a very fast two-stage iterative multiplier 

design. Section 2 discusses previous approaches to 
decimal multiplication. Section 3 presents our proposed 
approach to decimal multiplication. Section 4 provides 
area and delay estimates for decimal multipliers with 
various operand sizes. Section 5 presents our 
conclusions. Additional information on decimal 
arithmetic is available from mesa.ece.wisc.edu and 
www2.hursley.ibm.com/decimal/.  

In the remainder of this paper, decimal numbers 
are assumed to be in Binary Coded Decimal (BCD) 
format. Subscripts next to constants are used to denote 
the base of the constant. For example, 10012 represents 
the binary number equal to 910. An upper case variable 
(e.g., B) denotes an entire operand word.  A lower case 
variable with an associated subscript (e.g. bi) denotes a 
single digit in that operand.  A digit referenced with 
brackets (e.g. bi[4]) denotes a single bit in that digit. 
The multiplication of an n-digit multiplicand, A, by an 
n-digit multiplier, B, produces a 2n-digit product, P.  
 
2.  Previous decimal multipliers  
 

Decimal arithmetic units are inherently more 
complex than binary arithmetic units, since they need to 
handle a wider range of digits, carries across both bit 
and digit boundaries, and invalid result digits.  For 
example, adding two BCD numbers using binary 
addition can produce invalid BCD digits in the range 
A16 - F16. When this happens, each invalid BCD digit is 
corrected by adding six, which produces a valid BCD 
digit in the range 010 - 510 and a digit carry. Because of 
their increased complexity, decimal multipliers are 
typically implemented using an iterative approach. 
Each iteration, the entire multiplicand is multiplied by 
one multiplier digit to generate a partial product. The 
partial product is added to an intermediate product 
register that holds the previously accumulated partial 
products.   



 

An iterative decimal multiplier is presented in [3].  
In this multiplier, decimal partial products are 
generated by creating two partial products, DH and DL, 
for each multiplier digit. When the entire multiplicand 
is multiplied by a single multiplier digit, DH contains 
the higher order digits and DL contains the lower order 
digits.  For example, the partial products generated with 
a BCD multiplicand of 354810 and a multiplier digit of 
610 are: 

 
 During a single iteration, a first round of decimal 

corrections is performed on the intermediate product, 
which is stored in carry-save format. These new values, 
along with DH, are sent into a binary carry-save adder 
and the resulting sum is corrected.  The new sum, new 
carry, and DL are then added using binary carry-save 
addition and the resulting sum is corrected yet again. 
Finally, this sum and carry are right-shifted and stored 
in intermediate registers, to be added to the new DH 
and DL generated in the next cycle.  Multiplying two n-
digit BCD numbers requires n iterations, where each 
iteration consists of two binary carry-save additions and 
three decimal corrections.  After n iterations, the carry 
and sum are added using a decimal carry-propagate 
adder to produce the final product.  

An alternate approach to iterative decimal 
multiplication, which uses decimal carry-save addition, 
is presented in [4]. The multiplier in [4] uses a unique 
form of decimal partial product generation. When 
generating the partial product, A × bi, the multiplier 
digit, bi, is used to select values from two sets of 
secondary multiples. The sum of the selected secondary 
multiples equals the partial product A × bi. During the 
first cycle of operation, the secondary multiples 2A, 4A, 
and 5A are generated using simple combinational logic. 
Since the multiplicand is latched and unaltered during 
operation, the secondary multiples need not be latched, 
which saves area. The secondary multiples are divided 
into two sets, SM1 ∈  {0A, 1A, 4A, 5A} and SM2 ∈  {0A, 
2A, 4A}, so that any multiple of A, from 0A to 9A, can 
be produced by adding appropriate values of SM1 and 
SM2.  For example, if bi = 6, 4A and 2A are selected for 
SM1 and SM2, respectively.   

 The multiplier presented in [4] performs iterative 
additions in two pipeline stages, which allows for a 
higher clock frequency than the design proposed in [3]. 
The first stage uses a simplified decimal 3:2 counter to 
add the secondary multiples, SM1 and SM2, to produce 
n 4-bit BCD sum digits and n 1-bit carry digits. The 
second stage uses a decimal 4:2 compressor to add the 
sum and carry digits from the previous stage, along 

with the carry and sum digits from the previous 4:2 
compression. The output of the decimal 4:2 compressor 
corresponds to the intermediate product in decimal 
carry-save format. The decimal 3:2 counter and 4:2 
compressor use a variant of direct decimal addition, 
introduced in [5]. The critical path for this multiplier 
consists of ten levels of logic to perform the decimal 4:2 
compression, where each logic level corresponds to one 
complex gate delay. 

After n iterations, the 4-bit sum and 1-bit carry 
digits are added using a simplified form of decimal 
carry-propagate addition.  The latency of this multiplier 
is (n + 4) cycles and a new multiplication can begin 
every (n + 1) cycles. 
 
3.  Proposed Decimal Multiplier 
 

The multiplier presented in [4] stores intermediate 
product digits in a BCD carry-save format. Our 
multiplier stores these digits in a less restrictive, 
redundant format, called the overloaded decimal 
representation, which reduces the delay of the iterative 
portion of the multiplier. In a standard BCD 
representation, the bit combinations A16 - F16 
correspond to invalid BCD digits. Our overloaded 
decimal representation allows 4-bit digits to have any 
value from 016 - F16, even though the base of the number 
is still 1010.  This allows decimal numbers to have 
multiple representations. For example, the number 
12010 can be represented as 12010 or 0C010. The 
overload decimal representation reduces the overhead of 
correcting sum digits during the iterative portion of the 
multiplier, since sum correction is only performed when 
sixteen is exceeded. When the final product digits are 
formed, each overloaded decimal digit is corrected back 
to BCD by adding six to the digit, if it is in the range 
A16 - F16. 

Figure 1 is a diagram of our proposed multiplier 
design. The secondary multiple generation and 
selection, and decimal carry-propagate addition are 
identical to those used in [4].  The overloaded decimal 
adder takes two cycles to add the secondary multiples to 
the intermediate product, which is stored using our 
overloaded decimal representation. When digits leave 
the overloaded decimal adder, clean-up logic is used to 
convert the overloaded decimal digits back to BCD 
digits. The intermediate product register is also 
cleaned-up before the final carry-propagate addition is 
performed. As digits enter the final product shift 
register and at the end of the multiplication, each 
overloaded decimal digit is corrected back to BCD by 
adding six to the digit, if it is in the range A16 - F16. The 
major portions of the multiplier are explained below. 



 

Figure 2 shows a block diagram for one digit of a 
two-stage overloaded decimal adder.  The first stage 
inputs three 4-bit digits to a 4-bit binary carry-save 
adder (CSA).  Two inputs, sm1i and sm2i, are BCD 
digits from the secondary multiples, SM1 and SM2, and 
the third digit, pri+2, is an overloaded decimal digit 
from the intermediate product register, PR. With BCD 
addition, six is added to the sum each time ten is 
surpassed. In our overloaded decimal representation, 
when a carry is generated out of a 4-bit digit, it 
corresponds to a value of sixteen.  Thus, when a carry is 
generated, it is known that the sum of the digits added 
is at least sixteen, which is greater than ten, so a 
correction factor of six must be added. To reduce the 
worst case delay of the overloaded decimal adder, six is 
added in the next iteration. Since the secondary 
multiple digits are in BCD form (0 - 9), their digit 
values plus six (6 - F) can be found with simple two-
level logic. In our adder, the carry-outs from additions 
in the previous iterations (labeled co_top and co_bot in 
Figure 2) select whether to add the secondary multiple 
digit or the secondary multiple digit plus six. In the first 
stage of the overloaded decimal adder, the two 
secondary multiple digits, sm1i and sm2i, are 
conditionally increased by six and added, along with the 
intermediate product digit, pri+2, using a binary carry-
save adder. In the second stage, the overloaded decimal 
sum and carry digits from the first stage are compressed 
using a 4-bit binary carry-propagate adder (CPA) to 
produce the new overloaded decimal product digit, pri. 

 

 
Figure 1: Proposed decimal multiplier 

 
Figure 2.  1-digit, 2-stage overloaded decimal adder 

 

 

Figure 3.  1-digit, 4-stage clean-up block 
 

Since the overloaded decimal adder uses two stages, it 
holds two intermediate products. While one is in the 
intermediate product shift register, the other is in the 
latch half-way through the overloaded decimal adder. In 
order to produce a new final product digit each cycle, 
the least significant intermediate product digits, pr1 and 
pr0, are summed and corrected into proper BCD digits, 
by adding six to each digit if it is in the range A16 - F16. 
This is done in a 1-digit. 4-stage clean-up block, which 
is shown in Figure 3. The first stage adds pr1 and a 
correction factor of +0/6. The second stage adds pr0, the 
result of the first clean-up stage, and two more +0/6 



 

correction factors using binary carry-save adders.  The 
third stage adds the sum and carry from stage two, and 
the fourth stage corrects the result of stage three. 

 When the iterative phase of multiplication completes, 
the digits in the intermediate product shift register also 
need to be cleaned up.  This is done by an intermediate 
product clean-up block, which consists of an array of n 
modified 1-digit clean-up blocks. The intermediate 
product clean-up block merges the two intermediate 
products for each digit, corrects invalid sum digits, and 
produces a 1-bit carry and a 4-bit BCD sum for each 
digit. The sum and carry digits are sent to a simplified 
decimal carry-propagate adder, which uses a two-stage 
pipeline and is identical to the one presented in [4].  

 
4.  Synthesis Results 
 

The decimal multiplier design proposed in Section 
3 is constructed in Verilog for 8, 16, and 34-digit wide 
operands. All multipliers are synthesized using 
Synopsys Design Compiler and LSI Logic’s gflxp 0.l1 
micron CMOS standard cell library. Table 1 shows the 
results of synthesis runs when the designs are optimized 
for delay.  The delays for each operand size are very 
close, since the delay of the design is not very 
dependent on the width of the operands. The small 
differences in delay can be attributed to increased 
fanout with increased operand size. The critical path for 
our multiplier is in the first stage of the overloaded 
decimal adder. The combinational delay for this stage 
corresponds to eight logic levels. It is composed of a 4-
to-1 multiplexer delay to select SM1 and SM2, two-
level logic to find the +6 values of SM1 and SM2, and a 
binary carry-save addition. Simplified decimal carry-
propagate addition is performed in two cycles, so that it 
not on the critical delay path.   

 
Table 1.  Multiplier synthesis results 

Operand 
Size (n) 

Delay 
(ns) 

Frequency 
(GHz) 

Area 
(mm2) 

8 0.49 2.04 0.093 
16 0.50 2.00 0.199 
34 0.51 1.96 0.373 

 
 The multiplier discussed in Section 2 and [4] is 

also synthesized in the same environment as the 
multipliers we designed.  Table 2 gives a comparison of 
the 34-digit multipliers for each technique when the 
multipliers are optimized for delay. Our design is able 
to operate at a 14% higher clock frequency than the 
multiplier in [4].  It requires 77% more area because of 
the clean-up blocks needed to merge and correct the two 
intermediate products. In [4], the latency for an n-digit 

multiplication is (n + 4) cycles and a new 
multiplication can begin every (n + 1) cycles.  The 
latency for our multiplier is (n + 8) cycles and a new 
multiplication can begin every (n + 1) cycles.   

 
Table 2: Comparison of 34-digit multipliers 

Multiplier 
Technique 

Delay 
(ns) 

Frequency 
(GHz) 

Area 
(mm2) 

Decimal Carry-Save 
Addition [4] 

0.58 1.72 0.210 

Overloaded Decimal 
Addition 

0.51 1.96 0.373 

 
6.  Conclusions 

 
 In this paper, we have given motivation for 

implementing decimal arithmetic in hardware.  Two 
previous implementations of decimal multipliers are 
discussed.  A decimal multiplier design that operates at 
high clock frequencies is proposed.  The intermediate 
product is stored in an overloaded decimal 
representation, which allows the invalid BCD digits, 
A16 - F16, to be used.  Decimal multipliers are 
constructed in Verilog for 8, 16, and 34-digit operands.  
Synthesis results show that the circuits operate at clock 
frequencies in the vicinity of 2 GHz when implemented 
using a 0.11 micron CMOS standard cell library.  A 
performance comparison with the decimal multiplier 
design presented in [9] shows that the proposed 
multiplier achieves a 14% higher clock frequency. 
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