

 A High-Frequency Decimal Multiplier

Robert D. Kenney and Michael J. Schulte
Department of ECE

University of Wisconsin – Madison
Madison, WI 53706, USA

rdkenney@uwalumni.com, schulte@engr.wisc.edu

Mark A. Erle
Systems and Technology Group
International Business Machines

Poughkeepsie, NY 12601
merle@us.ibm.com

Abstract

Decimal arithmetic is regaining popularity in the

computing community due to the growing importance of
commercial, financial, and Internet-based applications,
which process decimal data. This paper presents an
iterative decimal multiplier, which is operates at high
clock frequencies and scales well to large operand sizes.
The multiplier uses a new decimal representation for
intermediate products, which allows for a very fast two-
stage iterative multiplier design. Decimal multipliers,
which are synthesized using a 0.11 micron CMOS
standard cell library, operate at clock frequencies close
to 2 GHz. The latency of the proposed design to multiply
two n-digit BCD operands is (n + 8) cycles with a new
multiplication able to begin every (n + 1) cycles.

1. Introduction

Recently, support for decimal arithmetic has

received increased attention due to the growing
importance of financial, commercial, and Internet-based
applications, which often cannot tolerate errors from
converting between decimal and binary formats. Since
many decimal numbers, such as 0.2, cannot be exactly
represented in binary, these applications often store data
in decimal format and process data using decimal
arithmetic software [1]. Although decimal arithmetic
software eliminates conversion errors, it is typically 100
to 1,000 times slower than binary arithmetic
implemented in hardware [1]. Due to the growing
importance of decimal arithmetic, specifications for it
have recently been added to the draft revision of the
IEEE 754 Standard for Floating-Point Arithmetic [2].

This paper presents an iterative decimal multiplier,
which operates at high clock frequencies and scales well
to large operand sizes. The multiplier uses a novel
decimal representation for intermediate products, which
allows for a very fast two-stage iterative multiplier

design. Section 2 discusses previous approaches to
decimal multiplication. Section 3 presents our proposed
approach to decimal multiplication. Section 4 provides
area and delay estimates for decimal multipliers with
various operand sizes. Section 5 presents our
conclusions. Additional information on decimal
arithmetic is available from mesa.ece.wisc.edu and
www2.hursley.ibm.com/decimal/.

In the remainder of this paper, decimal numbers
are assumed to be in Binary Coded Decimal (BCD)
format. Subscripts next to constants are used to denote
the base of the constant. For example, 10012 represents
the binary number equal to 910. An upper case variable
(e.g., B) denotes an entire operand word. A lower case
variable with an associated subscript (e.g. bi) denotes a
single digit in that operand. A digit referenced with
brackets (e.g. bi[4]) denotes a single bit in that digit.
The multiplication of an n-digit multiplicand, A, by an
n-digit multiplier, B, produces a 2n-digit product, P.

2. Previous decimal multipliers

Decimal arithmetic units are inherently more
complex than binary arithmetic units, since they need to
handle a wider range of digits, carries across both bit
and digit boundaries, and invalid result digits. For
example, adding two BCD numbers using binary
addition can produce invalid BCD digits in the range
A16 - F16. When this happens, each invalid BCD digit is
corrected by adding six, which produces a valid BCD
digit in the range 010 - 510 and a digit carry. Because of
their increased complexity, decimal multipliers are
typically implemented using an iterative approach.
Each iteration, the entire multiplicand is multiplied by
one multiplier digit to generate a partial product. The
partial product is added to an intermediate product
register that holds the previously accumulated partial
products.

An iterative decimal multiplier is presented in [3].
In this multiplier, decimal partial products are
generated by creating two partial products, DH and DL,
for each multiplier digit. When the entire multiplicand
is multiplied by a single multiplier digit, DH contains
the higher order digits and DL contains the lower order
digits. For example, the partial products generated with
a BCD multiplicand of 354810 and a multiplier digit of
610 are:

 During a single iteration, a first round of decimal

corrections is performed on the intermediate product,
which is stored in carry-save format. These new values,
along with DH, are sent into a binary carry-save adder
and the resulting sum is corrected. The new sum, new
carry, and DL are then added using binary carry-save
addition and the resulting sum is corrected yet again.
Finally, this sum and carry are right-shifted and stored
in intermediate registers, to be added to the new DH
and DL generated in the next cycle. Multiplying two n-
digit BCD numbers requires n iterations, where each
iteration consists of two binary carry-save additions and
three decimal corrections. After n iterations, the carry
and sum are added using a decimal carry-propagate
adder to produce the final product.

An alternate approach to iterative decimal
multiplication, which uses decimal carry-save addition,
is presented in [4]. The multiplier in [4] uses a unique
form of decimal partial product generation. When
generating the partial product, A × bi, the multiplier
digit, bi, is used to select values from two sets of
secondary multiples. The sum of the selected secondary
multiples equals the partial product A × bi. During the
first cycle of operation, the secondary multiples 2A, 4A,
and 5A are generated using simple combinational logic.
Since the multiplicand is latched and unaltered during
operation, the secondary multiples need not be latched,
which saves area. The secondary multiples are divided
into two sets, SM1 ∈ {0A, 1A, 4A, 5A} and SM2 ∈ {0A,
2A, 4A}, so that any multiple of A, from 0A to 9A, can
be produced by adding appropriate values of SM1 and
SM2. For example, if bi = 6, 4A and 2A are selected for
SM1 and SM2, respectively.

 The multiplier presented in [4] performs iterative
additions in two pipeline stages, which allows for a
higher clock frequency than the design proposed in [3].
The first stage uses a simplified decimal 3:2 counter to
add the secondary multiples, SM1 and SM2, to produce
n 4-bit BCD sum digits and n 1-bit carry digits. The
second stage uses a decimal 4:2 compressor to add the
sum and carry digits from the previous stage, along

with the carry and sum digits from the previous 4:2
compression. The output of the decimal 4:2 compressor
corresponds to the intermediate product in decimal
carry-save format. The decimal 3:2 counter and 4:2
compressor use a variant of direct decimal addition,
introduced in [5]. The critical path for this multiplier
consists of ten levels of logic to perform the decimal 4:2
compression, where each logic level corresponds to one
complex gate delay.

After n iterations, the 4-bit sum and 1-bit carry
digits are added using a simplified form of decimal
carry-propagate addition. The latency of this multiplier
is (n + 4) cycles and a new multiplication can begin
every (n + 1) cycles.

3. Proposed Decimal Multiplier

The multiplier presented in [4] stores intermediate
product digits in a BCD carry-save format. Our
multiplier stores these digits in a less restrictive,
redundant format, called the overloaded decimal
representation, which reduces the delay of the iterative
portion of the multiplier. In a standard BCD
representation, the bit combinations A16 - F16
correspond to invalid BCD digits. Our overloaded
decimal representation allows 4-bit digits to have any
value from 016 - F16, even though the base of the number
is still 1010. This allows decimal numbers to have
multiple representations. For example, the number
12010 can be represented as 12010 or 0C010. The
overload decimal representation reduces the overhead of
correcting sum digits during the iterative portion of the
multiplier, since sum correction is only performed when
sixteen is exceeded. When the final product digits are
formed, each overloaded decimal digit is corrected back
to BCD by adding six to the digit, if it is in the range
A16 - F16.

Figure 1 is a diagram of our proposed multiplier
design. The secondary multiple generation and
selection, and decimal carry-propagate addition are
identical to those used in [4]. The overloaded decimal
adder takes two cycles to add the secondary multiples to
the intermediate product, which is stored using our
overloaded decimal representation. When digits leave
the overloaded decimal adder, clean-up logic is used to
convert the overloaded decimal digits back to BCD
digits. The intermediate product register is also
cleaned-up before the final carry-propagate addition is
performed. As digits enter the final product shift
register and at the end of the multiplication, each
overloaded decimal digit is corrected back to BCD by
adding six to the digit, if it is in the range A16 - F16. The
major portions of the multiplier are explained below.

Figure 2 shows a block diagram for one digit of a
two-stage overloaded decimal adder. The first stage
inputs three 4-bit digits to a 4-bit binary carry-save
adder (CSA). Two inputs, sm1i and sm2i, are BCD
digits from the secondary multiples, SM1 and SM2, and
the third digit, pri+2, is an overloaded decimal digit
from the intermediate product register, PR. With BCD
addition, six is added to the sum each time ten is
surpassed. In our overloaded decimal representation,
when a carry is generated out of a 4-bit digit, it
corresponds to a value of sixteen. Thus, when a carry is
generated, it is known that the sum of the digits added
is at least sixteen, which is greater than ten, so a
correction factor of six must be added. To reduce the
worst case delay of the overloaded decimal adder, six is
added in the next iteration. Since the secondary
multiple digits are in BCD form (0 - 9), their digit
values plus six (6 - F) can be found with simple two-
level logic. In our adder, the carry-outs from additions
in the previous iterations (labeled co_top and co_bot in
Figure 2) select whether to add the secondary multiple
digit or the secondary multiple digit plus six. In the first
stage of the overloaded decimal adder, the two
secondary multiple digits, sm1i and sm2i, are
conditionally increased by six and added, along with the
intermediate product digit, pri+2, using a binary carry-
save adder. In the second stage, the overloaded decimal
sum and carry digits from the first stage are compressed
using a 4-bit binary carry-propagate adder (CPA) to
produce the new overloaded decimal product digit, pri.

Figure 1: Proposed decimal multiplier

Figure 2. 1-digit, 2-stage overloaded decimal adder

Figure 3. 1-digit, 4-stage clean-up block

Since the overloaded decimal adder uses two stages, it
holds two intermediate products. While one is in the
intermediate product shift register, the other is in the
latch half-way through the overloaded decimal adder. In
order to produce a new final product digit each cycle,
the least significant intermediate product digits, pr1 and
pr0, are summed and corrected into proper BCD digits,
by adding six to each digit if it is in the range A16 - F16.
This is done in a 1-digit. 4-stage clean-up block, which
is shown in Figure 3. The first stage adds pr1 and a
correction factor of +0/6. The second stage adds pr0, the
result of the first clean-up stage, and two more +0/6

correction factors using binary carry-save adders. The
third stage adds the sum and carry from stage two, and
the fourth stage corrects the result of stage three.

 When the iterative phase of multiplication completes,
the digits in the intermediate product shift register also
need to be cleaned up. This is done by an intermediate
product clean-up block, which consists of an array of n
modified 1-digit clean-up blocks. The intermediate
product clean-up block merges the two intermediate
products for each digit, corrects invalid sum digits, and
produces a 1-bit carry and a 4-bit BCD sum for each
digit. The sum and carry digits are sent to a simplified
decimal carry-propagate adder, which uses a two-stage
pipeline and is identical to the one presented in [4].

4. Synthesis Results

The decimal multiplier design proposed in Section
3 is constructed in Verilog for 8, 16, and 34-digit wide
operands. All multipliers are synthesized using
Synopsys Design Compiler and LSI Logic’s gflxp 0.l1
micron CMOS standard cell library. Table 1 shows the
results of synthesis runs when the designs are optimized
for delay. The delays for each operand size are very
close, since the delay of the design is not very
dependent on the width of the operands. The small
differences in delay can be attributed to increased
fanout with increased operand size. The critical path for
our multiplier is in the first stage of the overloaded
decimal adder. The combinational delay for this stage
corresponds to eight logic levels. It is composed of a 4-
to-1 multiplexer delay to select SM1 and SM2, two-
level logic to find the +6 values of SM1 and SM2, and a
binary carry-save addition. Simplified decimal carry-
propagate addition is performed in two cycles, so that it
not on the critical delay path.

Table 1. Multiplier synthesis results

Operand
Size (n)

Delay
(ns)

Frequency
(GHz)

Area
(mm2)

8 0.49 2.04 0.093
16 0.50 2.00 0.199
34 0.51 1.96 0.373

 The multiplier discussed in Section 2 and [4] is

also synthesized in the same environment as the
multipliers we designed. Table 2 gives a comparison of
the 34-digit multipliers for each technique when the
multipliers are optimized for delay. Our design is able
to operate at a 14% higher clock frequency than the
multiplier in [4]. It requires 77% more area because of
the clean-up blocks needed to merge and correct the two
intermediate products. In [4], the latency for an n-digit

multiplication is (n + 4) cycles and a new
multiplication can begin every (n + 1) cycles. The
latency for our multiplier is (n + 8) cycles and a new
multiplication can begin every (n + 1) cycles.

Table 2: Comparison of 34-digit multipliers

Multiplier
Technique

Delay
(ns)

Frequency
(GHz)

Area
(mm2)

Decimal Carry-Save
Addition [4]

0.58 1.72 0.210

Overloaded Decimal
Addition

0.51 1.96 0.373

6. Conclusions

 In this paper, we have given motivation for

implementing decimal arithmetic in hardware. Two
previous implementations of decimal multipliers are
discussed. A decimal multiplier design that operates at
high clock frequencies is proposed. The intermediate
product is stored in an overloaded decimal
representation, which allows the invalid BCD digits,
A16 - F16, to be used. Decimal multipliers are
constructed in Verilog for 8, 16, and 34-digit operands.
Synthesis results show that the circuits operate at clock
frequencies in the vicinity of 2 GHz when implemented
using a 0.11 micron CMOS standard cell library. A
performance comparison with the decimal multiplier
design presented in [9] shows that the proposed
multiplier achieves a 14% higher clock frequency.

Acknowledgements

This research was supported in part by an IBM
Faculty Award.

References

[1] M. F. Cowlishaw, “Decimal Floating-Point: Algorithm

for Computers,” Proceedings of the 16th IEEE
Symposium on Computer Arithmetic, pp. 104-111, June
2003.

[2] Draft IEEE Standard for Floating-Point Arithmetic,
IEEE, inc., New York, 2003. Available from:
http://754r.ucbtest.org/drafts/754r.pdf.

[3] T. Ohtsuki, et al., “Apparatus for Decimal
Multiplication,” U.S. Patent, June 1987, #4,677,583.

[4] M. A. Erle and M. J. Schulte, “Decimal Multiplication
Via Carry-Save Addition,” IEEE 14th International
Conference on Application-specific Systems,
Architectures and Processors, pp. 348-358, June 2003.

[5] M. Schmookler and A. Weinberger, “High Speed
Decimal Addition,” IEEE Transactions on Computers,
Vol. C-20, No. 8, pp. 862-866, August 1971.

