Defining Wakeup Width for Efficient Dynamic Scheduling

Aneesh Aggarwal Manoj Franklin Oguz Ergin
ECE Department ECE Department and UMIACS CS Department
Binghamton University University of Maryland Binghamton University
Binghamton, NY 13902 College Park, MD 20742 Binghamton, NY 13902
aneesh@binghamton.edu manoj@eng.umd.edu oguz@cs.binghamton.edu
Abstract across the width of the register tags.

i) In this paper, we propose a scheduler design that reduces
A larger Dynamic Scheduler (DS) exposes more Instruction LeVgl,e gcheqyler critical path latency by reducing the processor
Parallelism (ILP), giving better performance. However, a larger Dﬁ/akeupwidth. We definewakeup width as the number of reg-
also results in a longer scheduler latency and a slower clock Spef&er tags used to wakeup the dependent instructions. In a con-
In this paper, we propose a new DS design that reduces the SChed%ﬁtiOﬂBj DS, the wakeup width is usually equal to the issue
critical path latency by reducing theakeup width (defined as the ef- width [15]. In our DS design, the processor wakeup width
fective number of results used for instruction wakeup). The designii§ reduced, without reducing the processor issue width. Re-
based op the rgallzatlon that the average number of resu.lts per (_:yal.?cing the wakeup width also reduces the scheduler energy
that are immediately required to wake up the dependent 'nStrUCt'oeansumption and area. The new scheduler design is based on
is considerably less than the processor issue width. Our designs 58 observation that the average number of immediately use-
evaluated using the simulation of the SPEC 2000 benchmarks apfj yqqister tags produced per cycle is considerably less than
SPICE simulations of the actual issue queue layouts in 0.18 MICreRe processor issue width. We found a significant reduction
process. We found that a significant reduction in scheduler Iatenqx, scheduler latency, energy consumption, and area, with less
power consumption and area is achieved with less than 2% redl{ﬁ-an 20% reduction in the IPC for SPEC2K benchmarks.
tion in the Instructions per Cycle (IPC) count for the SPEC2K bench- The rest of the paper is organized as follows. Section 2 dis-
marks. cusses the intuition behind the new scheduler design. Section 3
) presents the scheduler design and its implementation. Section
1 Introduction 4 discusses the experimental results. Section 5 presents en-
In current microprocessor designs, dynamic scheduling is oENcements to the basic design. Section 6 gives related work,
of the most important techniques used to extract Instructiodnd in Section 7, we conclude.
Level Parallelism (ILP). The dynamic scheduler (DS) logic, .
consists of the wakeup logic, which marks the instructiong Program Behavior StUdy
when their dependencies are satisfied, and the select logitot all the instructions that are issued produce a result. Branch
which selects the instructions to execute from the pool of readynd store instructions (Figure 1(ii) later shows that they form
instructions. Both of these operations generally occur withiabout 30% of the total instructions) do not produce a regis-
a single cycle, forming a critical path [15, 17]. Studies [4, 19}er tag. The entire issue width of a processor is also not used
have shown that an increase of a single cycle in this criticah every cycle. This means that the average number of tags
path decreases the performance dramatically. generated per cycle could be considerably less than the pro-
To stay on the microprocessor industry’s growth curve, fueessor issue width. Figure 1(i) presents the data on register
ture microprocessors must schedule and issue larger numitags generated in each cycle. In Figure 1(i), the total cycles
of instructions from a larger instruction window [18]. While are divided into cycles where 0 or 1 tags are generated, where
more ILP can be extracted from a larger DS, this increase & or 3 tags are generated, and so on. For these measurements,
parallelism will come at the expense of a slower schedulexe use the default processor parameters given in Table 1 (on
clock speed [6, 15]. Increasing wire latencies in smaller tectpage 4). However, to study a somewhat worst-case scenario
nologies may even further diminish the benefits obtained frorti.e. generate more tags per cycle), we increase the fetch, is-
a larger DS. The poor scalability of the DS logic results besue, and commit width to 12. From Figure 1(i), it is observed
cause of the wire delays in driving the register tags (identitiethat, even for a very wide processor, almost 50% of the cy-
of instructions’ results) across the instruction window and theles (on an average) have either no or just 1 tag generated, and
wire delays in driving the tag comparison (between the regissbout 80% of the cycles have less than or equal to 3 tags gen-
ter tags and the source operand tags of the instructions) resudtated. The number of tags generated are higher for the FP

benchmarks because of their higher IPCs. produced can immediately wakeup the dependent instructions.
Among the tags generated in a cycle, not all the tags are &ection 2 showed that, even for a very wide machine, only
immediate use. With branch mispredictions, many tags are eabout 50-60% of the instructions that are issued produce an
ther generated along the wrong execution path (which are noshmediately useful register tag. Hence, we propoRedaiced
useful at all) or generated along the correct path but only usatakeup Width (RWW) dynamic scheduler design, in which the
along the wrong execution path (which are not useful until thevakeup width is reduced without reducing the processor issue
instructions from the correct path are fetched). Tags are alswidth. This may result in some of the tags having to wait be-
not immediately useful if the dependent instructions are eithdore waking up the dependent instructions. The performance
not present in the instruction window or are waiting for otheiimpact of the delays due to waiting tags is not expected to be
operands. In effect, the average number of useful tags gendrigh because, as Figure 1(i) showed, soon there will be cycles
ated in a cycle are even less than the average number of taggh fewer tags produced, and the waiting register tags can
generated in a cycle. Figure 1(ii) presents the statistics on thuse the available wakeup slots (the number of wakeup slots
percentage of instructions that produce a tag that is immeds equal to the processor wakeup width). On the other hand,
ately useful. In Figure 1(ii), the instructions are divided intothe delayed tags that are not immediately useful may not even
different categories (shown as stacks in each bar) based on theve any performance impact.
types of tags generated by the instructions. Figure 1(ii) shows
that only about 50-60% of the instructions produce a tag tha.2 Hardware I mplementation

is immediately requiregl, except for a few exceptions in the FIt, 5 conventional scheduler (Figure 2(i)), every ready instruc-
benchmarks. About 8% of the instructions produce tags thgh, requests a functional unit (FU) from the select logic. The

are not required immediately, and about 8% produce tags thgl|et |ogic decides which instruction executes on which FU.
are either produced and/or only used along the wrong path. The jssued instructions and the register tags of their results,

too if any, are placed irtag latches. In the next cycle, the in-

structions from theag latches are dispatched to the FUs, and

their register tags (for the ones that produce a result) are driven

(using tag-lines) to wakeup the dependent instructions. The

enable signals of the drivers are controlled by some mecha-

nism that indicates the presence of tags intdgdatches. For

this, we assume one 1-bit latch (calledicator latch) for each

tag latch, as shown in Figure 2(i), which is set when a tag is

latched in thetag latch and reset when the tag is used. The

instructions that now become ready request for FUs from the

100 select logic, and the process goes on.

90 Figure 2(ii)) shows theRWW dynamic scheduler design

80 with wakeup width half the issue width. In this casetag

il latches/FUs share common tag-lines. If both tieg latches

o sharing the tag-lines are holding tags, only one of the tags is

40 driven through the tag-lines, and the other remains latched.

30 For this, theenable signals of the drivers are appropriately set,

20/ l| B Tratnaciions with Resurts ot required Immediately using control logic shown in the figure. In tiRWW design, it
it Vi Resuts Inmedacay et 00T may happen that a waiting tag may be over-written in the next

cycle if the select logic issues a result-producing instruction to

thattag latch. To avoid this, if theéndicator latch of atag latch

Figure 1: (i) Percentage Distribution of Clock Cycles based of set, then no instruction is issued to that partictagratch,
the number of tags generated in a cycle; (i) Percentage Distijyasting some of the issue slots.

bution of Executed Instructions based on the requirements of | the select logic, each functional unit (FU) is provided

90

80

70

60

50

40

Percentage Cycles

Tags = 12
Tags = 10-11]

30 Tags = 8-9

20

10

W ENTAED
5
)
Q
n
|
o
~N

(o]

9%
b
%,

%

s,%]

8

%
o

’?{%0
%&/

N
60| N
N

Percentage Instructions

10

their results with an arbiter which looks at requests from the instructions
. and decides which instruction is to be executed on thalt. U

3 Reduced Wakeup Width then raises thgrant signal for that request. Figure 3(a) shows

We definewakeup width as the number of register tags used tahe detailed circuit fograntl grant signal generation (corre-

wakeup dependent instructions. sponding to theeql request signal) inside a FU arbiter. This

. circuit implements:
31 Basicldea P

In a conventional dynamic scheduler, the wakeup width
equal to the issue width [15], so that any register tag that is !Usually the giving the highest priority to the oldest instruction.

igrantl = req0 Nreql N enable ()

W = Wakeup width; IS = ssue Width the SPEC2K suite. Performance statistics are collected for
: 500M instructions after skipping the first 500M instructions.

I e Loads and stores are issued out-of-order using dynamic mem-
prvers ory disambiguation. For delay, energy, and area estimation of
the CAM logic of the issue queue, measurements were made
from the actual VLSI layouts using SPICE. CMOS layout for
the CAM based issue queue and select logic in a 0.18 micron 6
metal layer CMOS process (TSMC) were used to get an accu-

Regiser Regser rate idea of the energy dissipations for each type of transition,
Tags(;/)m:v;k;u-p.\fvidllh equal to issue width Tags(ii\;lww;k-e;p-w;\dlth equal to half of issue width assuming a Vvdd of 1.8 volts.
For an issue width of 6, we experiment with wakeup widths

Figure 2: (i) Conventional Dynamic Scheduler; (i) Reducedf 3 and 2. Each scheduler configuration is given a name
Wakeup Width (RWW) Dynamic Scheduler I < issuewidth > W < wakeupwidth >. For instance,

I6W3 represents a configuration with an issue width of 6 and
In this equationreq0 has a higher priority tharegl. In Fig- a wakeup width of 3. We compare the results of BwWwW
ure 3(a), the logic pre-computes the priority andeffjl is the technique against tH&W6 configuration, and against config-
highest priority signal present, it raises tir@nt1 signal when urations with issue width equal to the reduced wakeup width
the enable signal is received [16]. (to compare the IPCs of configurations with almost the same
P . scheduler latency). For instand®&W3 and13W3 configura-

. tions are compared.

. Y
Drivers

" Instruction
Instruction Window

Window

Tag

Latches

4.2 Performance Results

We use the analysis in [16] and detailed logic layouts to evalu-
ate theRWW scheduler latency. In thi@WW design, the wires
! e ; oo || . carryingthe register tags and he wires carrying the result of tag
ooy LT : precsmde ~ ~ ¢ comparisons become shorter, reducing the wakeup logic la-
tency, and hence the scheduler latency. When compared to the
(a) (b) : H H
Figure 3: (a) ConvenFionaI FU Arbiter; (b) FU Arbiter in the L{G(;{,V/ffg??gs\%?t;rg \tI)V; I;ilg%:og;hliin%mgeubzzseg yogbtﬁit
RW_W Scheduler Design) S analysis in [16]. If a stacked design is used for the select logic
Figure 3(b) shows the logic that precomputes priority in thyhich can be very expensive in terms of delay), the reduction
FU-arbiter for theRWW scheduler design. Here “a” is the i the overall DS logic delay is about 10% for tf\3 config-
value of theindicator latch for thetag latch corresponding to jration and about 15% for tHEW2 configuration. However,
this arbiter. This circuitimplements: in our detailed layouts, the wakeup logic latency reduced by
grantl = req0 N@ N reql N enable (2) about 15% and 20%, respectively.
L , Figure 4 gives the IPCs as overlapping stacks in each bar.
The select logic is lmp!emented as a tr.eeadf)lte;r cells From Figure 4, it is observed that the IPC impact is higher
[16], where the request signals (from the instructions) travgh, e Fp henchmarks, mainly because of their higher IPCs.
towards the root of the tree and the grant signals in the 0pP§pe |pc impact for 1I6W2 is also significantly higher than
site direction. In the nevarbiter cell design, the additional 6\x/3 R configuration performs significantly better when
transistors are only in there-compute part of the cells thatare o \pcs obtained with configurations having almost the same

at the bottom of the tree and hence, the additional tra”SiStoéﬁheduler latency are comparedg(16W3 with 13W3 and
will not affect the delay in the select logic. In tReW design, |e\w2 with I2W2).

we may have to slightly modify the generation of operand for-)
warding signal for instructions woken up by delayed registef.3 Performance Analysis

tags. Figure 5(i) presents the percentage distribution of all the in-

. . structions (in terms of the reasons due to which the instruc-
4 Exper imental Evaluation tions are delayed) that are executed, and Figure 5(ii) presents

4.1 Experimental Methodology the percentage distribution of all the tags (in terms of the ef-
Fcts of delayed tags) that are generated. The following obser-

grantt | 3

For our experiments, we use the SimpleScalar [5] simulat(; . .]
simulating the PISA architecture. Table 1 gives the default pav_atlons can be made from Figure 5:
rameters. For benchmarks, we use 7 INT (bzip2, gzip, gcc, « With decreasing wakeup width, more number of tags and
vpr, mcf, parser, and twolf) and 9 FP (wupwise, applu, art, instructions are delayed, resulting in IPC reduction (in

ammp, swim, equake, mgrid, apsi, and mesa) programs from Figure 4) as the wakeup width is reduced.

| Parameter | Value I Parameter | Value |

Issue Width 6 instructions/cycle Instruction Queue Sze 128 instructions
Physical Register File 128 Int/128 FP Fetch/Commit W dth 8 instructions/cycle
L1-I-Cache 32K, direct-mapped L1 - D-Cache 32K, 4-way assoc.
2-cycle latency 2-cycle latency
L2 - Cache unified 512K, 8-way assoc| Mem. Reorder Buffer 64 entries
6-cycle latency
realistic branch pred. bimodal 4096 entries Functional Units Int. : 3 ALU, 1 Div/Mult.
2 load/store
20-cycle mispred. pen. FP : 3 ALU, 1 Div/Mult.

Table 1: Default Parameters for the Experimental Evaluation

3 100
L v e [T T AT T AT
@ s = d

0 Instructions not delaye
@ Instructions delayed due to delayed tags
B Instructions delayed due to issue slots wastage

/akeup Width = 3 (16W3) 90
akeup Width = 2 (I6W2)
/akeup Width = 3 (13W3)
akeup Width = 2 (12W2)

80

Percentage Instructions

ANANANANANNNNNN |
I

|
e——
[SERERRRERIRRRIRRY =]
|
AN ==
/|

o
(1]
, /SSETRRRIRIRRRRRRRN 7]
NNzl

o]
Wakeup Width: 32,
twolf S

Q
N,
]
<
°
Q
5]
o
3
2}
°
2
@
o
o
N,
kel
N

3 100
eup Width = 6 (I6W6) O Tags not delayed

eup Width = 3 (I6W3) 20 @ Tags delayed but dependent instructions not present
idth = 2 (1BW2) Tags delayed but dependent instructions not delayed

ak::s W:dth i i }:ixi} 80 B Tags delayed and dependent instructions delayed

pNE0

70|}

60

50

15 0 0

§
7
D

wupwise applu art ammp swi(m)
i

Percentage Tags

40

30

I 20

10

o
n =
|

ARERRRRIRRRRRRRRRRRNRR]

)
Pl e 22

o -
Wakeug\'\xvuiéb. 3z,

N S
£ & S Q
& & 5\9 & q\\;;ﬁ oQQ(ii) £ v @<$ *®

L & 2 «4\6&«50

equake mgrid mesa

Figure 4: IPC obtained with different Configurations of theFigure 5: (i) Percentage Distribution of Instructions based on
RWW Design; (i) Integer, and (ii) FP Benchmarks their reasons of delay; (ii) Percentage Distribution of Gener-
ated Tags based on the effects of the tags
e Lower IPC benchmarks have lower percentage of tags

and instructions delayed, resulting in smaller IPC impact. because, with less wakeup width, fewer instructions get
High IPC benchmarks generally have a higher percent- ready every cycle (also depicted by lower IPC) and more
age of tags and instructions delayed, resulting in a larger register tags are delayed. The small number of instruc-
IPC impact. Exceptions agcc andequake, that have tions that do get ready usually find a functional unit to
a high percentage of tags delayed, but a low percentage execute and get issued, but the large number of delayed
of instructions delayed. This is because, as Figure 1(ii) tags delay many more instructions.
shows, botlgcc andequake have a higher percentage
of branches and stores, which results in less tag generg»¢ Energy and Area Results

tion.
In order to study the energy savings in the wakeup logic (which

e Figure 5(i) shows that more instructions are delayed durms the major fraction of the total scheduler energy con-
to delayed register tags than due to the wastage of issgamption [8]) achieved with the\WWV design, we use the num-
slots. This implies that delayed register tags have mornger of accesses to the wakeup logic obtained using [5] and
impact on the IPC than wastage of issue slots. In addthe energy-consumption values from our detailed layouts. The
tion, with decrease in the wakeup width, instructions demain reason for high wakeup logic energy consumption is the
layed due to delayed tags increases dramatically. This lEgh capacitance tag-lines and match-lines [3]. Energy saving

of about 10% is observed in the wakeup logic for tB&/3 equal to or more than the limit, then thadicator bit a is set
configuration and about 15% for th&/\2 configuration. Intu- for all thetag-latchesin thatFU-group. The counting is done
itively, reducing the wakeup width reduces the lengths of tagn parallel to instruction selection in each cycle, and the setting
lines (because of reductionin the CAM cell height) and matchef theindicator bits is done in parallel to instruction wakeup
lines which in turn reduces their capacitance. RWW de- in each cycle. Thaon-tag-producing instructions can still be
sign also reduces the number of high capacitance tag-lines aisdued to FUs with théndicator bit set. If the count for an
match-lines, and the number of comparators for tag comparU-group is less than the maximum, then thalicator bits
son. Energy saving values obtained are not very high becauaee untouched. This may occasionally result in the number of
of conditional clocking, where the tag-lines and match-linesegister tags waiting in aRU-group being more than the limit.
that are not active are assumed to consume almost no energy.

Hence, removal of these lines does not save as much energy®8 Performance

expected. Figure 6 presents the IPCs with tR®M S and theRTD tech-

For the I6W3 configuration, the area of the CAM cells, anchiques. For th&®TD technique, we experiment with a limit of
hence the area of the tag part of the instruction window, rel waiting tag pef=U-group (RTD-1) and 2 waiting tags per
duces by about 30%, and by about 40% for the I6W2 configFU-group (RTD-2). Figure 6 shows that the IPC impact of
uration. However, other fields in the instruction window suctthe R\ design reduces with these techniques. In fact, with
as the ROB index, and the literal fields reduce the area savinfgeRTD-1 technique, compared to the I6W6 configuration, the
to about 20% for the 16W3 configuration and about 30% folPC of the I6W3 configuration is less than 2% lower and the

the I6W2 configuration. IPC of the IEW2 configuration is less than 5% lower (for many
benchmarks).

5 Enhancing the RWW Design s

5.1 Reduced Issue Slots Wastage (RW1S) 25 E

Wastage of issue slots results because the select logic does

not issue any instruction to the FUs with waiting tags. We 2 —
propose a technique that classifies the instructions itap: O s
producing instructions (that generate a register tag) aack -
tag-producing instructions (that do not generate a register tag), :
and even if a tag is waiting, the select logic still issuema-
tag-producing instruction to that FU. In doing so, the wait-
ing register tag is not over-written. To implement this tech-
nigue, an additional bit (we call type bit) is used for each
instruction in the instruction window. Thgpe bit is set ag-
producing) or reset fion-tag-producing) when the instruction 25
is dispatched. When an instruction sends a request (for an FU)

to the select logic, it is also accompanied by tyee bit, the i NANA
equation (2) for thgrant1 signal now becomes:

grantl =req0N (aNb) Nreql Nenable 3

whereb is thetype bit. In this case as well, no additional de-
lays were observed in the select logic. 05 :

5.2 Reduced Tag Delays (RTD) ® wupwise applu art ammp s;v{?_{)lc}u’a’ke* marid apsi mesa

Reglster tggs are delayed if mult|mag—prodUC|ng Instruc- Figure 6: IPCs wittRWISandRTD techniques applied to the
tions are issued to FUs sharing common tag-lines (we ¢ Design (i) Integer: (ii) FP benchmarks

such a group as aRU-group). If most of thetag-producing '
instructions are concentrated in a féiJ-groups, the num- Figure 6 shows that thRTD-1 technique is more effective
ber of register tags getting delayed increases. Ideallytatite than any other technique, becal®® S helps in only reduc-
producing instructions should be evenly distributed among théng the wastage of issue slots whereRED helps in reducing
FU-groups. To implement theRTD technique, we limit the the number of delayed register tags as well, and WRifb-2
number oftag-producing instructions that are issued to a sin-more tags are allowed to wait pEtJ-group resulting in more

gle FU-group. It may be difficult to simultaneously count and instructions getting delayed. Our studies also found that, with
limit the number of tag-producing instructions issued to arthe RTD-1 technique the total number of instructions delayed
FU-group in the same cycle. Hence, the count of waiting tagss the least resulting in the least impact on IPC when using this
of the previous cycle is used. If the count forld-groupis technique. We also found that, for tR&D-1 technique, even

HEEE

77777777777777777777800 RNTD-2

©

n
R 77 Z77A8E | Original
jrrzzzzz22022202227227 5 IO

W 77/777/7777774/77//777777 N L O

77777777777777777777880 |
[rrzzziziiisiiiziiizitin
jrrzzzrzzzr02020202070W)
277777727777777777 88 |
i/7771771177117771777750)
177217011700 1702 2027740
777777777 J27 777777777 7ET

P77 777777 7777777777808 |

(/11111111 111177777)

L2777 7777777772
FLLITTTI77 77777
LTI T7A
VITTTT 7T 77777772
(Z72777777777777778)
[zzzzszzizivisizizin)
77777777777 7777770
|77477777774777775])

L7 ITT7I7T7I7T7I7TA
(V17 177712772277740)

/L1111 174777

o

parser

@

If

Q
N
T
<
)
Q
s}
6
3
5]
2
X

bzip2

=

Issue Width = 6; Wakeup Width = 6 (16W6)
Issue Width = 6; Wakeup Width = 3 (16W3)
Issue Width = 6; Wakeup Width = 2 (16W2)

[<J=a]

N
i

IPC
I
0

2

riginal
S

RNTD:

<
o
B
=4
4

o]
R

though the number of instructions delayed due to waiting tag42] A. Baniasadi and A. Moshovos, “Instruction Distribution
decrease significantly, the instructions delayed due to wastage Heuristics for Quad-Cluster, Dynamically-Scheduled, Super-
of issue slots increase when compared toRWStechnique, scalar ProcessorsProc. MICRO-33, 2000.

because more issue slots are wasted due to the limit on the ta§@ D- Brooks, V. Tiwari and M. Martonosi, “Wattch: a framework
that can wait in anyfFU-group for architectural-level power analysis and optimizatiofsgc.

ISCA, 2000.
[4] M. Brown, J. Stark and Y. Patt, “Select-free Instruction
6 Rdated Work Scheduling Logic,Proc. Micro-34, 2001.

)) L . [5] D. Burger and T. Austin, “The Simplescalar Tool Séfgtchni-
BOth mICI‘O-arChIteCtura| and CII’CUIt-|eve| SO|UtIOI’]S have been cal Report, Computer Sciences Department’ University of Wis-

provided to implement reduced latency dynamic schedulers. consin, June 1997.

In [1, 2, 7, 15, 21, 13], the instruction queue is distributed [6] R. Canal and A. Gonzalez, “A low-complexity issue logic,”
among multiple clusters. This solution trades global commu- Proc. ICS, 2000.

nication for fast local communication. A recently proposed [7] K. Farkas, et. al., “The Multicluster Architecture: Reducing Cy-
circuit-level approach [11] merges the reorder buffer and the cle Time Through PartitioningProc. Micro-30, 1997.

issue buffer, and uses parallel-prefix circuits for wakeup and8] D. Folegnani and A. Gonzalez, "Energy-Effective Issue Logic,’
selection phases. ég] I\F;Irolz' lc?;vAv:n& I_20|?1I§iro and D. B. Jackson, “Power Consider:
1 4[??'_[)7??(1\7?; € dﬁ'faesriﬂ t F)irrﬁpslgrrLe:nLigrt]igr::, agoizse%d tlf?e [:tLC?F,)' ' ations in the Design of the Alpha 21264 Microprocessergc.

| | buff df ki d d . . | Design Automation Conference, 1998.
evel bufier used for waking up dependent instructions sma 10] R. Gonzalez and M. Horowitz, “Energy Dissipation in General

Hrishikesh et al [12] also propose segmented instruction win- ~ pypose Microprocessors/EEE Journal of Solid-State Cir-

dows to reduce scheduler latency, where instruction wakeup cyits, Vol. 31, No. 9, September 1996.

is pipelined among the segments. Folegnani and Gonzalez [8h] D. S. Henry, et. al., “Circuits for wide-window superscalar pro-

focus on “gating off” entries to reduce power consumption in cessors,'Proc. |SCA-27, 2000.

dynamic schedulers. [12] M. S. Hrishikesh et. al., “The optimal logic depth per pipeline
Our design reduces hardware complexity for efficient dy- stage is 6 to 8 FO4 inverter delay&foc. ISCA, 2002.

namic scheduling, which can also be used in conjunction witH3] D. Leibholz and R. Razdan, “The Alpha 21264: A 500 MHz

clock gating and data dependent analysis. Out-of-Order Execution Microprocessofroc. Compcon, pp.
28-36, 1997.
[14] P.Michaud and A. Seznec, “Data-Flow Prescheduling for Large
7 Conclusions Instruction Windows in Out-of-Order ProcessoRibc. HPCA,
2001.

Larger dynamic schedulers are required to exploit more Inys) s, palacharla, et. al., “Complexity-Effective Superscalar Pro-
struction Level Parallelism (ILP) to increase the Instruction — cessorsProc. ISCA, 1997.
per Cycle (IPC) count, and hence increasing performancgse] S. Palacharla, “Complexity-Effective Superscalar Processors,”
While more ILP can be exploited by larger dynamic sched- PhD thesis, University of Wisconsin, 1998.
ulers, this increase in parallelism comes at the expense off] S. Raasch, et. al., “A Scalable Instruction Queue Design Using
slower scheduler clock speed. Dependence ChainsProc. ISCA, 2002.

In this paper, we proposed a reduced wakeup wigth\{/) [18] Y. N. Pa_1tt, et al., “One Billion Transistors, One Uniprocessor,
dynamic scheduler design to reduce the scheduler critical path One Chip,"|EEE Computers, pp. 51-57, Sept. 1997.
latency by reducing the maximum number of register tags that®] E- Sprangle and D. Carmean, “Increasing Processor Perfor-
can be used for identifying data-ready instructions. The design ?O%nzce by Implementing Deeper Pipelinefoc. ISCA-29,
exploits the observation that the average number of useful refz—O V. Tiwari, et al., “Reducing Power in High-performance Micro-
!ster tag.s produced every cycle is much I'ess 'than the Processor o cessors,Proc. DAC, 1998.
issue width. Our studies showed that significant reduction i1 k ¢ Yeager, “The MIPS R10000 Superscalar Microprocessor,’
wakeup logic latency can be achieved with less than 5% reduc- ~ |EEE Micro, pp. 28-40, April 1996.
tion in IPC. The design also reduced the wakeup logic energy
consumption by about 15%, and the instruction window area
by about 30%. Our enhancements to the bRYWV scheduler
design, reduce the IPC impact to less than 2%.

References

[1] A. Aggarwal and M. Franklin, “An Empirical Study of the Scal-
ability Aspects of Instruction Distribution Algorithms for Clus-
tered ProcessorsProc. ISPASS, 2001.

