
Defining Wakeup Width for Efficient Dynamic Scheduling

Aneesh Aggarwal
ECE Department

Binghamton University
Binghamton, NY 13902
aneesh@binghamton.edu

Manoj Franklin
ECE Department and UMIACS

University of Maryland
College Park, MD 20742

manoj@eng.umd.edu

Oguz Ergin
CS Department

Binghamton University
Binghamton, NY 13902

oguz@cs.binghamton.edu

Abstract
A larger Dynamic Scheduler (DS) exposes more Instruction Level
Parallelism (ILP), giving better performance. However, a larger DS
also results in a longer scheduler latency and a slower clock speed.
In this paper, we propose a new DS design that reduces the scheduler
critical path latency by reducing thewakeup width (defined as the ef-
fective number of results used for instruction wakeup). The design is
based on the realization that the average number of results per cycle
that are immediately required to wake up the dependent instructions
is considerably less than the processor issue width. Our designs are
evaluated using the simulation of the SPEC 2000 benchmarks and
SPICE simulations of the actual issue queue layouts in 0.18 micron
process. We found that a significant reduction in scheduler latency,
power consumption and area is achieved with less than 2% reduc-
tion in the Instructions per Cycle (IPC) count for the SPEC2K bench-
marks.

1 Introduction
In current microprocessor designs, dynamic scheduling is one
of the most important techniques used to extract Instruction
Level Parallelism (ILP). The dynamic scheduler (DS) logic
consists of the wakeup logic, which marks the instructions
when their dependencies are satisfied, and the select logic,
which selects the instructions to execute from the pool of ready
instructions. Both of these operations generally occur within
a single cycle, forming a critical path [15, 17]. Studies [4, 19]
have shown that an increase of a single cycle in this critical
path decreases the performance dramatically.

To stay on the microprocessor industry’s growth curve, fu-
ture microprocessors must schedule and issue larger number
of instructions from a larger instruction window [18]. While
more ILP can be extracted from a larger DS, this increase in
parallelism will come at the expense of a slower scheduler
clock speed [6, 15]. Increasing wire latencies in smaller tech-
nologies may even further diminish the benefits obtained from
a larger DS. The poor scalability of the DS logic results be-
cause of the wire delays in driving the register tags (identities
of instructions’ results) across the instruction window and the
wire delays in driving the tag comparison (between the regis-
ter tags and the source operand tags of the instructions) results

across the width of the register tags.
In this paper, we propose a scheduler design that reduces

the scheduler critical path latency by reducing the processor
wakeup width. We definewakeup width as the number of reg-
ister tags used to wakeup the dependent instructions. In a con-
ventional DS, the wakeup width is usually equal to the issue
width [15]. In our DS design, the processor wakeup width
is reduced, without reducing the processor issue width. Re-
ducing the wakeup width also reduces the scheduler energy
consumption and area. The new scheduler design is based on
the observation that the average number of immediately use-
ful register tags produced per cycle is considerably less than
the processor issue width. We found a significant reduction
in scheduler latency, energy consumption, and area, with less
than 2% reduction in the IPC for SPEC2K benchmarks.

The rest of the paper is organized as follows. Section 2 dis-
cusses the intuition behind the new scheduler design. Section 3
presents the scheduler design and its implementation. Section
4 discusses the experimental results. Section 5 presents en-
hancements to the basic design. Section 6 gives related work,
and in Section 7, we conclude.

2 Program Behavior Study
Not all the instructions that are issued produce a result. Branch
and store instructions (Figure 1(ii) later shows that they form
about 30% of the total instructions) do not produce a regis-
ter tag. The entire issue width of a processor is also not used
in every cycle. This means that the average number of tags
generated per cycle could be considerably less than the pro-
cessor issue width. Figure 1(i) presents the data on register
tags generated in each cycle. In Figure 1(i), the total cycles
are divided into cycles where 0 or 1 tags are generated, where
2 or 3 tags are generated, and so on. For these measurements,
we use the default processor parameters given in Table 1 (on
page 4). However, to study a somewhat worst-case scenario
(i.e. generate more tags per cycle), we increase the fetch, is-
sue, and commit width to 12. From Figure 1(i), it is observed
that, even for a very wide processor, almost 50% of the cy-
cles (on an average) have either no or just 1 tag generated, and
about 80% of the cycles have less than or equal to 3 tags gen-
erated. The number of tags generated are higher for the FP

1

benchmarks because of their higher IPCs.
Among the tags generated in a cycle, not all the tags are of

immediate use. With branch mispredictions, many tags are ei-
ther generated along the wrong execution path (which are not
useful at all) or generated along the correct path but only used
along the wrong execution path (which are not useful until the
instructions from the correct path are fetched). Tags are also
not immediately useful if the dependent instructions are either
not present in the instruction window or are waiting for other
operands. In effect, the average number of useful tags gener-
ated in a cycle are even less than the average number of tags
generated in a cycle. Figure 1(ii) presents the statistics on the
percentage of instructions that produce a tag that is immedi-
ately useful. In Figure 1(ii), the instructions are divided into
different categories (shown as stacks in each bar) based on the
types of tags generated by the instructions. Figure 1(ii) shows
that only about 50-60% of the instructions produce a tag that
is immediately required, except for a few exceptions in the FP
benchmarks. About 8% of the instructions produce tags that
are not required immediately, and about 8% produce tags that
are either produced and/or only used along the wrong path.

gz
ip vp
r

gc
c

mcf
pa

rse
r

bz
ip2

tw
olf

wup
wise

ap
plu ar

t

am
mp

sw
im

eq
ua

ke
mgr

id

ap
si

mes
a

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 C

yc
le

s

Tags = 12
Tags = 10-11
Tags = 8-9
Tags = 6-7
Tags = 4-5
Tags = 2-3
Tags = 0-1

(i)

gz
ip vp
r

gc
c

mcf
pa

rse
r

bz
ip2

tw
olf

wup
wise

ap
plu ar

t
am

mp
sw

im
eq

ua
ke

mgr
id

ap
si

mes
a

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 In

str
uc

tio
ns

Branch and Store Instructions
Instructions with Results not required Immediately
Instructions with Results produced and/or only used along Wrong Path
Instructions with Results Immediately useful

(ii)

Figure 1: (i) Percentage Distribution of Clock Cycles based on
the number of tags generated in a cycle; (ii) Percentage Distri-
bution of Executed Instructions based on the requirements of
their results

3 Reduced Wakeup Width
We definewakeup width as the number of register tags used to
wakeup dependent instructions.

3.1 Basic Idea
In a conventional dynamic scheduler, the wakeup width is
equal to the issue width [15], so that any register tag that is

produced can immediately wakeup the dependent instructions.
Section 2 showed that, even for a very wide machine, only
about 50-60% of the instructions that are issued produce an
immediately useful register tag. Hence, we propose aReduced
Wakeup Width (RWW) dynamic scheduler design, in which the
wakeup width is reduced without reducing the processor issue
width. This may result in some of the tags having to wait be-
fore waking up the dependent instructions. The performance
impact of the delays due to waiting tags is not expected to be
high because, as Figure 1(i) showed, soon there will be cycles
with fewer tags produced, and the waiting register tags can
use the available wakeup slots (the number of wakeup slots
is equal to the processor wakeup width). On the other hand,
the delayed tags that are not immediately useful may not even
have any performance impact.

3.2 Hardware Implementation
In a conventional scheduler (Figure 2(i)), every ready instruc-
tion requests a functional unit (FU) from the select logic. The
select logic decides which instruction executes on which FU.
The issued instructions and the register tags of their results,
if any, are placed intag latches. In the next cycle, the in-
structions from thetag latches are dispatched to the FUs, and
their register tags (for the ones that produce a result) are driven
(using tag-lines) to wakeup the dependent instructions. The
enable signals of the drivers are controlled by some mecha-
nism that indicates the presence of tags in thetag latches. For
this, we assume one 1-bit latch (calledindicator latch) for each
tag latch, as shown in Figure 2(i), which is set when a tag is
latched in thetag latch and reset when the tag is used. The
instructions that now become ready request for FUs from the
select logic, and the process goes on.

Figure 2(ii) shows theRWW dynamic scheduler design
with wakeup width half the issue width. In this case, 2tag
latches/FUs share common tag-lines. If both thetag latches
sharing the tag-lines are holding tags, only one of the tags is
driven through the tag-lines, and the other remains latched.
For this, theenable signals of the drivers are appropriately set,
using control logic shown in the figure. In theRWW design, it
may happen that a waiting tag may be over-written in the next
cycle if the select logic issues a result-producing instruction to
thattag latch. To avoid this, if theindicator latch of a tag latch
is set, then no instruction is issued to that particulartag latch,
wasting some of the issue slots.

In the select logic, each functional unit (FU) is provided
with an arbiter which looks at requests from the instructions
and decides which instruction is to be executed on that FU�. It
then raises thegrant signal for that request. Figure 3(a) shows
the detailed circuit forgrant1 grant signal generation (corre-
sponding to thereq1 request signal) inside a FU arbiter. This
circuit implements:

������ � ���� � ���� � ������ (1)

�Usually the giving the highest priority to the oldest instruction.

2

1
 −

 b
it
 l
a

tc
h

e
s

1
 −

 b
it
 l
a

tc
h

e
s

FUs FUs

S
E

L
E

C
T

Instruction
Window

Instruction
Window

L
a

tc
h

e
s

T
a

g

L
a

tc
h

e
s

T
a

g

 Register Register
Tags WW 2 1

IS

1

2

1

2

IS

WW = Wakeup width ; IS = Issue Width

wakeup width equal to issue width(i) wakeup width equal to half of issue width(ii)

Tag−
lines

Tag−
lines

Tags WW 1

S
E

L
E

C
T

control control
Drivers Drivers

enen

Figure 2: (i) Conventional Dynamic Scheduler; (ii) Reduced
Wakeup Width (RWW) Dynamic Scheduler

In this equation,req0 has a higher priority thanreq1. In Fig-
ure 3(a), the logic pre-computes the priority and ifreq1 is the
highest priority signal present, it raises thegrant1 signal when
the enable signal is received [16].

req0

req1

grant1p

precompute
priority

(b)

req0a

a

enable

enable

req0

req0

req1

grant1p

grant1

precompute with enable
priority

(a)

Figure 3: (a) Conventional FU Arbiter; (b) FU Arbiter in the
RWW Scheduler Design

Figure 3(b) shows the logic that precomputes priority in the
FU-arbiter for theRWW scheduler design. Here “a” is the
value of theindicator latch for thetag latch corresponding to
this arbiter. This circuit implements:

������ � ���� � � � ���� � ������ (2)

The select logic is implemented as a tree ofarbiter cells
[16], where the request signals (from the instructions) travel
towards the root of the tree and the grant signals in the oppo-
site direction. In the newarbiter cell design, the additional
transistors are only in thepre-compute part of the cells that are
at the bottom of the tree and hence, the additional transistors
will not affect the delay in the select logic. In theRWW design,
we may have to slightly modify the generation of operand for-
warding signal for instructions woken up by delayed register
tags.

4 Experimental Evaluation
4.1 Experimental Methodology
For our experiments, we use the SimpleScalar [5] simulator
simulating the PISA architecture. Table 1 gives the default pa-
rameters. For benchmarks, we use 7 INT (bzip2, gzip, gcc,
vpr, mcf, parser, and twolf) and 9 FP (wupwise, applu, art,
ammp, swim, equake, mgrid, apsi, and mesa) programs from

the SPEC2K suite. Performance statistics are collected for
500M instructions after skipping the first 500M instructions.
Loads and stores are issued out-of-order using dynamic mem-
ory disambiguation. For delay, energy, and area estimation of
the CAM logic of the issue queue, measurements were made
from the actual VLSI layouts using SPICE. CMOS layout for
the CAM based issue queue and select logic in a 0.18 micron 6
metal layer CMOS process (TSMC) were used to get an accu-
rate idea of the energy dissipations for each type of transition,
assuming a Vdd of 1.8 volts.

For an issue width of 6, we experiment with wakeup widths
of 3 and 2. Each scheduler configuration is given a name
	
 ��������� � �
 ���������� �. For instance,
I6W3 represents a configuration with an issue width of 6 and
a wakeup width of 3. We compare the results of theRWW
technique against theI6W6 configuration, and against config-
urations with issue width equal to the reduced wakeup width
(to compare the IPCs of configurations with almost the same
scheduler latency). For instance,I6W3 and I3W3 configura-
tions are compared.

4.2 Performance Results
We use the analysis in [16] and detailed logic layouts to evalu-
ate theRWW scheduler latency. In theRWW design, the wires
carrying the register tags and he wires carrying the result of tag
comparisons become shorter, reducing the wakeup logic la-
tency, and hence the scheduler latency. When compared to the
I6W6 configuration, wakeup logic latency reduces by about
40% for I6W3, and by about 55% for I6W2, based on the
analysis in [16]. If a stacked design is used for the select logic
(which can be very expensive in terms of delay), the reduction
in the overall DS logic delay is about 10% for theI6W3 config-
uration and about 15% for theI6W2 configuration. However,
in our detailed layouts, the wakeup logic latency reduced by
about 15% and 20%, respectively.

Figure 4 gives the IPCs as overlapping stacks in each bar.
From Figure 4, it is observed that the IPC impact is higher
for the FP benchmarks, mainly because of their higher IPCs.
The IPC impact for I6W2 is also significantly higher than
I6W3. RWW configuration performs significantly better when
the IPCs obtained with configurations having almost the same
scheduler latency are compared, (e.g. I6W3 with I3W3 and
I6W2 with I2W2).

4.3 Performance Analysis
Figure 5(i) presents the percentage distribution of all the in-
structions (in terms of the reasons due to which the instruc-
tions are delayed) that are executed, and Figure 5(ii) presents
the percentage distribution of all the tags (in terms of the ef-
fects of delayed tags) that are generated. The following obser-
vations can be made from Figure 5:

� With decreasing wakeup width, more number of tags and
instructions are delayed, resulting in IPC reduction (in
Figure 4) as the wakeup width is reduced.

3

Parameter Value Parameter Value

Issue Width 6 instructions/cycle Instruction Queue Size 128 instructions
Physical Register File 128 Int/128 FP Fetch/Commit Width 8 instructions/cycle

L1 - I-Cache 32K, direct-mapped L1 - D-Cache 32K, 4-way assoc.
2-cycle latency 2-cycle latency

L2 - Cache unified 512K, 8-way assoc. Mem. Reorder Buffer 64 entries
6-cycle latency

realistic branch pred. bimodal 4096 entries Functional Units Int. : 3 ALU, 1 Div/Mult.
2 load/store

20-cycle mispred. pen. FP : 3 ALU, 1 Div/Mult.

Table 1: Default Parameters for the Experimental Evaluation

gzip vpr gcc mcf parser bzip2 twolf
0

0.5

1

1.5

2

2.5

3

IP
C

Issue Width = 6; Wakeup Width = 6 (I6W6)
Issue Width = 6; Wakeup Width = 3 (I6W3)
Issue Width = 6; Wakeup Width = 2 (I6W2)
Issue Width = 3; Wakeup Width = 3 (I3W3)
Issue Width = 2; Wakeup Width = 2 (I2W2)

(i)

wupwise applu art ammp swim equake mgrid apsi mesa
0

0.5

1

1.5

2

2.5

3

IP
C

Issue Width = 6; Wakeup Width = 6 (I6W6)
Issue Width = 6; Wakeup Width = 3 (I6W3)
Issue Width = 6; Wakeup Width = 2 (I6W2)
Issue Width = 3; Wakeup Width = 3 (I3W3)
Issue Width = 2; Wakeup Width = 2 (I2W2)

(ii)

Figure 4: IPC obtained with different Configurations of the
RWW Design; (i) Integer, and (ii) FP Benchmarks

� Lower IPC benchmarks have lower percentage of tags
and instructions delayed, resulting in smaller IPC impact.
High IPC benchmarks generally have a higher percent-
age of tags and instructions delayed, resulting in a larger
IPC impact. Exceptions aregcc andequake, that have
a high percentage of tags delayed, but a low percentage
of instructions delayed. This is because, as Figure 1(ii)
shows, bothgcc andequake have a higher percentage
of branches and stores, which results in less tag genera-
tion.

� Figure 5(i) shows that more instructions are delayed due
to delayed register tags than due to the wastage of issue
slots. This implies that delayed register tags have more
impact on the IPC than wastage of issue slots. In addi-
tion, with decrease in the wakeup width, instructions de-
layed due to delayed tags increases dramatically. This is

gzip vp
r

gcc
mcf

parse
r

bzip
2

tw
olf

wupwise
applu art

ammp
sw

im
equake

mgrid apsi
mesa

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 In

st
ru

ct
io

ns

Instructions not delayed
Instructions delayed due to delayed tags
Instructions delayed due to issue slots wastage

32Wakeup Width:

(i)

gzip vp
r

gcc
mcf

parse
r

bzip
2

tw
olf

wupwise
applu art

ammp
sw

im
equake

mgrid apsi
mesa

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

ta
ge

 T
ag

s
Tags not delayed
Tags delayed but dependent instructions not present
Tags delayed but dependent instructions not delayed
Tags delayed and dependent instructions delayed

32Wakeup Width:

(ii)

Figure 5: (i) Percentage Distribution of Instructions based on
their reasons of delay; (ii) Percentage Distribution of Gener-
ated Tags based on the effects of the tags

because, with less wakeup width, fewer instructions get
ready every cycle (also depicted by lower IPC) and more
register tags are delayed. The small number of instruc-
tions that do get ready usually find a functional unit to
execute and get issued, but the large number of delayed
tags delay many more instructions.

4.4 Energy and Area Results
In order to study the energy savings in the wakeup logic (which
forms the major fraction of the total scheduler energy con-
sumption [8]) achieved with theRWW design, we use the num-
ber of accesses to the wakeup logic obtained using [5] and
the energy-consumption values from our detailed layouts. The
main reason for high wakeup logic energy consumption is the
high capacitance tag-lines and match-lines [3]. Energy saving

4

of about 10% is observed in the wakeup logic for theI6W3
configuration and about 15% for theI6W2 configuration. Intu-
itively, reducing the wakeup width reduces the lengths of tag-
lines (because of reduction in the CAM cell height) and match-
lines which in turn reduces their capacitance. TheRWW de-
sign also reduces the number of high capacitance tag-lines and
match-lines, and the number of comparators for tag compari-
son. Energy saving values obtained are not very high because
of conditional clocking, where the tag-lines and match-lines
that are not active are assumed to consume almost no energy.
Hence, removal of these lines does not save as much energy as
expected.

For the I6W3 configuration, the area of the CAM cells, and
hence the area of the tag part of the instruction window, re-
duces by about 30%, and by about 40% for the I6W2 config-
uration. However, other fields in the instruction window such
as the ROB index, and the literal fields reduce the area savings
to about 20% for the I6W3 configuration and about 30% for
the I6W2 configuration.

5 Enhancing the RWW Design
5.1 Reduced Issue Slots Wastage (RWIS)
Wastage of issue slots results because the select logic does
not issue any instruction to the FUs with waiting tags. We
propose a technique that classifies the instructions into:tag-
producing instructions (that generate a register tag) andnon-
tag-producing instructions (that do not generate a register tag),
and even if a tag is waiting, the select logic still issues anon-
tag-producing instruction to that FU. In doing so, the wait-
ing register tag is not over-written. To implement this tech-
nique, an additional bit (we call ittype bit) is used for each
instruction in the instruction window. Thetype bit is set (tag-
producing) or reset (non-tag-producing) when the instruction
is dispatched. When an instruction sends a request (for an FU)
to the select logic, it is also accompanied by thetype bit, the
equation (2) for thegrant1 signal now becomes:

������ � ����� �� � ��� ����� ������ (3)

whereb is thetype bit. In this case as well, no additional de-
lays were observed in the select logic.

5.2 Reduced Tag Delays (RTD)
Register tags are delayed if multipletag-producing instruc-
tions are issued to FUs sharing common tag-lines (we call
such a group as anFU-group). If most of thetag-producing
instructions are concentrated in a fewFU-groups, the num-
ber of register tags getting delayed increases. Ideally, thetag-
producing instructions should be evenly distributed among the
FU-groups. To implement theRTD technique, we limit the
number oftag-producing instructions that are issued to a sin-
gle FU-group. It may be difficult to simultaneously count and
limit the number of tag-producing instructions issued to an
FU-group in the same cycle. Hence, the count of waiting tags
of the previous cycle is used. If the count for anFU-group is

equal to or more than the limit, then theindicator bit a is set
for all thetag-latches in thatFU-group. The counting is done
in parallel to instruction selection in each cycle, and the setting
of the indicator bits is done in parallel to instruction wakeup
in each cycle. Thenon-tag-producing instructions can still be
issued to FUs with theindicator bit set. If the count for an
FU-group is less than the maximum, then theindicator bits
are untouched. This may occasionally result in the number of
register tags waiting in anFU-group being more than the limit.

5.3 Performance
Figure 6 presents the IPCs with theRWIS and theRTD tech-
niques. For theRTD technique, we experiment with a limit of
1 waiting tag perFU-group (RTD-1) and 2 waiting tags per
FU-group (RTD-2). Figure 6 shows that the IPC impact of
theRWW design reduces with these techniques. In fact, with
theRTD-1 technique, compared to the I6W6 configuration, the
IPC of the I6W3 configuration is less than 2% lower and the
IPC of the I6W2 configuration is less than 5% lower (for many
benchmarks).

gzip vpr gcc mcf parser bzip2 twolf
0

0.5

1

1.5

2

2.5

3

IP
C

Issue Width = 6; Wakeup Width = 6 (I6W6)

Issue Width = 6; Wakeup Width = 3 (I6W3)

Issue Width = 6; Wakeup Width = 2 (I6W2)

O
rig

in
al

RW
IS

RN
TD

-1
RN

TD
-2

(i)

wupwise applu art ammp swim equake mgrid apsi mesa
0

0.5

1

1.5

2

2.5

3

IP
C

Issue Width = 6; Wakeup Width = 6 (I6W6)
Issue Width = 6; Wakeup Width = 3 (I6W3)
Issue Width = 6; Wakeup Width = 2 (I6W2)

O
rig

in
al

RW
IS

RN
TD

-1
RN

TD
-2

(ii)

Figure 6: IPCs withRWIS andRTD techniques applied to the
RWW Design (i) Integer; (ii) FP benchmarks

Figure 6 shows that theRTD-1 technique is more effective
than any other technique, becauseRWIS helps in only reduc-
ing the wastage of issue slots whereas,RTD helps in reducing
the number of delayed register tags as well, and withRTD-2
more tags are allowed to wait perFU-group resulting in more
instructions getting delayed. Our studies also found that, with
theRTD-1 technique the total number of instructions delayed
is the least resulting in the least impact on IPC when using this
technique. We also found that, for theRTD-1 technique, even

5

though the number of instructions delayed due to waiting tags
decrease significantly, the instructions delayed due to wastage
of issue slots increase when compared to theRWIS technique,
because more issue slots are wasted due to the limit on the tags
that can wait in anyFU-group.

6 Related Work
Both micro-architectural and circuit-level solutions have been
provided to implement reduced latency dynamic schedulers.
In [1, 2, 7, 15, 21, 13], the instruction queue is distributed
among multiple clusters. This solution trades global commu-
nication for fast local communication. A recently proposed
circuit-level approach [11] merges the reorder buffer and the
issue buffer, and uses parallel-prefix circuits for wakeup and
selection phases.

Dependence-based pre-scheduling is proposed in [15, 6,
14, 17], with different implementations, to keep the top-
level buffer used for waking up dependent instructions small.
Hrishikesh et al [12] also propose segmented instruction win-
dows to reduce scheduler latency, where instruction wakeup
is pipelined among the segments. Folegnani and Gonzalez [8]
focus on “gating off” entries to reduce power consumption in
dynamic schedulers.

Our design reduces hardware complexity for efficient dy-
namic scheduling, which can also be used in conjunction with
clock gating and data dependent analysis.

7 Conclusions
Larger dynamic schedulers are required to exploit more In-
struction Level Parallelism (ILP) to increase the Instruction
per Cycle (IPC) count, and hence increasing performance.
While more ILP can be exploited by larger dynamic sched-
ulers, this increase in parallelism comes at the expense of a
slower scheduler clock speed.

In this paper, we proposed a reduced wakeup width (RWW)
dynamic scheduler design to reduce the scheduler critical path
latency by reducing the maximum number of register tags that
can be used for identifying data-ready instructions. The design
exploits the observation that the average number of useful reg-
ister tags produced every cycle is much less than the processor
issue width. Our studies showed that significant reduction in
wakeup logic latency can be achieved with less than 5% reduc-
tion in IPC. The design also reduced the wakeup logic energy
consumption by about 15%, and the instruction window area
by about 30%. Our enhancements to the basicRWW scheduler
design, reduce the IPC impact to less than 2%.

References
[1] A. Aggarwal and M. Franklin, “An Empirical Study of the Scal-

ability Aspects of Instruction Distribution Algorithms for Clus-
tered Processors,”Proc. ISPASS, 2001.

[2] A. Baniasadi and A. Moshovos, “Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled, Super-
scalar Processors,”Proc. MICRO-33, 2000.

[3] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,”Proc.
ISCA, 2000.

[4] M. Brown, J. Stark and Y. Patt, “Select-free Instruction
Scheduling Logic,”Proc. Micro-34, 2001.

[5] D. Burger and T. Austin, “The Simplescalar Tool Set,”Techni-
cal Report, Computer Sciences Department, University of Wis-
consin, June 1997.

[6] R. Canal and A. Gonzalez, “A low-complexity issue logic,”
Proc. ICS, 2000.

[7] K. Farkas, et. al., “The Multicluster Architecture: Reducing Cy-
cle Time Through Partitioning,”Proc. Micro-30, 1997.

[8] D. Folegnani and A. Gonzalez, ”Energy-Effective Issue Logic,”
Proc. ISCA-28, 2001.

[9] M. K. Gowan, L. L. Biro and D. B. Jackson, “Power Consider-
ations in the Design of the Alpha 21264 Microprocessor,”Proc.
Design Automation Conference, 1998.

[10] R. Gonzalez and M. Horowitz, “Energy Dissipation in General
Purpose Microprocessors,”IEEE Journal of Solid-State Cir-
cuits, Vol. 31, No. 9, September 1996.

[11] D. S. Henry, et. al., “Circuits for wide-window superscalar pro-
cessors,”Proc. ISCA-27, 2000.

[12] M. S. Hrishikesh et. al., “The optimal logic depth per pipeline
stage is 6 to 8 FO4 inverter delays,”Proc. ISCA, 2002.

[13] D. Leibholz and R. Razdan, “The Alpha 21264: A 500 MHz
Out-of-Order Execution Microprocessor,”Proc. Compcon, pp.
28-36, 1997.

[14] P. Michaud and A. Seznec, “Data-Flow Prescheduling for Large
Instruction Windows in Out-of-Order Processors,”Proc. HPCA,
2001.

[15] S. Palacharla, et. al., “Complexity-Effective Superscalar Pro-
cessors,”Proc. ISCA, 1997.

[16] S. Palacharla, “Complexity-Effective Superscalar Processors,”
PhD thesis, University of Wisconsin, 1998.

[17] S. Raasch, et. al., “A Scalable Instruction Queue Design Using
Dependence Chains,”Proc. ISCA, 2002.

[18] Y. N. Patt, et al., “One Billion Transistors, One Uniprocessor,
One Chip,”IEEE Computers, pp. 51-57, Sept. 1997.

[19] E. Sprangle and D. Carmean, “Increasing Processor Perfor-
mance by Implementing Deeper Pipelines,”Proc. ISCA-29,
2002.

[20] V. Tiwari, et al., “Reducing Power in High-performance Micro-
processors,”Proc. DAC, 1998.

[21] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, pp. 28-40, April 1996.

6

