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Abstract 
 

This paper proposes a power-aware cache block 
allocation algorithm for the way-selective set-
associative cache on embedded systems to reduce  
energy consumption without additional delay or 
performance degradation. For this goal, way selection 
logic and specialized replacement policy are designed 
to enable only one way of set-associative cache as in 
the direct-mapped cache. Overall cache access time 
becomes almost the same as that of conventional set 
associative cache with accessing additional way 
selection logic. Because data array can be accessed 
without waiting for tag comparison, multiplexer delay 
can be removed totally. The simulation result shows 
that the proposed architecture can reduce a per access 
power consumption by 59% over conventional set- 
associative caches with average 0.06% of negligible 
performance loss.  
 
1. Introduction 
 

As mobile and portable devices are widely used, 
recent studies about microprocessors concentrate on 
overall energy efficiency rather than performance 
because of both limitation on battery capacity and 
significant thermal problems due to the increased 
complexity and operation frequency of the system. In 
the design of embedded systems, memory subsystems 
such as cache and TLB may cause a direct impact on 
overall system performance and consume nearly half of 
the entire processor energy [15]. Even though static 
power becomes a major portion of whole processor 
power consumption as the advances in process 
technology, dynamic power reduction is still an 
important factor in low power design techniques. There 
are numerous architectural approaches to improving 
energy efficiency of cache memories by reducing 

dynamic cache access power, e.g., buffering, filtering 
mechanisms, and selective/reconfigurable associative 
caches. Direct mapped cache consumes least power for 
each access to a cache block, but it doesn’t consume 
least energy comparing with many other approaches. 
This is because a cache miss causes an access to the 
lower level memory and those accesses consume more 
energy.  Embedded systems for a specific application 
or domain need only simple cache memory system yet. 
But convergence of various applications requires more 
complex cache systems for their performance 
requirement. 

There are two general approaches to reduce energy 
consumption of cache memories related to the cache 
associativities. The first one is to improve the 
performance of the direct mapped cache with simple
additional mechanism. A representative architecture for 
this type of method is the victim cache. The victim 
cache dramatically reduces conflict misses, but there is 
also additional power consumption caused by accessing 
fully associative buffer simultaneously. The second one 
is to reduce the accessing power of set associative 
caches. Specially increasing the set-associativity causes 
performance improvement and additional delay time in 
determining a specific word among the outputs from 
every way. And also additional power consumption can 
be caused from accessing every cache way in parallel.
Analysis of cache power dissipation [4] shows that data 
bitlines and data sense amplifiers are responsible for 
55% (direct mapped), 65% (2-way) and 75% (4-way) 
of the power consumption for a given cache structure. 
According to this analysis, various selective way 
(associativity) accessing mechanisms have been 
proposed, e.g., phased-access cache, way-prediction 
cache [3], and predictive sequential cache. Decreased 
accessing power of the phased-access cache tends to 
cause intolerable latency overhead. The way prediction 
mechanism is more desirable, but its efficiency depends 
on the accuracy of the prediction strategy because of its 



expensive miss prediction penalty. To overcome this 
kind of overheads in performance and power, several 
studies about minimizing delay incurring for 
sequentially accessing steps are performed. 

In processor design, cache memory system is one of 
well known timing critical paths. Thus it is difficult to 
use additional hardware which increases access time, 
even though it achieves low power consumption. We 
propose an effective and realizable way-selecting 
structure to eliminate timing problems in previous 
approaches. In addition to fast access time, we can 
reduce power consumption via parallel tag access. 
Because tag access path is more likely to be a critical 
path of cache access time and tag decoding time is 
much shorter than that of data path, any kind of 
improved circuit techniques cannot reduce power 
consumption of tag part. Proposed cache structure 
solves this problem by providing only one output at 
each cache access. This mechanism changes 
conventional critical path which includes tag path with 
way selection and data array access and also removes 
multiplexer (MUX) driver delay in critical path. 
Eventually, overall cache access time becomes almost 
the same as that of conventional set associative cache. 
Our analysis using Cacti power model shows that the 
proposed cache structure reduces per access power 
consumption by 59 % of conventional set-associative 
cache structure. 
 
2. Related work 
 

Phased cache looks up tag arrays and data array 
sequentially. There is no wasted energy to access 
unmatched data sub-array. But, all of the load 
instructions are delayed by one more cycle. This 
latency significantly degrades the overall performance. 

Way-prediction cache [3] speculatively chooses one 
set before cache line access in the set associative cache. 
MRU (Most Recently Used) bits of each entry have 
information of recent accesses to select the first way to 
access. If prediction is correct, cache consumes energy 
for only one activated way. Otherwise, the cache 
searches all of the ways and consumes energy for all of 
them. In addition to this energy consumption, miss 
prediction also causes additional cycles that can 
degrade performance. Moreover non-deterministic 
cache access delay due to miss-prediction can cause 
significant overhead in whole pipeline implementation. 
This additional circuit may also consume dynamic and 
static power. 

Adaptive serial-parallel CAM cache [10] can 
sequentially access tag array. In serial mode for low 
power consumption, the least significant four bits of 

each row are checked serially and remaining bits are 
checked in parallel on the next cycle only if serial 
check was matched. This cache structure has flexibility
that it can be also operated as conventional fast parallel 
CAM cache for better performance without power 
reduction. 

Way-halting cache [11] also uses fully associative 
memory for four bits wide way-halting logic. It uses 
static CAM array to check the least significant four bits 
of tag in parallel to data address decoding. Access to 
mismatched way of data array would be halted by the 
wordline gating mechanism. This approach shows that 
static CAM structure has shorter latency than 
conventional index decoding time, and static CAM 
structure does not increase overall energy consumption 
significantly because tag bits are changed scarcely 
particularly for instruction cache. However this 
mechanism is not well adapted to data cache as authors 
mentioned in their paper. This structure can consume 
increased energy for data cache in way-halting static 
CAM arrays because data cache access patterns are 
more complicated and less predictable which means 
frequent change in contents of static arrays. Moreover 
this cache structure has difficulty in scaling the size of 
cache because CAM structure has small threshold size 
that cannot cause significant increase of power 
consumption due to broadcasting of comparing bits for 
every entry.  

When we use several bits of tag address to 
determine the way to be accessed, prediction accuracy 
can be improved by using the least significant bits of 
tag address. This is based on the spatial locality of data 
access pattern [11]. Our approach utilizes the same 
characteristics of data locality in a different way. 
Specifically, there may be low possibility that data 
blocks stored in the same set have the same low order 
tag bits. In turn, this property can be interpreted in the 
way that data blocks with the same low order bits of tag 
address do not tend to cause conflict misses. In the 
proposed architecture, we need some constraints on 
replacement policy to obtain low power consumption. 
Further details about the effects of this algorithm for 
power consumption and delay latency will be described 
in the following sections. 

 
 

3. Single-way selective cache  
 
We propose a new single-way selective (SWS) 

cache for low power consumption without any 
additional accessing latency via specialized 
replacement algorithm. As mentioned before, this 
replacement mechanism allocates the blocks which 



have different least significant four bits of tag address 
in a set. In this section, the proposed cache 
organization and operational model are described in 
detail. 

 
3.1. Cache organization 
 

The basic SWS cache model is designed as a four-
way set-associative cache. In addition to the 
conventional set-associative cache structure, the SWS 
cache has arrays of four-bit mini-tag composed of low 
order four bits of the tag address in each cache way. 
This array can be implemented in the same way as the 
CAM array [11] or as the conventional RAM array and 
comparators. In our approach, it is possible to remove 
MUX driver which selects outputs from every cache 
way to overcome additional delay accompanied by 
sequential way selecting process because only one way 
can be enabled on each access.  
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Figure 1.  SWS cache organization 

3.2. Operational model of the SWS cache 
system  

 
Here, we describe the algorithm for managing the 

SWS cache in detail. Its conceptual operation flow is 
explained as follows. When a cache miss occurs, an 
array of four entries with four-bit-wide tag for way 
selection should be compared with those of requested 
address. If a match occurs in a particular way, a new 

block from the lower level memory is fetched into that 
way to guarantee one way access. Otherwise a new 
block can be placed into any set according to 
conventional replacement policy. And the replaced 
block will be evicted from the entire cache. Different 
cases for the operational model are explained as 
follows.  
 
3.2.1. Cache access 
 

When a load/store unit generates a data address, 
accessing the data, tag and way-selecting sub-array is 
started using the index field bits of the data address. 
Only one wordline of data array will be activated 
through gated wordline (b part in Figure 1) of the result 
of mini-tag comparison (a part in Figure 1). Because 
the proposed cache system has constraints that data 
blocks in each way at the same set cannot have the 
same way-selecting bits, only one wordline is enabled.  
 
3.2.2. Victim block select 
 

When a miss occurs, the location for a new data 
block will be determined by simple power-aware 
replacement algorithm. To avoid same blocks reside 
among the four entries in an index set of mini-tag array, 
compare the four entries with least significant tag bits 
of requested address which causes a cache miss. If 
there is a match in the way-selecting sub-array, the 
matching block will be a victim block. Otherwise,
conventional replacement algorithm such as LRU 
replacement algorithm can be used. In general, LRU 
strategy can show the best performance in conventional 
set-associative cache but we use random or round-robin 
replacement policy for the proposed system because 
proposed replacement algorithm can decrease the 
effectiveness for the LRU replacement algorithm. 
According to the simulation result that will be 
described in later section, random or round-robin 
replacement policy can show better performance than 
the LRU with proposed way-selective cache. 

 
4. Delay and power analysis 
 

In this section, we describe detailed analysis on 
delay and power consumption for each component of 
the proposed cache system to compare with 
conventional set-associative cache structure. We 
calculate all the values in this section through CACTI 
3.0 power model and tools for 0.13㎛ technology.  

 
 



4.1. Cache access time in conventional set-
associative cache 
 

In most of cache designs, path for tag comparison 
logic is critical path of overall cache access. Critical 
path delay for whole structure of conventional set-
associative cache and each component with cumulative 
result of delay time can be described as follows. 

Tcache_access = Ttag_index_decode (0.156ns) + Ttag_array_w/b_line 
(0.343ns) + Ttag_comparison(0.549ns) + TMUX_driver(0.798ns)       

+ Toutput_driver(0.919ns) 

In addition to tag array access, most cache structures 
perform TLB access in parallel to cache access and tag 
value should be compared with physical address from 
TLB. For that reasons, delay time for the TLB access 
also can lengthen the critical path delay for tag 
comparison. This delay time is one of the most 
important factor of cache access latency. a) of Figure 2 
shows timing critical delay path of conventional set-
associative cache structure. 
 
4.2. Cache access time in proposed SWS cache 
 

The main source of delay increasing the overall 
access time can be the one for accessing the way-
selecting sub-array. In conventional set-associative 
caches, all the sets at the same index are accessed 
simultaneously to detect a match. However, a particular 
way is determined by processing serially in this 
proposed approach. These serial accessing 
characteristics can be an important factor to utilize in 
designing low power systems. Most of parts in cache 
architecture are involved in the critical path of 
processor cycle time. Particularly, there is no enough 
timing margin between the time to access cache and the 
time to generate an effective address in load/store unit. 

So we cannot ignore the additional delay of sequential 
access in the proposed cache memory system. The
proposed architecture eliminates tag path delay from 
the critical path by at most single output for every 
cache accesses as shown in the b) of Figure 2. Changed 
critical path delay for whole SWS cache structure and 
its components with cumulative result of delay time can 
be described as follows. 

TSWS_cache_access = Tmini_tag_index_decode(0.11ns) + Tmini-

tag_w/b_line(0.25ns) + Tmini_tag_comparison(0.41ns) + 
Tdata_w/b_line(0.795ns) +Toutput_driver(0.91ns) 

Moreover delay time of MUX driver which selects a 
correct output data among the multiple ways and 
spends much time, can be eliminated. 
 
4.3. Power consumption 
 

Four bit comparisons and their accesses to the array 
in the proposed structure consume only 6% of total 
cache power consumption. Power reduction can be 
achieved by 68% for data sub-arrays. In addition to 
power reduction from the data sub-array, proposed 
cache structure can achieve additional power reduction 
from way-selection on tag array because path for tag 
compare logic does not affect any impact on cache 
access time in changed critical path. Previous research 
about direct-mapped cache [12] shows that if only one 
data block is available, data can be fetched to the CPU 
before the outcome of the tag check is known. And also 
processing of the instruction is aborted at a later stage 
in the pipeline when a miss occurs. This feature in the
SWS cache can achieve more power reduction by 58% 
for tag sub-arrays. To take additional hardware and all 
power reduction into account, total power consumption 
can be reduced by 59% per an access to the cache of 
the conventional set-associative cache. 

 
Figure 2. Access time scenario model with critical path delay 



5. Results 
 

The proposed SWS cache is based on the 
assumption that changing the replacement algorithm 
will not increase cache miss ratio significantly. We 
verify the assumption through the simulation result of 
various embedded applications and analyze overall 
power consumption by the result of simulation.  
 
5.1. Experimental methodology 

 
We use SimpleScalar/ARM processor simulator to 

gather statistics of the proposed cache architecture. 
Simulated target machine is configured as the settings 
of representative embedded processor as parameter 
values shown in Table 1. 

Table 1. Simulation target machine configuration. 

Execution order In-order 

L1 data cache 16KB, 32byte, 4way 

L2 cache None 

TLB entry/configuration 64 / fully associative 

Main memory access latency 22 cycle (13+3+3+3) 

 
5.2. Simulation results 
 

We use Mibench benchmark suit [13] which 
represents various domains of embedded workloads. 
We compared four kinds of cache memory systems. 
First, denoted as ‘conv_LRU’, ‘conv_random’ in 
Figure 3 is configured as a 16KB size, 32B block, 4-
way set-associative cache with LRU, random 
replacement policy and the others are the proposed 
way-selective caches denoted as ‘SWS_random’ and 
‘SWS_LRU’. We omit results of miss rate for some 
benchmarks which have very small miss ratio at every 
four cache structures.  Cache performance result in 
Figure 3 shows interesting fact that the proposed four 

bits constraints brings worse performance with LRU 
rather than random policy. On the average, the 
replacement algorithm for way selection logic increases
cache miss rate for 0.1%, 0.2% with random, LRU 
replacement policy respectively. The degradation of the 
miss ratio does not cause the same amount of 
performance. According to the performance simulation 
results that are not shown in this paper because the 
difference among the result values is too small to be 
recognized on the graph, overall performance loss is up 
to 0.59% for the Mad application with LRU, on 
average 0.06%, 0.13% with random and LRU 
respectively. For basic model of the proposed cache 
architecture, we achieve 59% per access power 
reduction. Overall energy consumption of proposed 
cache system can be calculated by analytical method 
presented in previous work [11],[14] as follows. 
overall_energy = number_of_cache_hits * hit_energy 

+ number_of_misses * miss_handling_energy  

According to the analysis for power model, the 
power consumption caused by cache miss handling is 
around 50 to 200 times larger than per access power. 
Overall energy consumption of various cache structure 
through the power model with 50 of miss power factor, 
is shown in Figure 4. The result with power factor of 
200 brings similar result. Without plotting the result of 
‘200’, Figure 4 shows energy consumption of each 
cache structure for cache access and miss handling 
separately. By the result, our cache architecture shows 
that average energy reduction is calculated as 56% 
down to 38% for each case.  

 

6. Conclusion 
 

Generally, it is difficult to put additional hardware 
logic for reducing the cache power consumption 
because most of cache access time may be involved in 
the critical path of processor cycle time. We propose
the SWS cache exploiting the way-prediction to 
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Figure 3. Cache miss rates for various embedded applications. 



achieve low power consumption without additional 
delay. All of this energy efficiency can be obtained 
when cache accesses with additional delay can be 
performed within a cycle.  

Marginal time to access the way selection logic can 
be obtained by removing tag path delay from the 
critical path by at most single output for every cache 
accesses and eliminating the multiplexer delay in the 
critical path. Therefore the overall cache access time of 
the proposed cache system becomes almost the same or 
even faster than that of conventional set associative 
cache.  
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Figure 4. Overall energy consumptions normalized to conventional 4-way cache  


