
Power-aware deterministic block allocation for low-power way-selective
cache structure

Jung-Wook,Park† , Gi-Ho,Park‡ , Sung-Bae,Park‡ , Shin-Dug,Kim†
† CS, Yonsei University 134, Shinchon-dong Seoul, 120-749, Korea +82-2-2123-2718

‡ Processor Architecture Lab. System LSI Division,Samsung Electronics Co., LTD. Giheung, Korea
 pjppp@parallel.yonsei.ac.kr, {giho.park, sung.park}@samsung.co.kr, sdkim@yonsei.ac.kr

Abstract

This paper proposes a power-aware cache block
allocation algorithm for the way-selective set-
associative cache on embedded systems to reduce
energy consumption without additional delay or
performance degradation. For this goal, way selection
logic and specialized replacement policy are designed
to enable only one way of set-associative cache as in
the direct-mapped cache. Overall cache access time
becomes almost the same as that of conventional set
associative cache with accessing additional way
selection logic. Because data array can be accessed
without waiting for tag comparison, multiplexer delay
can be removed totally. The simulation result shows
that the proposed architecture can reduce a per access
power consumption by 59% over conventional set-
associative caches with average 0.06% of negligible
performance loss.

1. Introduction

As mobile and portable devices are widely used,
recent studies about microprocessors concentrate on
overall energy efficiency rather than performance
because of both limitation on battery capacity and
significant thermal problems due to the increased
complexity and operation frequency of the system. In
the design of embedded systems, memory subsystems
such as cache and TLB may cause a direct impact on
overall system performance and consume nearly half of
the entire processor energy [15]. Even though static
power becomes a major portion of whole processor
power consumption as the advances in process
technology, dynamic power reduction is still an
important factor in low power design techniques. There
are numerous architectural approaches to improving
energy efficiency of cache memories by reducing

dynamic cache access power, e.g., buffering, filtering
mechanisms, and selective/reconfigurable associative
caches. Direct mapped cache consumes least power for
each access to a cache block, but it doesn’t consume
least energy comparing with many other approaches.
This is because a cache miss causes an access to the
lower level memory and those accesses consume more
energy. Embedded systems for a specific application
or domain need only simple cache memory system yet.
But convergence of various applications requires more
complex cache systems for their performance
requirement.

There are two general approaches to reduce energy
consumption of cache memories related to the cache
associativities. The first one is to improve the
performance of the direct mapped cache with simple
additional mechanism. A representative architecture for
this type of method is the victim cache. The victim
cache dramatically reduces conflict misses, but there is
also additional power consumption caused by accessing
fully associative buffer simultaneously. The second one
is to reduce the accessing power of set associative
caches. Specially increasing the set-associativity causes
performance improvement and additional delay time in
determining a specific word among the outputs from
every way. And also additional power consumption can
be caused from accessing every cache way in parallel.
Analysis of cache power dissipation [4] shows that data
bitlines and data sense amplifiers are responsible for
55% (direct mapped), 65% (2-way) and 75% (4-way)
of the power consumption for a given cache structure.
According to this analysis, various selective way
(associativity) accessing mechanisms have been
proposed, e.g., phased-access cache, way-prediction
cache [3], and predictive sequential cache. Decreased
accessing power of the phased-access cache tends to
cause intolerable latency overhead. The way prediction
mechanism is more desirable, but its efficiency depends
on the accuracy of the prediction strategy because of its

expensive miss prediction penalty. To overcome this
kind of overheads in performance and power, several
studies about minimizing delay incurring for
sequentially accessing steps are performed.

In processor design, cache memory system is one of
well known timing critical paths. Thus it is difficult to
use additional hardware which increases access time,
even though it achieves low power consumption. We
propose an effective and realizable way-selecting
structure to eliminate timing problems in previous
approaches. In addition to fast access time, we can
reduce power consumption via parallel tag access.
Because tag access path is more likely to be a critical
path of cache access time and tag decoding time is
much shorter than that of data path, any kind of
improved circuit techniques cannot reduce power
consumption of tag part. Proposed cache structure
solves this problem by providing only one output at
each cache access. This mechanism changes
conventional critical path which includes tag path with
way selection and data array access and also removes
multiplexer (MUX) driver delay in critical path.
Eventually, overall cache access time becomes almost
the same as that of conventional set associative cache.
Our analysis using Cacti power model shows that the
proposed cache structure reduces per access power
consumption by 59 % of conventional set-associative
cache structure.

2. Related work

Phased cache looks up tag arrays and data array
sequentially. There is no wasted energy to access
unmatched data sub-array. But, all of the load
instructions are delayed by one more cycle. This
latency significantly degrades the overall performance.

Way-prediction cache [3] speculatively chooses one
set before cache line access in the set associative cache.
MRU (Most Recently Used) bits of each entry have
information of recent accesses to select the first way to
access. If prediction is correct, cache consumes energy
for only one activated way. Otherwise, the cache
searches all of the ways and consumes energy for all of
them. In addition to this energy consumption, miss
prediction also causes additional cycles that can
degrade performance. Moreover non-deterministic
cache access delay due to miss-prediction can cause
significant overhead in whole pipeline implementation.
This additional circuit may also consume dynamic and
static power.

Adaptive serial-parallel CAM cache [10] can
sequentially access tag array. In serial mode for low
power consumption, the least significant four bits of

each row are checked serially and remaining bits are
checked in parallel on the next cycle only if serial
check was matched. This cache structure has flexibility
that it can be also operated as conventional fast parallel
CAM cache for better performance without power
reduction.

Way-halting cache [11] also uses fully associative
memory for four bits wide way-halting logic. It uses
static CAM array to check the least significant four bits
of tag in parallel to data address decoding. Access to
mismatched way of data array would be halted by the
wordline gating mechanism. This approach shows that
static CAM structure has shorter latency than
conventional index decoding time, and static CAM
structure does not increase overall energy consumption
significantly because tag bits are changed scarcely
particularly for instruction cache. However this
mechanism is not well adapted to data cache as authors
mentioned in their paper. This structure can consume
increased energy for data cache in way-halting static
CAM arrays because data cache access patterns are
more complicated and less predictable which means
frequent change in contents of static arrays. Moreover
this cache structure has difficulty in scaling the size of
cache because CAM structure has small threshold size
that cannot cause significant increase of power
consumption due to broadcasting of comparing bits for
every entry.

When we use several bits of tag address to
determine the way to be accessed, prediction accuracy
can be improved by using the least significant bits of
tag address. This is based on the spatial locality of data
access pattern [11]. Our approach utilizes the same
characteristics of data locality in a different way.
Specifically, there may be low possibility that data
blocks stored in the same set have the same low order
tag bits. In turn, this property can be interpreted in the
way that data blocks with the same low order bits of tag
address do not tend to cause conflict misses. In the
proposed architecture, we need some constraints on
replacement policy to obtain low power consumption.
Further details about the effects of this algorithm for
power consumption and delay latency will be described
in the following sections.

3. Single-way selective cache

We propose a new single-way selective (SWS)

cache for low power consumption without any
additional accessing latency via specialized
replacement algorithm. As mentioned before, this
replacement mechanism allocates the blocks which

have different least significant four bits of tag address
in a set. In this section, the proposed cache
organization and operational model are described in
detail.

3.1. Cache organization

The basic SWS cache model is designed as a four-
way set-associative cache. In addition to the
conventional set-associative cache structure, the SWS
cache has arrays of four-bit mini-tag composed of low
order four bits of the tag address in each cache way.
This array can be implemented in the same way as the
CAM array [11] or as the conventional RAM array and
comparators. In our approach, it is possible to remove
MUX driver which selects outputs from every cache
way to overcome additional delay accompanied by
sequential way selecting process because only one way
can be enabled on each access.

de
co

de
r

Figure 1. SWS cache organization

3.2. Operational model of the SWS cache
system

Here, we describe the algorithm for managing the

SWS cache in detail. Its conceptual operation flow is
explained as follows. When a cache miss occurs, an
array of four entries with four-bit-wide tag for way
selection should be compared with those of requested
address. If a match occurs in a particular way, a new

block from the lower level memory is fetched into that
way to guarantee one way access. Otherwise a new
block can be placed into any set according to
conventional replacement policy. And the replaced
block will be evicted from the entire cache. Different
cases for the operational model are explained as
follows.

3.2.1. Cache access

When a load/store unit generates a data address,
accessing the data, tag and way-selecting sub-array is
started using the index field bits of the data address.
Only one wordline of data array will be activated
through gated wordline (b part in Figure 1) of the result
of mini-tag comparison (a part in Figure 1). Because
the proposed cache system has constraints that data
blocks in each way at the same set cannot have the
same way-selecting bits, only one wordline is enabled.

3.2.2. Victim block select

When a miss occurs, the location for a new data
block will be determined by simple power-aware
replacement algorithm. To avoid same blocks reside
among the four entries in an index set of mini-tag array,
compare the four entries with least significant tag bits
of requested address which causes a cache miss. If
there is a match in the way-selecting sub-array, the
matching block will be a victim block. Otherwise,
conventional replacement algorithm such as LRU
replacement algorithm can be used. In general, LRU
strategy can show the best performance in conventional
set-associative cache but we use random or round-robin
replacement policy for the proposed system because
proposed replacement algorithm can decrease the
effectiveness for the LRU replacement algorithm.
According to the simulation result that will be
described in later section, random or round-robin
replacement policy can show better performance than
the LRU with proposed way-selective cache.

4. Delay and power analysis

In this section, we describe detailed analysis on
delay and power consumption for each component of
the proposed cache system to compare with
conventional set-associative cache structure. We
calculate all the values in this section through CACTI
3.0 power model and tools for 0.13㎛ technology.

4.1. Cache access time in conventional set-
associative cache

In most of cache designs, path for tag comparison
logic is critical path of overall cache access. Critical
path delay for whole structure of conventional set-
associative cache and each component with cumulative
result of delay time can be described as follows.

Tcache_access = Ttag_index_decode (0.156ns) + Ttag_array_w/b_line
(0.343ns) + Ttag_comparison(0.549ns) + TMUX_driver(0.798ns)

+ Toutput_driver(0.919ns)

In addition to tag array access, most cache structures
perform TLB access in parallel to cache access and tag
value should be compared with physical address from
TLB. For that reasons, delay time for the TLB access
also can lengthen the critical path delay for tag
comparison. This delay time is one of the most
important factor of cache access latency. a) of Figure 2
shows timing critical delay path of conventional set-
associative cache structure.

4.2. Cache access time in proposed SWS cache

The main source of delay increasing the overall
access time can be the one for accessing the way-
selecting sub-array. In conventional set-associative
caches, all the sets at the same index are accessed
simultaneously to detect a match. However, a particular
way is determined by processing serially in this
proposed approach. These serial accessing
characteristics can be an important factor to utilize in
designing low power systems. Most of parts in cache
architecture are involved in the critical path of
processor cycle time. Particularly, there is no enough
timing margin between the time to access cache and the
time to generate an effective address in load/store unit.

So we cannot ignore the additional delay of sequential
access in the proposed cache memory system. The
proposed architecture eliminates tag path delay from
the critical path by at most single output for every
cache accesses as shown in the b) of Figure 2. Changed
critical path delay for whole SWS cache structure and
its components with cumulative result of delay time can
be described as follows.

TSWS_cache_access = Tmini_tag_index_decode(0.11ns) + Tmini-

tag_w/b_line(0.25ns) + Tmini_tag_comparison(0.41ns) +
Tdata_w/b_line(0.795ns) +Toutput_driver(0.91ns)

Moreover delay time of MUX driver which selects a
correct output data among the multiple ways and
spends much time, can be eliminated.

4.3. Power consumption

Four bit comparisons and their accesses to the array
in the proposed structure consume only 6% of total
cache power consumption. Power reduction can be
achieved by 68% for data sub-arrays. In addition to
power reduction from the data sub-array, proposed
cache structure can achieve additional power reduction
from way-selection on tag array because path for tag
compare logic does not affect any impact on cache
access time in changed critical path. Previous research
about direct-mapped cache [12] shows that if only one
data block is available, data can be fetched to the CPU
before the outcome of the tag check is known. And also
processing of the instruction is aborted at a later stage
in the pipeline when a miss occurs. This feature in the
SWS cache can achieve more power reduction by 58%
for tag sub-arrays. To take additional hardware and all
power reduction into account, total power consumption
can be reduced by 59% per an access to the cache of
the conventional set-associative cache.

Figure 2. Access time scenario model with critical path delay

5. Results

The proposed SWS cache is based on the
assumption that changing the replacement algorithm
will not increase cache miss ratio significantly. We
verify the assumption through the simulation result of
various embedded applications and analyze overall
power consumption by the result of simulation.

5.1. Experimental methodology

We use SimpleScalar/ARM processor simulator to

gather statistics of the proposed cache architecture.
Simulated target machine is configured as the settings
of representative embedded processor as parameter
values shown in Table 1.

Table 1. Simulation target machine configuration.

Execution order In-order

L1 data cache 16KB, 32byte, 4way

L2 cache None

TLB entry/configuration 64 / fully associative

Main memory access latency 22 cycle (13+3+3+3)

5.2. Simulation results

We use Mibench benchmark suit [13] which
represents various domains of embedded workloads.
We compared four kinds of cache memory systems.
First, denoted as ‘conv_LRU’, ‘conv_random’ in
Figure 3 is configured as a 16KB size, 32B block, 4-
way set-associative cache with LRU, random
replacement policy and the others are the proposed
way-selective caches denoted as ‘SWS_random’ and
‘SWS_LRU’. We omit results of miss rate for some
benchmarks which have very small miss ratio at every
four cache structures. Cache performance result in
Figure 3 shows interesting fact that the proposed four

bits constraints brings worse performance with LRU
rather than random policy. On the average, the
replacement algorithm for way selection logic increases
cache miss rate for 0.1%, 0.2% with random, LRU
replacement policy respectively. The degradation of the
miss ratio does not cause the same amount of
performance. According to the performance simulation
results that are not shown in this paper because the
difference among the result values is too small to be
recognized on the graph, overall performance loss is up
to 0.59% for the Mad application with LRU, on
average 0.06%, 0.13% with random and LRU
respectively. For basic model of the proposed cache
architecture, we achieve 59% per access power
reduction. Overall energy consumption of proposed
cache system can be calculated by analytical method
presented in previous work [11],[14] as follows.
overall_energy = number_of_cache_hits * hit_energy

+ number_of_misses * miss_handling_energy

According to the analysis for power model, the
power consumption caused by cache miss handling is
around 50 to 200 times larger than per access power.
Overall energy consumption of various cache structure
through the power model with 50 of miss power factor,
is shown in Figure 4. The result with power factor of
200 brings similar result. Without plotting the result of
‘200’, Figure 4 shows energy consumption of each
cache structure for cache access and miss handling
separately. By the result, our cache architecture shows
that average energy reduction is calculated as 56%
down to 38% for each case.

6. Conclusion

Generally, it is difficult to put additional hardware
logic for reducing the cache power consumption
because most of cache access time may be involved in
the critical path of processor cycle time. We propose
the SWS cache exploiting the way-prediction to

0

0.5

1

1.5

2

2.5

bf
de

c

bf
en

c

bm
at

h

jp
eg

di
jk

st
ra ff
t

gh
os

t

is
pe

ll

la
m

e

m
ad

pa
tri

ci
a

ad
pc

m

st
rin

g
se

ar
ch

su
sa

n

tif
f

av
r

M
is

s r
at

e
(%

)
conv_LRU conv_random SWS_random SWS_LRU

Figure 3. Cache miss rates for various embedded applications.

achieve low power consumption without additional
delay. All of this energy efficiency can be obtained
when cache accesses with additional delay can be
performed within a cycle.

Marginal time to access the way selection logic can
be obtained by removing tag path delay from the
critical path by at most single output for every cache
accesses and eliminating the multiplexer delay in the
critical path. Therefore the overall cache access time of
the proposed cache system becomes almost the same or
even faster than that of conventional set associative
cache.

7. REFERENCES
[1] B.Calder, D.Grunwald, and J.Emer, "Predictive sequenti

al associative cache,"Proceedings of Second International
Symposium on High-Performance Computer
Architecture, Feb. 1996, pp.244 -253.

[2] D.H.Albonesi, "Selective cache ways: on-demand cache
resource allocation," Proceedings of 32nd Annual
International Symposium on Microarchitecture. Nov.
1999, pp.248 -259.

[3] K.Inoue, T.Ishihara, and K.Murakami, "Way-predicting
set-associative cache for high performance and low
energy consumption," Proceedings of International
Symposium on Low Power Electronics and Design, Aug.
1999, pp.273 -275.

[4] S.J.E.Wilton and N.P.Jouppi, "CACTI: an enhanced
cache access and cycle time model," IEEE Journal of
Solid-State Circuits, Volume: 31 Issue: 5 , May 1996,
pp.677 -688.

[5] M.D.Powell, A.Agarwall, T.N.Vijaykumar, B.Falsafi,
and K.Roy, "Reducing set-associative cache energy via
way-prediction and selective direct-mapping," Proceed
ings of 34th ACM/IEEE International Symposium on
Microarchitecture, MICRO-34. Dec. 2001, pp.54 -65.

[6] J.H.Lee, S.W.Jeong, S.D.Kim, and C.Weems, "An
Intelligent Cache System with Hardware prefetching for

High Performance," IEEE Transaction on Computers ,
Vol. 52, No. 5, May 2003, pp. 607-616.

[7] N.P.Jouppi, "Improving direct-mapped cache
performance by the addition of a small fully-associative
cache and prefetch buffers," Proceedings of 17th Annual
Internatio nal Symposium on Computer Architecture,
May 1990

[8] D.Burger, T.M.Austin, “The SimpleScalar tool set,
version 2.0,” Technical Report TR-97-1342, University
of Wisconsin-Madison, 1997.

[9] S.Kim, N.Vijaykrishnan, M.J.Irwin and L.K.John “On
load latency in low-power caches”, Proceedings of
International Symposium on Low Power Electronics
and Design, Aug. 2003 pp.258-261

[10] A.Efthymiou, J.D.Garside “An adaptive serial-parallel
CAM architecture for low-power cache blocks”,
Proceedings of International Symposium on Low
Power Electronics and Design, Aug. 2002 pp.136-141

[11] C.Zhang, F.Vahid, J.Yang, W.Najjar “A Way-Halting
Cache for Low-Energy High-Performance Systems”
IEEE Computer Architecture Letters, Vol. 2, 2003

[12] D.Stiliadis, A.Varma “Selective victim caching: A
method to improve the performance of direct-mapped
caches”, IEEE Transaction on Computers , Vol. 46, No.
5, May 1997, pp. 603-610

[13] M.R.Guthaus, J.S.Ringenberg, D.Ernst, T.M.Austin,
T.Mudge, R.B.Brown “MiBench: A free, commercially
representative embedded benchmark suite”,
Proceedings of IEEE International Workshop on
Workload Characterization, Dec. 2001,pp 3-14

[14] C.Zhang, F.Vahid, and W.Najjar, "A highly
configurable cache architecture for embedded systems,"
Proceedings of 30th Annual International Symposium
on Computer Architecture, June. 2003, pp.136 -146.

[15] S.Segars, "Low power design techniques for
microprocessor" Tutorial, International Solid-State
Circuit Conference, Feb. 2001.

bf
de

c

bf
en

c

bi
tc

nt

bm
at

h

jp
eg

di
jk

st
ra ff

t

gh
os

t

gs
m

 e
nc

gs
m

 d
ec

is
pe

ll

la
m

e

m
ad

pa
tri

ci
a

pg
p

de
c

pg
p

en
c

ad
pc

m sh
a

st
rin

g

se
ar

ch

su
sa

n tif
f

av
r

Figure 4. Overall energy consumptions normalized to conventional 4-way cache

