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Abstract
We propose a dynamic power-aware issue queue in a general-purpose

microprocessor for multimedia applications. Resources can be adapted at
runtime in accordance with the feedback from a formal closed-loop control
system such that power dissipation is reduced while still meeting the real
time target for multimedia applications. We partition the issue queue into
multiple sets (i.e., FIFOs) such that only instructions at the head of each
set are able to issue. We then dynamically reconfigure the issue queue by
changing the number and/or size of FIFOs to satisfy specific application’s
needs. The optimal configuration and timing are predicted by the closed-
loop control system. Our results show an average power savings of over
90% in the issue queue with a negligible affect on the performance.

1. Introduction
With rapidly developing technology and increasing clock fre-

quency, power dissipation has gained more and more attention.
Higher power dissipation could reduce the battery life time for
mobile applications, raise the chip costs, and lessen the chip re-
liability. It could also limit clock frequency and the amount of
hardware features that can be included. This study concentrates
on reducing power in the issue logic since it is a significant source
to the total power dissipation for a modern general-purpose, out-
of-order superscalar microprocessor, such as Alpha 21464 [16].

While high-end microprocessor design is mainly driven by per-
formance, power dissipation has become a major design concern.
To satisfy needs from the widest set of applications, complex ar-
chitectural features are included in these general-purpose, high-
performance microprocessors. Although the goal of overall high
performance is generally met, these features are not optimally uti-
lized mainly because of diversity within and among different ap-
plications. During runtime, an application may vary widely in its
requirements for different datapath resources, degree of instruction-
level parallelism (ILP), branch behavior, and/or memory access
behavior. As a result, the datapath resources may not be optimally
utilized when the application is running; however, some power
will be dissipated by these resources regardless of their utilization.

To address these limitations, we proposed a flexible issue queue,
based on [2], that is partitioned into several FIFOs such that only
the head of each FIFO is exposed to the arbiter. Moreover, the
number and/or size of FIFOs can be adapted during runtime so as
to match the running application’s dynamic characteristics. In this
paper, we focus on real-time multimedia applications since they
tend to occupy a large portion of workloads for more and more
systems, including mobile or desktop systems that are built using
general-purpose microprocessors. Nowadays, it is expected that
these systems will be used increasingly for multimedia applica-
tions, which usually have real-time deadlines. Specifically, we are
focusing on soft real-time multimedia workloads, i.e., missing a
small portion of deadlines does not noticeably affect overall sys-
tem quality. Our solution is to employ a classical feedback control
system to adapt the issue queue configuration and save power due
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to an inherent property of these multimedia applications, i.e., soft
real-time deadlines. Our experiments of combining our flexible is-
sue queue scheme and a closed-loop feedback control system show
the potentials of reducing issue queue power dissipation while
meeting soft real-time deadlines for multimedia applications. In
addition, our results demonstrate that this simple feedback system
provides a sufficient response speed and is quite stable.

2. Related Work
Adjusting available datapath resources to better match program

requirements is not new. In terms of when and how resource adap-
tation is applied, previous research can be divided into two cate-
gories: statically and dynamically adaptive processing.

Static adaptation techniques have been proposed to reduce over-
all design complexity and/or power by making adaptation deci-
sions before execution and using fixed low-power structures dur-
ing the whole execution. In [12], the authors introduced a tech-
nique called Data-Flow Prescheduling to reduce the complexity of
the issue stage by ordering instructions before they enter the is-
sue buffer. Other similar static techniques were proposed in [6].
Palacharla et al. analyzed several specific areas of register renam-
ing, instruction window wakeup and arbitration logic, and operand
bypassing [13]. They found that the window wakeup and arbitra-
tion logic as well as operand bypass are probably the most criti-
cal components for future microprocessors and thus will be fun-
damental for future power-saving research work. Palacharla et al.
then presented an alternative design with a faster clock and simpli-
fied wakeup and arbitration logic which puts chains of dependent
instructions into FIFO buffers and issues instructions from multi-
ple buffers in parallel. The drawback of Palacharla’s approach, just
as with other static techniques that use fixed-sized data structures,
is that different applications may not all benefit from only one type
of issue queue configuration, thereby limiting its applicability.

A dynamic adaptation organizes adaptive hardware units so
that they can rapidly tune their complexity — usually in terms of
their size or parallel processing capabilities — to satisfy the cur-
rent application’s needs. In [1], issue width was varied to allow
disabling of a cluster of functional units during runtime to save
power using feedback from various performance monitors. Other
works proposed dynamically reducing the number of active en-
tries in the instruction window according to the processor’s needs
in order to save power [7, 8, 14]. The shortfall of these approaches
is that while dynamically adjusting issue queue size may reduce
power in the wakeup and arbitration logic, doing so narrows the
scope of instructions available for exposing ILP. This can be po-
tentially harmful to performance when ILP can only be exposed
using a large issue queue. Another limitation is that they do not
distinguish among valid entries in the issue queue and as such
make all of them visible to the wakeup and arbitration logic. This
can be very inefficient if instructions remain in the issue queue
for many cycles before they are ready to “wake-up” and issue.
Our approach addresses these limitations by reconfiguring the is-



sue queue into multiple FIFOs such that instructions dependent on
long latency instructions are prevented from being visible to the
arbitration logic. We then simultaneously modify the number and
size of FIFOs during runtime according to application needs.

Control-theoretic techniques have already been employed to
design processor systems. In particular, several methods based
on control theory have been proposed to reduce power dissipation,
energy consumption, and/or chip temperature. Skadron et al. in-
troduced formal feedback control theory into micro-architectural
level design as a technique to more adaptively control tempera-
ture and minimize performance drop [15]. Real-time deadlines
inherent in many multimedia workloads make the use of closed-
loop feedback control systems particularly appropriate. The work
of [10] focused on how to control dynamic voltage/frequency scal-
ing (DVS) settings for real-time response. Based on a formal con-
trol loop, the DVS system was designed to save power without
degrading a desired playback rate in a multimedia portable envi-
ronment. Similarly, [11] proposed a DVS feedback system to re-
duce power while maintaining the playback rate. Decoder power
was reduced by controlling the decoder rate so as to match with
the display rate. Our approach is similar to [10] and [11], but we
are working on a general-purpose microprocessor and controlling
the issue queue configuration such that the system commit rate
matches with the commit rate target, which is determined by the
multimedia workload.

3. Implementation
3.1 The Dynamically Reconfigurable Issue Queue

Our goal is to dynamically adjust the active size of the issue
queue to more closely match a multimedia workload’s needs. This
effectively reduces the power in the wakeup and arbitration logic
of the issue queue. To facilitate this, we follow the approach de-
scribed in [2, 3]. In particular, we partition the issue queue into
several FIFOs such that only the instructions at the head of each
FIFO are visible to the arbitration logic. Therefore, each FIFO
issues in-order though overall instruction issue among different
FIFOs is out-of-order. In Figure 1, we show an example of the
Hybrid Scheme as proposed in [3]. In the first stage, it starts to
reconfigure the issue queue by modifying both the number and
size of FIFOs while keeping the entire issue queue active. When
the FIFO size reaches some pre-defined threshold, in the second
stage, some FIFOs may be completely disabled if determined that
they are not needed to retain performance.

Given that only a fraction of the entries will be visible to the
arbitration logic, it is important that instructions be placed in the
FIFOs such that most (if not all) of the ready instructions appear
at the head of a FIFO. Otherwise, performance is more likely to
suffer. We chose to implement a dependency-based scheme simi-
lar to the one presented in [13]. As an instruction is decoded and
dispatched to the issue queue, the scheme attempts to place it in
the same FIFO as one or both of its source dependencies.

3.2 The Closed-Loop Feedback System
The architecture of the whole pipeline is shown in Figure 2.

To realize a control-theoretic system, we add three main compo-
nents: Commit Buffer, Compare Logic, and Controller. The main
goal of our closed-loop feedback system is to control the system’s
actual commit rate to be as close as possible to the Commit Rate
Target that reflects the requirement of the specific multimedia ap-
plication. To facilitate this goal, a Commit Buffer is added, which
is shown on the right side of Figure 2. The Commit Buffer is a
small buffer (e.g., 20 entries) used to hold retired instructions in
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Figure 1. A dynamically reconfigurable issue queue.
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Figure 2. Pipeline organization.
program order.1 Instructions leave the buffer at the rate defined
in Commit Rate Target. When there are fewer instructions than
Commit Rate Target in the Commit Buffer, a target miss occurs.
Our ultimate goal is to adjust the number of active issue queue
resources dynamically, such that power dissipation is minimized
and target performance is obtained at all times. However, as men-
tioned in Section 1, we are only focusing on soft real-time multi-
media workloads; therefore missing a target commit rate may be
reasonable as long as this occurs a small fraction of the time.

To control the system’s commit rate, we measure the occu-
pancy of the Commit Buffer, compare it with Commit Buffer Oc-
cupancy Target (i.e., set-point), and send the error (i.e., e(t) in the
figure) to a classical controller to adapt the configuration of the
issue queue such that available resources match the workload’s
dynamic requirements. Commit Buffer Occupancy Target is given
by an interval: [Cl, Ch]. When comparing Commit Buffer’s ac-
tual occupancy with Commit Buffer Occupancy Target in Com-
pare Logic, three cases are possible: (1) if Commit Buffer’s ac-
tual occupancy is smaller than Cl, issue queue resources are in-
sufficient to meet the target performance and the error is set to
e(t) = Cl − actual occupancy ; (2) if Commit Buffer’s actual
occupancy is larger than Ch, issue queue resources are excessive
and the error is to e(t) = Ch − actual occupancy ; (3) if Com-
mit Buffer’s actual occupancy is in the range [Cl, Ch], the issue
queue configuration is appropriate and thus the error is set to be
zero. We experimented with different intervals for Commit Buffer
Occupancy Target (i.e., [2, 6], [3, 8], and [4, 10]). We found that
results are not sensitive to the specific interval used and thus [3, 8]
is assumed for the following experiments.

The classical proportional, integral, derivative (PID) controller
corrects the error simultaneously by considering present, past, and
future conditions according to the equation:

m(t) = KP e(t) + KI

�
e(t)dt + KD

de(t)

dt
(1)

1It is not strictly required to move instructions to the Commit Buffer once they are
ready to retire, but doing so allows us to decouple the feedback system from the rest of
the pipeline; otherwise, we may need to stall the machine because the reorder buffer
might hold instructions that are ready to retire for a longer time.



where m(t) provides the control for resizing the issue queue in the
near future. The proportional action handles the present, by multi-
plying the error by a proportional constant KP such that the error
is reduced. The integral action improves stability by integrating
(or summing) the error over a time period, and then multiplying
this value by a constant KI to handle the past. To handle the fu-
ture, the derivative action calculates the rate of change for the error
with respect to time, and then multiplies this value by a constant
KD to reduce the change rate of the error. It turns out that for
our purposes we can obtain reasonable results by considering only
proportional and integral actions. In theory, a strict system analy-
sis is needed to identify the best action constants. Unfortunately,
we cannot provide an accurate system model due to its complex-
ity. However, the small constants tend to make the system stable,
but with slower response. Again, our experiments show that small
constants, which are simply selected without formal system anal-
ysis, work well enough to meet our goals.

Implementing this closed-loop feedback system on chip re-
quires a relatively small amount of hardware, including a small
buffer, a few comparators, registers, small-bit adders and shifters.
Therefore, we assume that the feedback system itself has a negli-
gible impact on power dissipation.
4. Power Estimations

The FIFO-based issue queue design saves power by turning off
under-utilized issue queue components in the instruction wakeup
and arbitration loop. To make our power analysis straightforward,
we only consider the power-saving estimations in the issue queue.
We assume that any significant savings in the issue queue will
translate to the reasonable savings in the processor since the issue
queue is a significant contributor to the total power dissipation on
the chip [4, 16]. To estimate the power savings in the issue queue
when operating in a low-power mode, we used the same approach
as was presented in [3] and extrapolated from Alpha 21264 and
21464 power estimations [4, 16]. As with our design, the 21464
was designed with a unified, non-collapsible, out-of-order issue
queue, capable of 8-wide issue.

The wakeup and arbitration loop consists of the generation of
data ready, instruction request, and instruction grant signals. Due
to its complicated hardware implementation and control logic, this
loop is a critical path in the processor design, and is therefore re-
sponsible for a significant portion of the issue queue power dis-
sipation [4]. Depending on different needs and implementation
strategies, the power distribution within the wakeup and arbitra-
tion loop may vary [3]. For example, if a more power-efficient
wakeup design is implemented, half of the loop power may be at-
tributed to the wakeup logic and the other half to the arbitration
logic [4]. We call this distribution “DISTR1”. If a faster, but more
power-hungry, wakeup design is employed, the power distribution
could be 70% in the wakeup logic and the remaining 30% in the
arbitration logic. This is referred to as “DISTR2”.

In the first stage of our scheme, we reconfigure the issue queue
by dynamically modifying the number and size of each FIFO while
keeping all entries in the issue queue active at all times. The power
dissipation of the arbitration logic is reduced since only instruc-
tions at the head of a FIFO will be visible to the arbiter. How-
ever, the issue queue entry still needs to update the dependency
information and readiness of instruction operands. By this rea-
soning, we assume that in the first stage, power dissipation in the
wakeup logic remains the same regardless of the FIFO configu-
ration. Power dissipation in the arbitration logic is saved due to
the reduced activity on the request and grant lines by selectively

inhibiting them from precharging. We only need to precharge the
request and grant lines for instructions that are at the head of a
FIFO. So the power dissipation in the arbitration logic is directly
proportional to the number of active FIFOs. If the total number of
FIFO heads in the issue queue is cut in half, this should reduce the
switching and therefore the power on the request and grant lines
and associated logic by approximately half.

In the second stage, we deactivate FIFOs if they are found to be
under-utilized. We do not need to update any information associ-
ated with disabled entries. Thus, we can save power in the wakeup
logic according to the fraction of FIFOs disabled. Power dissi-
pation in the arbitration logic is also reduced due to the reduced
activity on the corresponding request and grant lines. Moreover,
interconnect wire capacitance can be reduced in the remaining ac-
tive request and grant lines by isolating the portion of the wires
routed through the disabled entries.

5. Experimental Methodology
Our simulator is derived from the SIMPLESCALAR tool suite [5]

executing PISA (Portable ISA) binaries. We added several mod-
ifications to SIMPLESCALAR to better model our reconfigurable
processor. In particular, we split the RUU into a reorder buffer
(ROB) and issue queue (IQ), thus allowing us to more accurately
model current and next generation processors and enabling us to
implement the issue queue with multiple FIFOs.

Our simulations model a pipeline that allows for up to 8 in-
structions to be issued, executed, and committed each cycle. In
addition, the base case assumes a unified 128-entry, out-of-order
issue queue plus a reorder buffer and load/store queue with 512
and 256 entries respectively to avoid having it become a perfor-
mance bottleneck. First level and second level caches are 64KB,
2-way associative with 3 cycle latency, and 256KB, 8-way associa-
tive with 12 cycle latency, respectively. Access to main memory
takes 150 cycles. Our simulations are executed on a subset of the
multimedia benchmarks from MediaBench [9]. All benchmarks
were compiled using a re-targeted version of the GNU gcc com-
piler with full optimization. The benchmarks are executed for 500
million committed instructions, or until they complete, whichever
comes first.

6. Experimental Results
We chose the Commit Rate Target value by experimenting with

different targets (i.e., 0.3, 0.5, 1, and 2) using a conventional is-
sue queue, and observing the percentage of time that the target is
missed. Not surprisingly, we found that the more aggressive the
target, the more frequently we missed the target. Our target is set
to be as high as possible such that we miss the target only a small
percentage of the time (e.g., 0.5%). Table 1 shows the commit rate
targets that we chose and percentage of time that the correspond-
ing target is missed. This way we can find the target upper bound;
a lower target would lead to more power savings, but by definition
has lower performance. Thus power savings shown in this paper
is the lower bound that our proposed scheme can reach.

Now that we have a Commit Rate Target that can be obtained
using a conventional, monolithic issue queue, we apply our scheme

Table 1. Commit Rate Target used in this work.
Benchmarks Commit Rate Target Miss Percentage

rawcaudio/rawdaudio 0.5/0.5 0.1%/0.1%
cjpeg/djpeg 0.5/1 0.3%/0.1%

mesa 1 0.4%
mpeg2dec/mpeg2enc 2/0.5 0.5%/0.0%

pegwit 0.5 0.2%
epic/unepic 0.5/0.33 0.2%/0.3%
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Figure 3. FIFO usage (a) and power savings (b) in the wakeup and arbitration loop for a 128-entry issue queue initially.
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Figure 4. FIFO usage (a) and power savings (b) in the wakeup and arbitration loop for a 32-entry issue queue initially.
to save power while nearly always maintaining this target. Multi-
media workloads are not the only applications running on general-
purpose microprocessors. In order to satisfy needs from the broad-
est set of applications, complex architectural features and more
datapath resources are included in these microprocessors. There-
fore, we start with an aggressive issue queue with 128 entries. Fig-
ure 3(a) shows the percentage of time that the processor spends in
each mode. Note that we start with a traditional issue queue with
128, 1-entry FIFOs. In the first stage, we reconfigure the issue
queue by cutting the number of FIFOs in half, i.e., 64, 2-entry
FIFOs. After that, the system enters the second stage since the
maximal FIFO size is defined as 2. Overall, we can spend an aver-
age of 32% and 36% of the time in the lowest two power modes,
which have 2, 2-entry FIFOs and 1, 2-entry FIFO. Using results
from Figure 3(a), and power estimations made in Section 4, we
can estimate the total power savings in the wakeup and arbitration
loop for both distributions, which is shown in Figure 3(b). All
results are compared to a monolithic, 128-entry issue queue. As
can be seen, we can save at least 80% of power dissipation in the
wakeup and arbitration loop and overall we can save 95.3% (for
DISTR1) or 94.4% (for DISTR2) of the total power in the loop,
with only 1.7% of time that the targets are missed, on average.

For contrast, we also ran experiments starting with a 32-entry
issue queue. Similarly, Figure 4 shows the FIFO usage and power
savings in the loop. Power results are compared with a conven-
tional, 32-entry issue queue. As expected, we stay in the low
power modes for a smaller percentage of time and save less power
than when starting with a 128-entry issue queue. However, our ex-
perimental results still show an average power reduction of 79.2%
(for DISTR1) or 76.5% (for DISTR2) in the wakeup and arbitra-
tion loop within the issue queue with an average 1.4% of the time
that the targets are missed. We also found that around the same
amount of power in the loop is dissipated to complete each appli-
cation when starting with either a large issue queue or a small one,
which indicates that our proposed system is effective in finding an
appropriate configuration for different applications regardless of
the base configuration.

7. Conclusion
Power dissipation is wasted for applications that do not need

the most aggressive features, such as multimedia applications. We
provide a flexible solution by applying a simple and stable closed-
loop feedback system with a dynamically reconfigurable mixed in-
order/out-of-order issue queue design. Our simulations show great
potential savings in power for the issue queue while still meeting
the performance demands inherent in multimedia applications.
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