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Abstract

This paper introduces a new scan control technique to re-
alize low area overhead of scan-latches. Single transparent-
latch is popularly used for register of high-throughput dat-
apaths. For the scan-test of those kind of circuits, each
transparent-latch is replaced with scan-latch. Conventional
scan-latch cells controlled by synchronous signals consist of
L1 latch and additional L2 latch, both of which function as
master latch and slave latch respectively in scan mode. Ap-
parently, additional L2 latch may result in area overhead.
In order to avoid the area impact of such an additional L2
latch, we propose new timing methodology employing asyn-
chronous control technique asP* protocol, and introduce
asynchronous controlled scan-paths whose scan-latch em-
ploys only L1 latch. We evaluate the operation speed with
HSPICE simulations and see they are practical. We also
suggest DFT structure with our suggested asynchronous
scan-paths, which is suitable for conventional synchronous
test systems.

1. Introduction

With the advancement of sub-micron technologies and
increase of circuits complexities, the significance of design
for testability(DFT) is going more important in spite of its
several drawbacks, area overhead and power dissipation in
scan mode.

Normally, scan registers are controlled by synchronous
signals. So each bit of scan cells requires at least two
latches, L1, L2, which function as master-slave latches
to shift test vectors safely(Fig.1(a)). When circuits under
test(CUT) employ master-slave flipflops as their registers,
both L1 and L2 in scan cell can be used in normal mode.
The problem is that CUT employ single transparent latches
as their registers. One of L1, L2 in the scan cell is redun-
dant in normal mode, and the redundant latch apparently
cause area overhead.

Therefore, many test engineers make an effort to design
smaller scan-latches and smaller scan path structure. Spe-
cial scan-latches are employed to achieve lower area scan
path at the expense of circuits’ stableness[4]. The special
scan-latch consists of normal sized L1 and small sized L2
which has no memory element. Actually, the area overhead
of this special scan-latch is low, but timing constraints are
severe. Another technique is LSSD Single L2* Latch De-
sign suggested in [2], but this cannot be an essential solu-
tion. In this technique, both scanned and non-scanned reg-
isters are used to realize master-slave latches in scan mode.
Scanned latches and non-scanned ones are mutually con-
nected in series to shift test vectors. Actually, LSSD Sin-
gle L2* Latch Design has no redundant latches in both scan
and normal mode, but requires more complex wire-routing
to form a scan path, which evidently causes area overheads
[6].
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Figure 1. Cell of Scan Latch

This paper focuses on timing methodology to tackle such
scan latch area problems. In normal synchronous shift reg-
isters, all bits of data shift at the same time, so each bit
of the registers requires at least two latches for safe oper-
ation. However, if each bit of data can shift at the differ-
ent time like domino, employing some smart signal con-
trollers, single latch is enough to realize each bit of shift
register(Fig.1(b)).

In the next section, our timing methodology for shift reg-
ister control is shown.



2. Multi-Clocked Shift-Register

To introduce our timing methodology for low area over-
head, we briefly study the behavior of synchronous shift
register.

Fig.2(a) shows the conventional synchronous shift regis-
ters and their control signal. Each stage of L represents sin-
gle transparent latch. In each clock cycle, data in the shift
register can shift forward by a bit.

Generally, N-stages of synchronous shift registers can
shift at most N/2 bit of data, because every time control
signal clocked, all stages of the latches behave as master or
slave latches.

Fig.2(b) shows the shift register with our suggested tim-
ing methodology. This shift register is controlled by n-pulse
signals. In each clock cycle, data in the shift register can
shift forward by a bit. Therefore, N-stages of such multi-
clocked shift register can shift at most (N-1) bit of data.

This multi-clocked shift register can be applied for scan
register, and can realize low area overhead scan latches. The
drawback of this multi-clocked scan register is operation
speed. Especially, with the increase of N, the shift speed
of the scan register is degrading.

For the practical operation speed, the generator of multi-
clocked signals has to operate fast. We employ high speed
asynchronous technique, asP*[5] for the multi-clocked gen-
eration. Next section, asP* is briefly studied.
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Figure 2. Shift Registers and their Control
Signals

3. Asynchronous FIFO based on asP*

asP* is the abbreviation of Asynchronous Symmetric
Pulse Persistent Protocol. asP* was proposed to realize
high throughput asynchronous FIFO control, introducing
pulse like control signal, accepting simultaneous events. Es-
sentially, the behavior of asP* is similar to well-known
four-phase[3], or return to zero asynchronous protocol, but
timing constraints are harder.

Fig.3(a) shows an example of asynchronous FIFO em-
ploying asP* protocol. Each of the latches, L i(1 ≤ i ≤ 5)
is controlled by asP* based asynchronous controller, c i. ci

has communication with c(i−1) at the preceding stage ac-
cordingly with asP* protocol, and produce a pulse signal
eni for latch controlling. In asP*, two states are defined at
every FIFO stage, full and empty. full at the ith stage im-
plies that the memory of Li is written. empty implies that
the memory of Li is re-writable. ci indicates the state of the
ith stage.

When c(i−1) and ci indicate full and empty respectively,
ci produces a pulse signal eni to write an image of Li−1 to
Li and then the state of the (i − 1)th is set to empty and the
ith’s is full. In asP* protocol, the generation of en i depend
only on the states of the (i − 1)th and the ith. The state of
the (i + 1)th has no effect on the relation between c(i−1)

and ci.
asP* can be applied not only linear FIFO but also join

and fork structures. In any case, the condition that given
stages produce enabling signals is only the case that all of
the current stages are empty and all of their preceding stages
are full(fig.3(b)).

Fig.3(c) shows the signal interactions between the (i −
1)th and the ith stages. Signal s(i−1) and si is used as state
indication signal in the (i − 1)th and the ith stages respec-
tively, HIGH level indicates empty, and LOW indicates full.
Initially, both s(i−1) and si are HIGH level, which indicates
that they are empty. When s(i−1) falls down to LOW level,
which implies that the (i − 1)th stage changes to full, fol-
lowing three events are issued simultaneously.

• event1: si−1 raises to HIGH level.

• event2: eni behaves as a pulse signal.

• event3: si falls down to LOW level.

As the result of these events, the data shift from Li−1 to
Li, and the (i − 1)th is empty and the ith is full. For cor-
rect operations, designers have to adjust the delays of those
events and the period of a pulse to satisfy SetupTime and
HoldTime of the latches at every stage of FIFO. Therefore,
the designers have to pay attention to the following timing
constraints.

• In event1, si−1 has to raise after pulse signal finished.



• In event2, a pulse signal has to begin after the data of
stage (i − 1) arrives at stage i.

• In event2, a pulse signal has to finish after the latch of
stage i is written.

• In event3, si has to fall after the pulse signal finished.
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Figure 3. asP* based Asynchronous FIFO

4. Multi-Clocked Scan Register Controller

We employ asP* for multi-clocked scan register
(MCSR). MCSR is shown in fig.4. Each of the rectangu-
lar blocks labeled i, j(1 ≤ i ≤ m, 0 ≤ j ≤ n) represents
scan-latch SL(i,j).Each SL(i,j) is controlled by clk in nor-
mal mode. The test mode and the normal mode are selected
by sw which is omitted in fig.4.

All of them are serially connected in a string, forming a
scan-path from SL(1,0) to SL(m,n). For 1 ≤ i ≤ m, 0 ≤
j ≤ n− 1, the output of SL(i,j) is connected with the input
of SL(i,j+1), and for 1 ≤ i ≤ m − 1, the output of SL(i,n)

is connected with the input of SL(i+1,0). All of cj(0 ≤ j ≤
n) are made in a loop which have join and fork at c0 and cn,
respectively.

Note, the condition of en0 producing pulse signal is only
when the indications of cin and cn are full and the indica-
tions of c0 and cout are empty.

cj controls the jth row which have SL(i,j)(1 ≤ i ≤
m). The square labeled CUT includes m · n scan-latches,
SL(i,j)(1 ≤ i ≤ m, 1 ≤ j ≤ m). The 0th row of
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Figure 4. Multi-Clocked Scan Register with
asP*

SL(i,0)(1 ≤ i ≤ m) seems to be redundant for test of CUT,
but is required for shifting operation in this model.

4.1. Basic Operation

The operations of MCSR are explained as follows.

• Initialization

– The indications of cout and of cin are set to
empty.

– The indication of c0 is set to empty and the rest
of controllers, cj(1 ≤ j ≤ n) are set to full.

– sw selects the test mode.

At the initialization, cj(1 ≤ j ≤ n) indicate full, but any
meaningful data are not inserted at the jth row. After the ini-
tialization, the operation of test vector insertion can start.

• Test vector insertion

– Each bit of the test vector is serially inserted from
SCin to SL0 accordingly with asP* communica-
tion between cn and c0.

– Those inserting operations continue until the
last bit of test vector is inserted from SCin to
SL(1,0).

In the operation of test vector insertion, each bit of test
vector can be inserted through following processes.

1 The data of SCin is updated, and cin indicates full.



2 The conditions of full-empty are established between
cin and c0, and between cn and c0, therefore data
transmit from SCin to SL(1,0) and from SC(i,n) to
SC(i+1,0) (1 ≤ i ≤ m − 1). As results, the indica-
tion of c0 changes to full and the indications of cin and
cn change to empty.

3 The condition of full-empty is established between
c(n−1) and cn and data transmit from c(n−1) to cn. As
results, states of c(n−1) and cn change to empty and
full respectively.

4 Like that, data transmission between c(i−1) and ci oc-
curs, when the condition of full-empty is established,
and next data transmission occurs between the next
preceding stages.

5 When the data transmission between c0 and c1 oc-
curs and finishes, the indication of c0 changes to empty
again.

Through the above 5 processes, the data array in the
scan-path from SCin to SCout shift forward by a bit, and
next bit of test vector can be inserted as long as the data of
SCin is updated and the indication of cin changes to full.

To insert m · n bit of test vector, those 5 processes have
to be executed m · n times, and after insertion of the last bit
of the test vector, all bit of the test vector are serially stored
in SL(i,j) (1 ≤ i ≤ m, 1 ≤ j ≤ n). Then those bit of test
vector can be evaluated, through the operation of test vector
evaluation.

• Test Vector Evaluation

– sw selects the normal mode.

– Test Vector is evaluated by single pulse of clk.

– After the evaluation, sw selects the test mode.

• Test vector extraction

– The indication of cin is fixed at full, while the in-
dication of cout fixed at empty is free.

– Each bit of the test vector is serially extracted
from SL(m,n) to Scout accordingly with asP*
based communication between cn and cout.

– Those extracting operations continue until all bits
of test vector are extracted from all the scan-
latches in CUT.

The extracting operation is almost same as inserting one.
Every time empty rounds and arrives at c0, a bit of the
test vector can be extracted to Scout accordingly with asP*
based communication between cn and cout.

The design impact of MCSR is independent of the num-
ber of scan-paths in the CUT, but dependent on m, n.

Next sub-section, we will examine the area impact of
MCSR related to m, n.

4.2. Area Estimation

In this section, we discuss area impact of a scan path con-
trolled by MCSR in comparison with typical synchronous
one.

First, we define lt as an unit of occupied are for a sin-
gle latch. Therefore, occupied areas of L1L2 based scan-
latch(fig.1(a)) and of single scan-latch(fig.1(b)) correspond
to 2[lt] and 1[lt], respectively. The circuits complexity of
a single stage of asP* controller, ci corresponds that of
3latches in logic gate level [5, 7]. So, here we assume that
occupied area of ci corresponds to 3[lt].

Assume given CUT have N scan-latches. If these scan-
latches consist conventional L1L2 based scan-latches and
are controlled by typical synchronous signal, the estimated
area overhead Otypical is,

Otypical = m · n[lt] (1)

Assuming m · n = N , if these scan-latches consist sin-
gle scan-latches and are controlled by MCSR, the estimated
area overhead OMCSR is,

OMCSR = m + 3(n + 1)[lt] (2)

With simple mathematical calculations, following an in-
equality can be gained from (2).

OMCSR ≥ 2
√

3m · n + 3[lt] (3)

The lower bound of OMCSR is established, only when
m = 3n.

From (3) it is clear that OMCSR

Otypical
can decrease with the in-

crease of m · n. If the number of scan-latches controlled by
MCSR is more than 29, OMCSR can be less than 20% of
Otypical.

4.3. HSPICE Simulation

We designed circuits of MCSR with scan-latches(fig.4)
in CMOS level for HSPICE simulation to estimate
Cycletime. For this simulation, 0.13µm technolo-
gies(VDD=1.2V) are used. As asP* controller, we
employ GasP[7] circuits, whose CMOS schematic de-
sign is smartly optimized to improve their switching
speed.

This simulation model has looped scan path connecting
SCout to SCin. Initially, the scan register is written by the
series of {10101010...}, so that every time vector shifts, all
enabled scan-latches could make transition. Waveforms in
fig.5 represent data transmissions of MCSR, the 16th stage,
the 15th stage, the 14th stage, and the 0th stage, where
m=32 and n=16. The waveforms of v(en16) and v(17)
represent en16 and output of SL(32,16) respectively. The
waveforms of v(en15) and v(16) are en15 and output



Symbol Wave
D1:tr0:v(en16)
D1:tr0:v(17)

V
o

lt
a

g
e

s
 (

li
n

)
0200m

400m
600m
800m

1
1.2

Time (lin) (TIME)
0 1n 2n 3n 4n 5n 6n

* clocked-type2 with m=32 n=16

Symbol Wave
D1:tr0:v(en15)
D1:tr0:v(16)

V
o

lt
a

g
e

s
 (

li
n

)

0200m
400m
600m
800m

1
1.2

Time (lin) (TIME)
0 1n 2n 3n 4n 5n 6n

* clocked-type2 with m=32 n=16

Symbol Wave
D1:tr0:v(en14)
D1:tr0:v(15)

V
o

lt
a

g
e

s
 (

li
n

)

0200m
400m
600m
800m

1
1.2

Time (lin) (TIME)
0 1n 2n 3n 4n 5n 6n

* clocked-type2 with m=32 n=16

Symbol Wave
D1:tr0:v(en0)
D1:tr0:v(1)

V
o

lt
a

g
e

s
 (

li
n

)

0200m
400m
600m
800m

1
1.2

Time (lin) (TIME)
0 1n 2n 3n 4n 5n 6n

* clocked-type2 with m=32 n=16

Figure 5. Wave form of MCSR for m = 32, n =
16

n 4 8 16 32 64
cycletime [ns] 0.305 0.550 1.04 2.02 3.97
frequency [MHz] 3,278 1,818 961 495 252

OMCSR

Otypical
[%] 36.7 23 16.2 12.8 11.1

Table 1. Cycletime of MCSR

of SL(32,15) respectively. The waveforms of v(en14) and
v(15) are en14 and output of SL(32,14) respectively. The
waveforms of v(en0) and v(1) are en0 and output of
SL(1,0) respectively.

The period of cycletime of MCSR is strongly depend on
n, scale of looped asP* controller. We made simulation of
MCSR for different size of n with m = 32. Table 1 shows
their results.

According to ITRS2003[1], those results promise that
MCSR can not be the bottleneck of the test speed. More-
over, operation speed of MCSR is in proportion to CMOS
technology rule. So, this correlation continues in future.

5. Clock-based DFT Structures employ-
ing MCSR

We propose asynchronous scan-latch controller, MCSR
for lower area. Though this is based on asynchronous tim-
ing, it can accept synchronous signal and to be applied for
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Figure 6. Clocked MCSR: si is internal signal
of ci

conventional DFT systems. In this section, we exhibit a
clocked DFT structure employing MCSR, as an example.

5.1. Clocked MCSR

The clocked MCSR controllers is shown in fig.6(a).
Comparing to fig.4, cout is removed which makes commu-
nication between CUT and Output environment, and exter-
nal clock signal sck emulates internal signal sin to control
MCSR with a synchronous signal.

Through a clock cycle of sck, MCSR generates control
signal eni (0 ≤ i ≤ n) to shift test vector by a bit in the
scan-path of CUT. The timing chart is shown in fig.6(b).
Tout is a period from a fall of sck to an update of SCout.
Tin is a period from a fall of sck to the next change of SC in.
Temp is a period from a fall of sck to fall of s0. Tfull is a
period from a fall of sck to the rise again of s0. Tpulse is
the period of low level of sck. Tcycle is the clock cycle of
sck. For correct operations, clock signal sck must be satis-
fied following inequalities.

Temp < Tpulse < Tfull (4)
Tfull < Tcycle (5)

For such given clock period of sck, the timing of SC in

must be satisfied following inequality.

Temp < Tin + TinHOLD < Tcycle (6)

Under those inequalities, it is assured that before the rise
of sck, SCin and SCout are ready to be read.

Tfull which may be the lower bound of Tcycle depends
on n of MCSR.
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Figure 7. Application of Clocked-MCSR to lo-
cal sub-circuits

5.2. Application of clocked-MCSR to local sub-
circuits

The clocked MCSR can also be applied for test of lo-
cal sub-circuits. Fig.7 shows an example. CUT has M scan-
paths from SIi to SOi (1 ≤ i ≤ M ), formed by a se-
rial connection of subCUTs. Each subCUT is controlled by
clocked-MCSR. Each of scan-paths can have different num-
ber and size of subCUTs, as long as sck satisfies following
condition,

T Max
out < Tpulse < T min

full (7)

T Max
full < Tcycle (8)

Here, T Max
out and T Max

full are the maximum periods of
Touts and of Tfulls in the set of subCUT respectively, and
T min

full is the minimum period of Tfulls.
The merit of fig.6(c) is that each enable wire en i of

MCSR avoid to form long global wire traversing the chip
die of CUT, which may impact on the area overhead.

Designers can decide the region and the size of each sub-
CUT freely as long as the total area impact of each MCSR
which depends on m · n is not dominant in CUT.

6. Conclusions

In this paper, we propose locally controlled scan-latch
register to restrain area overhead. In this model, its area im-

pact depends only on the size of scan-paths. We made math-
ematical estimations and see the area impacts can be negli-
gible under practical number and size of scan-paths.

HSPICE simulation shows the speed of shift operation
of our suggested type is practical, and its trend can continue
in future under prediction of ITRS2003.

We also show that our suggested asynchronous scan-
latch controller can be applied to conventional clocked scan
system.
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