
A Depth-First-Search Controlled Gridless Incremental Routing
Algorithm for VLSI Circuits

Hasan Arslan and Shantanu Dutt
Dept. of ECE, University of Illinois-Chicago�

harslan, dutt � @ece.uic.edu

Abstract: In the engineering change order (ECO) process, engineers
make changes to VLSI circuits after their layouts are completed in
order to correct electrical problems or design errors. As far as rout-
ing is concerned, in order to capitalize on the enormous resources and
time already spent on routing the circuit, and to meet time-to-market
requirements, it is desirable to re-route only the ECO-affected por-
tion of the circuit, while minimizing any routing changes in the larger
unaffected part of the circuit in order to preserve its electrical prop-
erties. In this paper, we develop a novel algorithm to find incremental
routing solutions using a gridless framework for VLSI circuits that
require variable width and variable spacing on interconnects. The ba-
sic idea in our algorithm is to route the new or ECO-modified nets by
minimally re-arranging, if necessary, some portions of some existing
nets using a novel DFS controlled process that does not allow the per-
turbed existing nets’ lengths and topologies to change beyond pre-set
limits. With these constraints, it explores a number of low-cost ways
of re-routing the portions of these nets within the available routing re-
sources (2 metal layers only). Experimental results show that within
the above constraints our incremental router succeeds in routing more
than 98% of ECO-generated nets, and also that its failure rate is 5 to
12 and 2.4 to 9 times less than that of previous incremental routing
techniques Standard (Std) and Rip-up&Reroute (R&R), respectively.
It is also able to route most of the wide nets using a reasonable number
of vias and with near-minimal net lengths.

1 Introduction
An engineering change order (ECO) is a request to make de-

sign changes which are made typically late in the design process
in order to correct logical and/or technological problems in the
circuit. Engineers usually want to modify the existing solution
incrementally and keep the design as close as possible to the ex-
isting one. It requires very efficient incremental design algorithms
and methodologies to make such changes. Incremental routing is
an integral part of any incremental physical design flow. Redo-
ing the routing for all the nets to tackle the incremental changes
is too time-consuming and can play havoc with time-to-market
needs and may introduce new errors into the design. Moreover,
an entirely different layout may completely invalidate the detailed
timing results, which is undesirable. It is thus desirable to re-route
only the ECO-affected portion of the circuit, while minimizing any
routing changes in the much larger unaffected part of the circuit.
ECO incremental routing is challenging in two aspects. First, there
are a large number of existing interconnect which become obsta-
cles in the region. Second, advances in circuit designs require
variable width and variable spacing on interconnects [1]. Thus,
not only a gridless incremental re-routing algorithm is needed but
also such an algorithm needs to be fast and to effectively use avail-

able routing resources in order to avoid time- and area-expensive
processes like re-floorplanning, re-placement, channel expansion
and increasing the number of routing/metal layers to complete the
required routings.

Past work tackling this important problem include [6, 7, 12,
13]. In [6] only the portions of nets whose pin connections change
are re-routed. This re-routing is done in a standard single-net rout-
ing mode in which global routing is followed by detailed rout-
ing in the available routing space without disturbing existing net
routes; we term this incremental routing approach as Standard
(Std) in the rest of the paper. Limited search space is the major
disadvantage of this scheme. The rip-up and reroute (R&R) ap-
proach to incremental physical design is presented in [7]. First
they route the new nets without removing any existing nets. When
some nets cannot be routed, some of the existing nets are ripped-
up to free up routing resources. The routing is then re-done for
the new nets followed by the ripped-up nets. If R&R fails to route
all the nets, the given floorplan and placement configurations are
needed to be modified. The main disadvantage of a R&R scheme
is that the routing is no longer truly incremental, as existing nets
are ripped out and there is little control on how they are re-routed.
Also most algorithms proposed for rip-up and reroute [3, 4, 5] as-
sume that there exists a underlying uniform routing grid and all
net segments can be simplified as a zero width lines centered on
the grid. However, this assumption does not hold anymore in vari-
able width and variable spacing routing. An incremental routing
algorithm for FPGAs that uses a novel bump-and-refit (B&R) ap-
proach which routes the new nets by “bumping” less critical ex-
isting nets without changing their topologies was proposed in [13]
and significantly extended for ECO routing and for FPGAs with
complex switchboxes in [12]. Unlike [6], this approach elimi-
nates the net ordering problem by changing the track assignments
for previously routed nets and gives optimal solution in the num-
ber of used tracks.

In [2] efficient techniques are presented for obtaining a non-
uniform routing grid from a given VLSI routing in order to per-
form incremental routing for ECO. This is an important issue for
incremental routing in VLSI circuits since it is impractical to store
uniform dense routing grids for current very deep submicron tech-
nology. In this paper we present a somewhat different non-uniform
routing grid that can be extracted locally and quickly.

In this paper we present an incremental routing algorithm for
complex VLSI circuits which have variable width and variable
space requirements. We develop a well-controlled depth-first-
search (DFS) directed rip-up and rerouting approach which routes
the new nets by minimally perturbing existing nets. Our approach
does not rip-up and reroute the bumped nets in their entirety, but
only reroute their bumped segments (or their subparts) on other

1



vacant or minimally occupied locations within a tight bounding
box. If such a rerouting of the bumped segment fails, its bumping
is retracted in the high-level DFS control and another position of
the bumped net segment is explored. Such a DFS control keeps
the topologies and lengths of perturbed nets close to their original
topologies and lengths.

The goals of our work are to develop incremental routing al-
gorithms that: (1) are orders of magnitude faster than complete
re-routing; (2) complete the required incremental routing in the
available routing resources if such a solution exists (this will min-
imize the need for area- and time-expensive fall-back strategies);
(3) complete the routing without significantly changing electri-
cal properties (e.g., power, delay) of existing nets. Experimental
results presented in Sec. 6 show that our incremental router has
significant advantages over existing incremental routing methods
with respect to the above metrics.

The rest of the paper is organized as follows. In Sec. 2, we
define the incremental routing problem for VLSI circuits. Defi-
nitions pertaining to our incremental routing algorithm are given
in Sec. 3. Gridless VLSI routing and a new technique for non-
uniform grid extraction for a given routing are discussed in Sec. 4.
Section 5 explains all facets of our incremental routing algorithm.
Experimental results comparing our incremental router to the type
of incremental routers proposed in [6, 7] that we have imple-
mented, are given in Sec. 6. We conclude in Sec. 7.

2 Incremental Routing for VLSI Circuits
The incremental routing problem that we will solve in this pa-

per is for gridless VLSI circuits having variable width and vari-
able space requirements. While getting a solution for the ECO-
generated net, it might overlap with some existing nets or the hori-
zontal/vertical spacing between two wire segments may violate the
wire separation requirement (a situation we call bumping). Hence
to be able to route it, some properties (track position, number of
vias, net length, etc.) of some existing nets needs to be changed.
Due to shifting existing nets to other locations, some segments of
shifted nets become shorter while others become longer. Also, the
changes on one layer can cause changes on other layers. To avoid
these problems we should aim to route new nets such that there is
minimal modification on the existing layout. The key problem in
incremental routing is to preserve as much of the previous routing
results as possible, while accommodating the new routing requests
without wire spacing violations.

n 1

n 2

n 1.h 1

n 2.h 1 n 2
.v 1

n 1
.v 1 ob 1

n 1.v1 n 1.h 1

n 2.v1 n 2.h 1

ob 1

CG of n1

CG of n2

  possible
overlapping

Figure 1: (a) Net Routing and their BBs. (b) Contiguity-Graph (CG) of
n1 and n2 and the overlap graph (OG) representing possible overlappings
if any segment is moved to other locations.

The overall quality of incremental routing solution can be mea-
sured in terms of total wire length, number of vias, number of lay-
ers and among of changes made to topologies and net lengths of
existing nets. These metrics can be minimized by modeling them

as either optimization metrics (e.g., wire length, number of lay-
ers) or constraints (e.g., a maximum number of vias per net, rout-
ing new as well as perturbed/bumped existing nets within certain
bounding boxes). Our incremental router will optimize the num-
ber of routing layers by exploring a richer solution space (within
the original number of routing layers) than previous methods. This
exploration is achieved by a controlled DFS wherein we backtrack
and search for alternative solutions when the current search vio-
lates given constraints or is not able to find a feasible solution.
Our algorithm will minimize the other metrics by modeling them
as and satisfying the following constraints.
a) Via Constraint: More than 70 % of VLSI circuit nets are two
terminal nets [14]. Previous studies showed that most two pin nets
can be routed by using a maximum at four vias [8, 14]. Our algo-
rithm will route nets with this constraint. Bounding the number of
vias per net permits efficient routing of all the nets and allows for
more precise delay estimation at higher levels of the design.
b) Bounding Box Constraint: Each ECO-generated net as well as
each existing net that is perturbed will be routed by our algorithm
within a somewhat larger region (the routing bounding box [R-
BB]) than the minimal bounding box (BB) that contains the two
pins of the net. First, we try to route each net in its BB. If such a so-
lution cannot be found, we allow some flexibility in order to have a
somewhat larger solution space and thereby reach an overall better
solution across all nets. In order to connect pin P located at (x1,y1)
and pin Q located at (x2,y2) where (x2 � x1) and (y2 � y1), the R-
BB for the 2-pin net will be (x1 � ∆, y1 � ∆)(x2 � ∆, y2 � ∆) where
∆ is a small relaxation.

(a) (b)

(c) (d)

n1

n2

b-seg o-seg
adj_seg

adjacent vias

A-BB for
b-seg n1

n 2

n1

n2

o-segb-seg
b-seg

n1

n2

n 1

n 2

o-seg
b-seg

n 1

n 2

n1

n2

o-seg
b-seg

n1

n2

Figure 2: Routing new net n2 creates an overlapping problem. (a) The
h-segment of net n1 (b-seg) is overlapped by an h-segment of new net n2
(o-seg). Dashed lines shows the A-BB for the b-seg; adj-vias are shown as
circles. (b) A solution which is invalid because of via constraints. (c) A
valid solution for the b-seg of n1. (d) A refinement algorithm improves the
solution of part [c] by reducing the number of vias.

3 Incremental Routing Concepts
Before going into the details of our incremental routing al-

gorithm, we define a few terms. Each net is routed using up to
five connected segments alternating between vertical and horizon-
tal directions. We call a horizontal segment an h-segment and a
vertical segment a v-segment. We will denote the kth h-segment of
net ni as ni � hk and the jth v-segment of net ni as ni � v j . The con-
nected graph consisting of horizontal and vertical segments of a

2



net is defined as a contiguity graph (CG) with each net segment
represented as a node in this graph. The segments which are adja-
cent in the layout (connected through via) have an edge between
them in CG. The CG for a circuit in Fig. 1(a) is shown in Fig. 1(b).

The overlap graph OG(V,E) is a graph representation of
the circuit routing where the set of the nodes V � OB ��

S1 	 S2 	 S3 	 �
��� 	 Si 	 ����� 	 Sk � , Si is a routed segment (h-segment/v-
segment) (see Fig. 1) and OB is the set of obstacles such as cells of
some nets or pins of a cell. If the two segments nk � Si and nl � S j of
the nets nk and nl whose BB’s intersect are parallel to each other
and there exists a line perpendicular to the them which cuts both
of them, then there is an edge between them (this indicates a pos-
sible overlapping between nk � Si and nl � S j if either one of them is
shifted along the perpendicular line). If any obi  OB is in the BB
of net nk and a line perpendicular to segment nk � S j cuts obi, then
there is an edge between them.

When routing a net ni, if a segment ni � Sk overlaps existing seg-
ments of other nets, ni � Sk is denoted as an o-seg and the exist-
ing segments overlapped are termed as b-segs. The segment(s) of
same nets adjacent to a b-seg are termed “adjacent segment(s)”
(adj-seg) and the via/pin which is connected to an adj-seg but not
the corresponding b-seg is denoted as an “adjacent via” (adj-via);
see Fig. 2. While finding a solution for shifting a b-seg, we move it
to different locations in the rectangular region A-BB, which is the
smallest rectangular box containing all the adj-vias of the b-seg;
see Fig. 2.

s

t

t

s

t

VGLs OGLs

(a) (b)

(c) (d)

t

s

Figure 3: Non-uniform grid graph generation by using type 1 and type
2 (OGL and VGL) grid lines. Type 2 grid lines are shown as thick lines.
(a) The boundary of objects without expansion. (b) Type 1 grid lines gen-
erated from the boundary of expanded rectangles shown shaded and from
x,y locations of the new net’s s and t pins. (c) Type 2 grid lines are added;
VGLs are lightly shaded thick lines, OGLs are dark thick lines and type 1
lines are shown as thin lines. (d) Example of the non-uniform graph NUG
constructed for the region highlighted in (c).

4 Gridless Routing and Non-uniform Grids
In gridless VLSI routing, the layout is conceptually populated

with numerous feasible points where the center-line of a net path
can pass through. The feasible points and their neighborhood in-
formation can be abstracted as a grid graph, called the non-uniform
grid graph (NUG), so that the optimal path can be found using a
shortest path algorithm. Initially a grid graph is built based on the
obstacles and existing nets in the routing region, and then a search
algorithm (described later) is applied on the graph to find a route

for the new net. When a new net is to be routed, a local grid graph
is created in the R-BB of the source pin s and target pin t. The first
problem that we need to address is how to construct a grid graph
that is much sparser than the manufacturing grids and yet contains
the optimal route if one exists. Many algorithms simplify the grid
graph at the expense of very costly pre-construction and represen-
tation [9, 10, 11]. Therefore, their usefulness is quite limited for
large designs as in the case of most ECO routing scenarios.

When routing a new net ni, the minimum space between the
new net’s segments and the rectangular obstacles in the BB of the
ni, that are adjacent to ni in the OG, must satisfy design spac-
ing rules. In order to satisfy the layout design rules we create an
obstruction zone around each obstacle net segment where the cen-
terlines of wires cannot placed 1 [2].

Our NUG is an orthogonal grid graph, consisting of x and y
grid lines. There are two types of grid lines depending upon how
they are determined. Type 1 grid lines are obtained from the verti-
cal and horizontal boundary lines of expanded routed net segments
and obstacles in the BB of the new net. In addition to that, it in-
cludes horizontal and vertical lines passing through the center of
s and t pin points of the new net (see Figs. 3a-b). We define type
2 grid lines as the lines between the type 1 grid lines. We de-
fine occupied grid lines (OGL) as those type 2 grid lines part of
which are occupied by already routed net segments. The width of
these grid lines are determined by using the vias size of the nets
on them. We also define variable space grid lines (VGL) as vacant
grid lines between two OGL lines if there is enough space between
them (as determined by via- and wire-spacing, and wire-width de-
sign rules) to place a wire; see Fig. 3 and Fig. 5. The intersection
of grid lines give us the grid points or nodes as shown in Fig. 3d.
The pseudo code of NUG is given in Fig. 4. If di is the number of
nets intersecting the BB of ni, there will be 5di (a net can be routed
using a maximum of 5 segments) comparisons to decide actually
which segments of intersecting nets will be expanded. The time
to scan all these segments and extract their boundaries is Θ � di � ,
and the time for sorting these boundaries to get type 1 grid lines is
Θ � di logdi � . Generating the type 2 grid lines between each type 1
grid lines takes Θ � di � time.

The non-uniformly gridded nature of NUG makes it very easy
to come up with a routing space representation that is both highly
compressed in storage and efficient in searching for solution paths.
This is in contrast to a uniform grid graph that has a very dense
grid of all routing grid-lines.

5 A DFS-Based Incremental Routing Algo-
rithm

When a new net ni is routed, we create a non-uniform grid
graph NUG for ni to find a path from source pin s to target pin t
of the new net. Also an NUG is created to find a path for bumped
segments b-seg and its adj-segs of an overlapped net.

When bumping occurs, the effected segments (b-seg and its
adj-segs —in the rest of the paper b-seg will be used to refer to it-
self and its adj-segs) are ripped up and after the NUG is extracted,
a path is searched between the adj-vias of the b-seg to reroute them
in its A-BB; see Fig. 5a. The ripup and rerouting process which is
performed to get a solution path for the b-seg is equivalent to mov-
ing the b-seg or its subparts to different grid lines; see Fig. 5c. To
obtain a valid solution between adj-vias, when the NUG is created,

1If wire width of net ni is w, each obstacle ob j in the BB of net ni is
expanded from w j to � w j � w � 2 � wsi j � where wsi j is the space requirement
between net ni and obstacle ob j , and w j is the width of obstacle ob j .

3



Algorithm Extract-Non-Uniform-Grid(ni,OG)
Input: ni is either a new net or a bumped portion of an existing net;

OG is overlap graph;
Output: Non-uniform grid;

Begin
Get A-BB of bumped segment (b-seg) of net ni;
for each net (obstacle) nk � obk � adjacent to ni in the OG do begin

if(segment S j � nk and S j � A-BB �� /0
or obstacle obk � A-BB �� /0) then
expand S j or obk according to net ni’s width and spacing rule;

endif
endfor
Generate type 1 grid lines from the boundary of expanded S j or obk
Generate type2 grid lines between each pair

of adjacent type 1 grid lines if spacing rules permit;
Construct non-uniform grid NUG;
return(NUG);

End. /* Extract-Non-Uniform-Grid() */

Figure 4: Pseudo code for extracting the non-uniform grid graph.

n 1

n 2
b_seg o_seg

(a)

n 1

n 2
b_seg o_seg

P 1

P 2
P 3

(c)

n 1

n 2
b_seg o_seg

(b)

A-BB
of b-seg

horizontal
VGLs

vertical VGLs

vertical
OGL

horizontal
OGLs n 1

n 2

n 1

n 1

n 2

n 2

adj-seg

adj-via

Figure 5: VGLs and OGLs inside the A-BB of a bumped segment b-seg,
obstacle is shown with dark color. (a) Possible VGLs in paths for the b-
seg (and its adj-segs) within the A-BB of the b-segs. (b) Possible vertical
VGLs to get path(s) for b-seg. (c) Different combinations of VGLs which
produce solutions with different number of vias for finding path for the
b-seg.

we first try to find a path consisting of VGLs which are consecu-
tively connected and require fewer vias. As seen in Figs. 5a-b,
there can be different VGLs in the A-BB of the b-seg and might be
used for finding a solution for its shifting. As shown in Fig. 5c,
if we select the VGLs on path P2, we get a solution requiring two
vias. If VGLs on path P3 are selected, then we get a 3-via solution,
and selecting the VGLs on path P1 requires only one via. Since
these new paths will be in the A-BB of the b-seg, the net length
will not be changed.
Our goal is to find a path consisting of VGL and OGL seg-
ments (preferably VGL alone to avoid modifying previous nets) by
rerouting bumped segments between their adj-vias while keeping
the number of vias close to optimal for each net. In order to find
such paths, we use the approach described in [8]. The approach
of [8] was developed for grid-based routing, and we extended it
for gridless routing using NUGs with variable width and variable
space requirements.

There are two phases in our algorithm to find a valid path for
b-seg. Like the Std approach, in the first phase we try to find a
path without bumping of any existing nets. If this is not possible,
we allow modification of existing nets to find a solution in the

(a) (b)

Adj-via

Adj-via

n j

n 1 n 2

n 3

P 1
Vertical VGLs

Horizontal
VGLs

before  overlapping

n 2

Adj-via

Adj-via n 1

n 1

2-via non-uniform
         grid lines

(c)

Adj-via

Adj-via n 1

n 1

3-via non-uniform
         grid lines

(d)

Adj-via

Adj-via n 1

n 1
cv

4-via non-uniform
         grid lines

cv

Figure 6: Different path finding scenarios with different numbers of vias.
(a) One-via solution for the b-seg of net n1 without overlapping with exist-
ing segments, after new net n j is routed. Gray lines show the non-uniform
gridlines inside the A-BB of b-seg of net n1. (b-d) For simplicity only the
possible routing paths are shown for two (b), three (c) and four (d) via
routing solutions.

second phase. If both phases fail, we increase the R-BB (subject
to maximum of 25% beyond the pin BB) of the new net and redo
the two phases until the R-BB cannot be expanded either because
it is blocked by pins or the layout boundary or the maximum limit
has been reached.
5.1 Phase 1: Bumpless Routing

In this phase, we only try to find an appropriate path Pk  PV
for the b-seg where PV is the set of paths between adj-vias that do
not bump any existing net. In this case, the number of vias used
in the path Pk becomes the dominant cost. Recall that we can use
a maximum of four vias for the entire net. We thus generate paths
in order of increasing via numbers.

Figure 6b-c shows how solution paths are explored for different
number of vias. If not prevented by obstacles (vias, prerouted nets,
cells), then one via routes are constructed along the bounding box
perimeter. At most two such routes exist. If one via routes have
not been found, then two via routes are constructed by selecting
three intersection line segments which connect the two adj-vias
of the b-seg along grid lines that are not occupied by obstacles
or segments of other routed nets. Illustration of example two via
routes is shown in Fig. 6b. If there is no 2-via solution, four and
five intersection line segments along grid lines are constructed to
route the nets by using 3 and 4 vias, respectively, as shown in
Figs. 6c-d.
5.2 Phase 2: DFS-Controlled Segment R&R

If there does not exist a path Pk  PV for the b-seg, we explore
the paths Pk  PO where PO is the set of the paths that overlap
bumping segments of existing nets. These bumped segments (b-
seg) of existing nets in turn will have to be shifted in their own
A-BB between their adj-vias, giving rise to a sequence of shifting
and path searching for each b-seg. Note that we do not ripup and
reroute the entire bumped net as in the case of [7]. Here, we are
only ripping-up and re-routing the b-seg of the bumped net; the
rest of the bumped net is treated as an obstacle until we find a so-
lution for the b-seg. Further, the R&R of the b-seg is performed us-
ing a DFS-controlled process that retracts possible R&Rs of b-segs
if finding new routes for them causes a lot of subsequent R&Rs of
other b-segs and/or these routes are blocked due to surrounding
obstacles. This prevents the R&R process from going out of con-
trol as is possible in traditional R&R [7]. It also preserves the net

4



Algorithm DSR-Routing(ni � OG)
Begin

NUG=Extract-Non-Uniform-Grid(ni ,OG);
result=Route-Without-Overlapping(ni � NUG � ; /* Phase-1 */
if (result==success) then return(success);
Cp=Get-Candidate-Paths(ni );
while(Cp �� /0) do /* until solution found

or all candidates are tested */
Bp=Get-Next-Best-Path(Cp );
K=set of nets will be bumped on path Bp;
for each n j � K do begin

remove b-seg of n j .
Endfor
succ-routed-child=0;
for each n j � K do begin

mark n j as visited;
result=DSR-Routing(n j � OG)
mark n j unvisited;
if (result==fail) then break;
else

succ-routed-child ++;
Endfor.

if (succ-routed-child== �K � ) then return(success);
endwhile;
return(fail); /* no solution */

End. /* DSR-Routing () */

Figure 7: The DSR incremental routing algorithm.

lengths and minimizes vias in the shifted routes thus minimally
perturbing existing nets and thus preserving electrical properties
to a large extent. This phase is the crux of our incremental routing
algorithm. We thus use the acronym DSR for our algorithm, which
stands for Depth-first search controlled Segment R&R.

Finding a path for a particular b-seg can initiate a set of other
b-seg shiftings and path searchings which finally terminate when
a Pk  PV is found for each b-seg. Essentially, we are performing
a depth first search (DFS) of sequential shiftings, to find a solu-
tion for the original b-seg, i.e., a DFS path terminates in failure if
the route selected for the current b-seg overlaps already bumped
nets in the current path or overlaps obstacles. If a particular path
Pk  PO fails in this manner, the search backtracks and tries an-
other unexplored path Pl for the b-seg. The final set of success-
ful shiftings resulting from the initial overlaps of the path chosen
for new net ni takes on a directed-acyclic graph (DAG) structure
termed a Path DAG (P-DAG), where each interior node is a b-seg,
each edge is a path Pk  PO and leaf nodes are the VGLs which do
not cause any overlap with existing nets; see Fig. 8c.

As seen in Fig. 8b, the path found as a possible solution for the
b-seg of net n1, overlapped by the o-seg of new net n j in Fig. 8a,
overlaps with the horizontal segment n2 � h2 of net n2. In order to
resolve this overlap, as a next step, the b-seg of n2 is shifted in its
A-BB and this shifting creates another overlap with segment n3 � v1
of net n3. Due to bumping of obstacles and ancestor nets among
candidate paths for n3 � v1, DSR cannot find a solution for it and
its adjacent segments. In this case, it backtracks to try another
path for n2 � h2 with a different numbers of vias (see Figs. 8b-c).
However, testing other paths for segment n2 � h2 also fails and DSR
backtracks to the b-seg of n1 to try another path for it. As seen
in Fig. 8d, when we try to route the b-seg of n1 by using another
path which requires two vias, another segment n2 � h1 is overlapped.
However, in this case, we get a solution for this segment without
overlapping any other existing net segment by routing it in the
second try on a 2-via path on available VGLs.

In phase 2, there can be many candidate paths for a b-seg.

(a )
Adj-via

Adj-via

n j

n 1

n 1
n 2

n 3

(b )

Adj-via

Adj-via

n j

n 1

n 1
n 2

n 3

n 2 .h 1

n 2 .h 2

n 2 .h 1

n
3 .v

1
n

3 .v
1

(d )

Adj-via

Adj-via

n j

n 1

n 1
n 2

n 3

n 2 .h 1

n 2 .h 2

n
3 .v

1

n j

n 1 .b -segP 1
n 2.pin
  or
Obs

Obs

P 1

Obs  or
ans.n 1 or

ans.n j

P 2-P 4

P 1
P 2-P 3

Obs

P 1

Obs  or
ans.n 1 or
ans.n j

P 2-P 4

n 1 .b -seg
n 3 .h 1

(c)

n 3 .h 1

n 1 .b -seg

n 1 .b -seg

n 3 .h 1

n j

n j

n j

Obs VGLs

P 1 P 2

Solution P-DAG

n 2 .h 1

n 3 .v 1

n 2 .h 2

n 3 .h 1

Figure 8: Routing example for Phase-2 (finding path by allowing modi-
fication on existing nets). (a) Dashed lines shows the ripped up portion of
overlapped segments of net n1 by new net n j . (b) Here shifting the b-seg
of net n1 causes other overlaps. (c) The DFS rooted at net n j . Shaded cir-
cles show fail shiftings which occur when the chosen route either bumps
obstacles or ancestor nets. Dashed lines show backtracking after all paths
tried for the particular b-seg have failed. Pi denotes a path which uses i
vias. The rightmost transitions in the DFS tree show a successful solution
represented by a sample P-DAG. (d) Final routing result.

These m candidate paths for the b-seg can be found (within its A-
BB) in random, sequential (the first m paths in increasing distance,
say, from the left adj-via) and equally spaced from each other, in
each of the 4 categories, 1 to 4-via paths. The cost for these m
paths are determined using a cost function described shortly and
of these the x least cost paths are tried sequentially in increasing
cost order to determine if there is a solution P-DAG rooted at the
current b-seg. If none of the x paths are successful, the algorithm
retracts the R&R of the current b-seg and tries another path for its
parent b-seg node. After significant testing, the value of x � 10
and the randomized initial path set selection approach gives us the
best solutions in terms of both quality and runtime.

It will be time-efficient if some suitable “cost” measure can be
used to determine which candidate paths are more likely to be suc-
cessful, so that fewer P-DAGs are searched. We use the following
cost function for a path Pk:

Cost(Pk � = � ∑n j � Q α � D � n j � � β �Via-Num � n j �����! " Q "
where Q is the set of the nets overlapped by Pk and D � n j � is the
degree of a net n j in the OG. The lesser the degree of net n j, the
lesser number of segments it might overlap with other existing
nets when finding a solution for its overlapped segment. The sec-
ond term in the cost function represents the number of vias which
were used to route the overlapped net n j . Lesser the number of
vias used during routing of net n j , whose portions are being over-
lapped, greater will be the probability/flexibility of solutions for
the overlapped portion of net n j , for satisfying the via limit con-
straint for the entire net n j. α and β are the weighting factors for
the net degree and via number metrics, respectively. We simulated
the cost function for different values of α and β. Based on the sim-
ulation results, we found that α � β � 0 � 5 gives the best results in

5



Algorithm Standard-Routing(S)
Input: The new netlist S will be added ;
Output: Incremental routing result;

Begin
Create OG;
for each ni � S do begin

R-BB(ni)=BB(ni); /* initialize bounding box
repeat

NUG=Extract-Non-Uniform-Grid(ni ,OG);
result=Route-Without-Overlapping(ni � NUG � ;
if (result==success) then break;

else Expand R-BB(ni);
Until (R-BB of ni cannot be extended );

Endfor
End. /* Standard-Routing () */

Figure 9: The previously proposed standard (Std) incremental routing
algorithm.

terms of solution quality metrics as well as runtime.
If phases 1 and 2 cannot find a solution for the new net in its

BB, we allow routes to extend outside the bounding box by in-
creasing the R-BB until it cannot be increased further because of
obstacles or reaching the layout boundary or the prescribed ex-
pansion limit. The same R-BB expansion is also used for the other
two methods Std and R&R, with which we compare our DSR al-
gorithm. An overview of our algorithm as well as Std and R&R
are given in Figs. 7, 9 and 10 respectively.

6 Experimental Results
The DSR incremental algorithm was tested on a number of

benchmarks which we created by using the Mcc1 circuit (an MCM
circuit) cell distribution structure as an example; their characteris-
tics are shown in Table 1. The number of nets in our benchmarks
ranges from 97 to 951 with randomly assigned variable widths and
variable spaces for each net. We also tested our algorithm on some
well known standard cell benchmarks such as Primary1, Struct and
S9234. However the nets in these benchmarks have uniform width
and space requirements. Further, well known VLSI routing algo-
rithms such as MARS [15] use 3 or 4 layers to route the nets for
each of these circuits; only the first two layers are well used while
layers 3 and 4 are sparsely populated. Hence even a simple incre-
mental routing algorithm such as Std is able to route all new nets
on layers 3 and 4 without modifying the existing routing. We thus
generated new benchmarks with only 2 routing layers that can test
incremental routers more rigorously. Furthermore, these bench-
marks have nets with non-uniform width and space requirements.

To simulate ECO, we randomly removed 10% and 20% of the
original nets, and added the same percentage of new nets with the
same number of pins but with random pin positions, net width and
space requirements. For each circuit we perform these random
deletions and new net creations 20 times thus generating 20 dif-
ferent problem instances for both 10% and 20% net deletion and
creation cases. On the average, the half-perimeter (HP) BBs of the
new nets were 7% and 6% more than those of deleted nets for 10%
and 20% cases, respectively. We compared our DSR algorithm to
the two prior techniques Standard (Std) [6] and Rip-up&Reroute
(R&R) [7] implemented by us. In R&R, we allow an existing net
to be ripped up and rerouted up to r times in the process of finding
a solution for a new net; we collected the results for r � 5, 10, 15
and 20 and these will be discussed shortly.

We ran all three methods on 2.6 Ghz Pentium Linux machines
with 1GB of RAM. The results are tabulated in Tables 2 to 5. In
these tables, HP of F. net is the average half-perimeter (HP) of the

10% 20% 10% 20% 10% 20%
Circuit New N. New N. Circuit New N. New N. Circuit New N. New N.
net-97 9 19 net-102 10 20 net-103 10 20
net-115 11 23 net-247 24 49 net-282 28 56
net-391 39 78 net-413 41 82 net-557 55 111
net-700 70 140 net-797 79 159 net-829 82 165
net-961 96 190 net-968 95 193

Average number of new nets 46.36 93.21

Table 1: Characteristics of Benchmarks.

Metrics # With 10% new nets With 20% new nets
Std R&R DSR Std R&R DSR

Avr. Unrouted nets (%) 17.3% 7.4% 1.6% 14.4% 4.1% 1.7%
Avr. Time (sec.) 3.09 12.08 34.37 4.19 15.61 45.51

Avr. # of succ. runs out of 20 0.15 3.9 10 0.0 3.86 7.43
Avr. % of unsucc. nets per fail run 17.4% 9.2% 3.2% 14.4% 5.1% 2.8%

Table 2: Simulation results for 10% and 20% new nets. R&R results are
for r � 5.

BB of unrouted nets and F.net.W. is the average width of unrouted
nets. DSR was able to route almost all the nets without sacrific-
ing quality metrics such as the average number of used vias and
the total net length; note that we are restricting all routes to be
contained within two routing layers to test the incremental rout-
ing methods rigorously. DSR has $ 12 ( $ 9) and $ 5 (2.4) times
fewer unrouted nets than Std and R&R, respectively for the 10%
(20%) new net case. DSR was able to route all the new nets 10 and
7.43 times out of 20 runs for the 10% and 20% new net cases, re-
spectively, and is 2.5 and 1.92 times more successful than R&R in
this regard. Std is almost never be able to route all new nets in any
single run. Also the percentage of nets that could not be routed by
DSR over all unsuccessfull runs (runs in which all nets could not
be routed) out of 20 runs is $ 3 and $ 2 times lesser than R&R
results for the 10% and 20% new net cases, respectively.

As shown in Table 3, the total length of unrouted nets by Std
and R&R are 37 (6.6) and 5 (2) times more than that of DSR for
the 10% (20%) new net case, respectively. Also the width of un-
routed nets for Std and R&R are 1.6 (2.06) and 1.29 (1.52) times
more than that of the unrouted nets of DSR. Even though our algo-
rithm obtains good results in the above metrics, it did not increase
the average length of successfully routed nets. We obtained the
percentage difference %∆hpBB in the HPs of the pin BB and the
routing BB (the former is a lower bound for latter) for each new
net as a measure of how effective the different methods are in in-
crementaly finding minimal-length routes. As seen in Table 3, for
all three methods these values are very small. In addition to this,
the number of vias used for the new nets by DSR is less than those
used by R&R and close to those used by Std. However, we should
keep in mind that DSR routed many more nets than the other meth-
ods (most of them wider nets), used reasonable number of vias
and still kept net lengths close to optimal. As also seen in Table 3,
R&R almost doubled the number of vias for existing nets which
are rerouted in order to find a solution for the new nets. However,
since DSR performs very local modifications on existing nets, the
number of vias of existing nets did not change significantly.

As shown in Table 3, while finding a solution for a new net,
DSR overlaps and tries to re-route many more nets than does R&R.
Note that this is not the number of existing nets modified in the
final solution (which is much smaller) but the number of existing
nets which were overlapped and re-routed on a “trial” basis—most
of these trials were determined to fail (in order to have good con-
trol for minimizing perturbations of existing nets) and retracted.
This means that DSR has a larger search space than R&R. DSR’s
runtime is thus 3 times more than R&R’s, though in absolute terms
it is quite fast; e.g., it is able to route on average 93 new nets in

6



Algorithm Ripup-And-Reroute(S)
Input: The new netlist S will be added ;
Output: Incremental routing result;

Begin
Create OG;
for each ni � S do begin

R-BB(ni)=BB(ni); /* initialize bounding box
repeat

NUG=Extract-Non-Uniform-Grid(ni , OG);
result=Route-Without-Overlapping(ni , NUG);
if (result==success) then break;
Pb=Get-Best-Path(ni ); /* use same cost func. as DSR */
if(Pb �� null) then /* Pb can be null when

all candidate paths hit obstacles */
Ripup all nets on path Pb and add to netlist S;
Route net ni on path Pb;
break; /* solution found exit from loop */

endif;
Expand R-BB(ni);

Until (R-BB of ni cannot be extended );
Endfor

End. /* Ripup-And-Reroute () */

Figure 10: The previously proposed Ripup & Reroute (R&R) incremental
routing algorithm.

Metrics # With 10% new nets With 20% new nets
Std R&R DSR Std R&R DSR

# of used vias for new nets 2.87 2.98 2.89 2.87 2.96 2.88
via incr. of 0.0 88.32% 30.25% 0.0 116.68% 23.17%

modified net (%)
%∆hpBB 1.61% 1.49% 1.43% 1.38% 1.31% 1.28%

total HP of F. net 889163 123531 24197 456536 148623 69283
% of Failed net’s HP 34.26% 4.76% 0.93% 8.76% 2.81% 1.33%

Avr. # of F. net 8.02 3.43 0.7 13.46 3.82 1.58
Avr. Unrouted nets (%) 17.3% 7.4% 1.6% 14.4% 4.1% 1.7%

Avr. F. net W. 7.2 5.6 3.5 7.3 6.2 4.8
# of re-routings of exisiting 0.0 5.6 21.98 0.0 3.24 14.75
nets tried for each new net
Avr. # of modified existing 0.0 2.59 2.04 0.0 1.51 1.25

nets for each new net

Table 3: Comparisons of different metrics for Std, R&R and DSR.

45.5 secs (see Table 2). We also collected results for global nets,
i.e., nets whose lengths are longer than 50% of the HP of the chip;
see Table 4. The improvements obtained by our method over Std
and R&R for global nets, for the above discussed metrics, are com-
parable to the improvements, shown in Table 3, obtained by it for
all nets. Hence, our algorithm routes both local and global nets
with good efficacy.

As shown in Table 5, we ran R&R with different values of
ripup-flexibility parameter r to see how the results improve when
this flexibility increases. The results do not improve appreciably
as r is increased from 5 to 20. Furthermore, the number of un-
routed nets by R&R was 3.61 (2.16) times more than that of DSR
for 10% and 20% new nets, respectively, for r � 20 for which
R&R’s solution times are roughly the same as that of DSR. This
clearly shows that DSR is a fundamentally better incremental rout-
ing algorithm than R&R.

7 Conclusion
A new incremental routing algorithm DSR was presented for

gridless VLSI circuits with variable width and variable space re-
quirements. The router was tested on several example bench-
marks. Our algorithm was shown to produce significantly im-
proved results in terms of the percentage of successfully routed
ECO nets (under stringent conditions of using only two routing
layers), number of vias required, wire length and the degree of

Metrics # With 10% new nets With 20% new nets
Std R&R DSR Std R&R DSR

# of used vias for new nets 3.12 3.10 3.10 3.25 3.13 3.14
via incr. of 0.0 93.25% 35.76% 0.0 97.42% 17.21%

modified net (%)
%∆hpBB 0.29% 0.31% 0.34% 0.3% 0.32% 0.35%

Total HP of F. net 157236 23732 2594 327406 24597 7621
% of Failed net’s HP 6.06% 0.91% 0.1% 6.29% 0.47% 0.15%

Avr. # of F. net 2.38 0.72 0.21 4.33 0.74 0.34
Avr. Unrouted nets (%) 17.3% 7.4% 1.6% 14.4% 4.1% 1.7%

Avr. F. net W. 6.03 4.1 1.84 6.95 4.13 2.36
# of re-routings of exisiting 0.0 5.2 19.52 0.0 2.98 11.99
nets tried for each new net
Avr. # of modified existing 0.0 2.21 1.8 0.0 1.28 1.14

nets for each new net

Table 4: Comparisons of different metrics for Std, R&R and DSR for the
nets whose lengths are longer than 50% of the HP of the chip .

With 10% new nets With 20% new nets
Ripup- Unrt. Time Avr. HP Avr. F. Unrt. Time Avr. HP Avr. F.

Flexibility r Nets (sec.) of F. net Net.W. Nets (sec.) of F. net Net.W.
5 7.40% 12.08 2030.1 5.6 4.12% 15.61 2249.3 6.2
10 6.55% 18.16 2049.27 5.62 4.01% 20.57 2204.04 6.08
15 5.65% 26.50 1956.72 5.55 3.92% 35.87 2225.75 6.17
20 5.75% 34.75 2044.46 5.57 3.73% 43.62 2196.84 6.05

Table 5: R&R results for different values of ripup flexibility parameter r.

modifications to existing nets when compared to the well-known
Std and R&R incremental routing methods. The DSR incremen-
tal router thus offers significant advantages in almost all important
metrics for incremental routing in VLSI. In future work, we will
use a tile-based approach to avoid congested areas when finding
solutions for overlapped nets in the DFS process, and thereby im-
prove the speed of our algorithm.

References
[1] J, Cong, C. -K. Koh, and P. Madden, “Performance optimization of

vlsi interconnect layout” Integration, the VLSI Journal, vol 21, pp. 1-
94, 1996.

[2] J. Cong, J. Fang and K. Khoo. “An Implicit Connection Graph Maze
Routing Algorithm for ECO Routing”. ICCAD’99, pp. 12-18.

[3] Kawamura etal.“Touch and Cross Router”. ICCAD’90, pp. 56-61.
[4] Y. -L. Lin, Y. -C. Hsu and F. -S. Tsai, “Silk: A Simulated Evolution

Router”. IEEE Trans. CAD, 8(10), 1989.
[5] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-Based

Performance-Driven Router for FPGAs”. ACM FPGA Symp., pp. 111-
117, 1997.

[6] J. M. Emmert and D. Bhatia, “Incremental Routing in FPGA’s”. Proc.
IEEE Int. ASIC Conference and Exhibit, 1998.

[7] J. Cong and M. Sarrafzadeh. “Incremental Physical Design”. ISPD ,
April 2000, pp. 84-92.

[8] J. D. Carothers and D. Li. “The MCG Autorouter for Multichip Mod-
ules”. IEEE Trans. on Circuits and Systems, 45, 1999.

[9] Joseph Jaja and S. Alice Wu. “On Routing Two-Terminal Net in the
Presence of Obstacle”. IEEE Trans. CAD pp. 563-570, 8(5), 1989.

[10] Y. Wu and P. Widmayer and M. Schlag and C. Wong, “Rectilinear
Shortest Paths and Minimum Spanning Trees in The Presence of Rec-
tilinear Obstacles”. IEEE Trans. Computers C-36(1), 1987.

[11] S. Zheng and J. S. Lim and S. Iyengar, “Finding Obstacle-Avoiding
Shortest Paths Using Implicit Connection Graphs”. IEEE Trans. CAD,
15(1), 1996.

[12] S. Dutt, V. Verma and H. Arslan, “A Search-Based Bump-and-Refit
Approach to Incremental Routing for ECO Applications in FPGAs”,
ACM (TODAES), 7(4), pp. 664-693, 2002.

[13] S. Dutt, V. Shanmugavel and S. Trimberger, “Efficient Incremental
Rerouting for Fault Reconf. in FPGAs”, ICCAD, pp. 173-176, 1999.

[14] K. -Y. Khoo and J. Cong,“An Efficient Multilayer MCM Router
Based on Four-Via Routing”, ACM-DAC, 1993.

[15] J. Cong, J. Fang and Y. Zhang, “Multilevel Approach to Full-chip
Gridless Routing”, ICCAD, 2001.

7


