
Simultaneous Shield and Buffer Insertion
for Crosstalk Noise Reduction in Global Routing∗

Tianpei Zhang and Sachin S. Sapatnekar
Department of Electrical and Computer Engineering, University of Minnesota

E-mail: zhangt, sachin@ece.umn.edu

Abstract
We present a method for incorporating crosstalk reduction crite-

ria into global routing under an innovative power supply architec-
ture, while considering the constraints imposed by limited routing and
buffering resources. An iterative procedure is employed to route the
signal wires, assign supply shields, and insert buffers so that both
buffer/routing capacity and signal integrity goals are met. In each it-
eration, shield assignment and buffer insertion are considered simulta-
neously via a dynamic programming-like approach. Our noise calcu-
lations are based on Devgan’s noise metric, and our work shows, for
the first time, that this metric shows good fidelity on average. Experi-
mental results on testcases with up to about 10,000 nets point towards
an asymptotic run time that increases linearly with the number of nets.
Our algorithm achieves noise reduction improvements of up to 53%
and 28%, respectively, compared to methods considering only buffer
insertion, or only shield insertion after buffer planning.

1 Introduction
Interconnect performance issues have become dominant in deter-

mining the performance of a circuit. In addition to considering tradi-
tional metrics, it is important to integrate the analysis and optimization
of interconnect crosstalk noise into routing in order to maintain sig-
nal integrity. Functional noise is seen when a victim net changes its
level due to the switching of its neighbor aggressor nets, and this could
lead to circuit malfunction. Delay noise is caused when the victim and
aggressor nets switch at the same time, which causes the effective cou-
pling capacitance to become unpredictable, thus affecting the delay.

Various noise estimation and avoidance techniques have been pro-
posed over the years [2, 4, 5, 7–9, 12, 14]. However, there are several
considerations that are not fully addressed in previous work. First,
although power supply wires are used as shields in [4] and [8], with
the increasing number of crosstalk-affected nets, routing congestion
and routability are major concerns since supply wires will also com-
pete for the limited available routing resources. Therefore, a realistic
crosstalk-conscious router must consider the trade-off between routing
resource consumption and noise reduction. Second, modern designs
employ a large number of buffers to achieve timing closure [17]. As
a side-benefit, buffers can also effectively reduce noise by recovering
the noise margin [2]. However, next generation design will see a larger
number of nets requiring more buffers, and it is projected that at 32nm
technology, a very large proportion of all cells will be buffers [13].
Under limited silicon area, this will produce high contention for the
limited buffer resources. Hence a buffer-only noise reduction may not
meet the noise requirements due to the contention. This motivates our
simultaneous buffer and shield insertion scheme for functional noise
reduction. With the help of shields, buffers can effectively block noise
propagation.

Our work considers the problem of crosstalk noise reduction dur-
ing global routing under restrictions on the availability of routing and
buffer resources. We simultaneously allocate power supply wires as

∗This work was supported in part by the NSF under award CCR-0098117.

shields and insert buffers in the global routing phase in order to route
nets under a noise budget. To utilize existing power supply wires, this
method is presented under the backdrop of a power/ground (P/G) net-
work architecture. The procedure results in a signal/power co-routing
solution at the global level. While it will primarily deal with the func-
tional noise as defined above, the insertion of supply shields with stable
voltage levels between signal wires also provides the subsidiary bene-
fit of greatly easing delay uncertainties and therefore relieves the delay
noise. We have also incorporated considerations to insert a sufficient
number of buffers to control the delays and slews on each signal line.

Our method works iteratively: starting with an initial global rout-
ing solution, an enumerative dynamic programming-like algorithm is
used to simultaneously assign supply shields and buffers to meet the
noise budget for each net, one at a time, to find a minimum cost solu-
tion for the net. Next, an iterative rip-up-and-reroute step is performed
to better meet the routing and noise goal. We simultaneously take into
account the limitations on routing/buffer resources and the needs for
signal integrity and provide a global routing solution that is immune
to capacitive coupling noise. For comparison purposes, we also imple-
mented an intelligent greedy approach which is faster, but less effective
in resource allocation.

2 Preliminaries
2.1 Global Routing and Buffer Model

As shown in Figure 1, our global routing model tessellates the en-
tire chip into an array of grid cells, referred to as therouting grid. Net
N consists of a set of electrically equivalent pins{s, p1, p2, ..., pk} dis-
tributed in different routing grid cells, that must be connected by wires,
of whichs is the source andp1, p2, ..., pk are the sinks. The dual graph
of the routing grid tessellation is therouting graphG, which is shown
in Figure 1(a) as the dashed lines. Connections among all of the pins
will be routed over the routing graphG. Each edge in the routing
graph corresponds to a boundaryeij in the routing grid that connects
grid cellsi andj. Thegrid lengthLe is defined as the center-to-center
distance between two neighboring grid cells. Due to geometrical lim-
itations on the boundary, we require thatWe ≤ Ce, in which We is
the total width (including wire spacing) used by signal and power lines
passing the boundary, andCe is the geometrical width of the bound-
ary e, or theboundary capacity. Violation of this requirement results
in boundary overflow. We follow a two-layer routing model in which
horizontal and vertical lines are routed on different layers. The aim
of routing is to eliminate boundary overflows while achieving other
performance-related goals.

Our procedure also incorporates buffer insertion as an effective
way to reduce delay and noise. We adopt the distributed buffer model
proposed in [1], in which buffers are interspersedwithin the routing
grids, and their exact location is undetermined until later in the design
process. Figure 1(b) shows an inset view of a part of the routing grid
where distributed buffers are inserted into a signal wire. For a grid cell
i, the number of buffers available is denoted asBi. If the number of
utilized buffers isbi, thenbi ≤ Bi must be satisfied, otherwise we
havebuffer overflow. To control the interconnect delay and slew rate,
as in [1, 15], we enforce a constraint such that the maximum total in-

{

routing
grid

routing
graph

vertex in

a grid cell
boundary

buffer

signal wire

a grid cell at
the corner

(a) (b)

routing graph

Figure 1: Routing grid and buffer insertion for signal wires.

terconnect length that can be driven by a buffer (gate) is the length of
M grids.

2.2 Power Supply Architecture
A traditional power supply architecture is composed of a regular

dense grid that traverses the entire layout area. However, different parts
of the layout require different amounts of current, and the density of the
grid does not have to be uniform. This may be exploited for routing
flexibility [10].

We assume that the power grid is an array of variable density, and
the integrity of the supply grid is maintained by ensuring that the av-
erage and minimum number of wires feeding every block exceeds a
threshold. The layout is divided into blocks, and for each blocki, we
are given:

• a Minimum Average Number (MAN) of supply wiresMANi

per grid edge.

• a Minimum Number (MN) of supply wiresMNi running over
each grid edge belonging to the blocki.

Note thatMANi andMNi are both definedper edgeand together de-
fine a basic structure of power network, thus enabling the power con-
siderations to be incorporated even before a detailed power architecture
is determined. Any extra power lines/shields beyondMNi andMANi

will only improve the power grid performance [10]. This model works
well on intermediate metal layers like that of [11], where the variable
number of power lines in adjacent blocks do not have to match exactly
since they can be connected to each other through upper layers. All of
the edge capacities are shared by signal wires and power supply wires.
If signal wires utilize too much routing capacity at a boundary, then it
is not possible to make enough room for P/G wires. We refer to the
difference between the required and actual number of P/G wires in a
block as theP/G shortage. The P/G wires in the supply grid are used
not only to carry power currents, but also work as shields between ag-
gressor and victim signal wires to reduce noise; we will use the terms
supply wireandshield interchangeably. Also for the consideration of
design for manufacturing, filling the remaining routing capacity left by
signal routing with supply wires can improve manufacturability and
performance predictability which may be deterioted by the Chemical-
Mechanical Planarization (CMP) step in manufacturing [21].

2.3 Fidelity of Devgan’s Noise Metric
Devgan’s noise metric [5] is employed in this paper to find the ca-

pacitive coupling noise and the corresponding noise margin. This met-
ric provides an upper bound for the crosstalk noise in an RC circuit,
and its calculation is very similar to that of Elmore’s delay. An ex-
ample of applying Devgan’s noise metric to noise estimation is shown
in Section 2.4.2. However, this metric is known to potentially result
in large overestimates [3]. In the context of routing multiple nets, we
argue that it is theaverageerror of a noise metric over many nets that
is important rather than the maximum. If the average error of the noise
predictor is relatively low, then the overall utilization of shielding and
buffering resources will be good; for a pessimistic noise metric, a large
average error will result in the over-utilization of resources.

V

A A

A
A

1 2

3
4

s1

s2

A5

as shield
power supply

sink2

sink1source

Figure 2: Switching noise on a victim net with shielding supply wires.V is the
victim net,Ai, i = 1, . . . , 5 are aggressor nets, ands1, s2 are power supply
shields.

We verify thefidelity of Devgan’s metric through a set of experi-
ments. We randomly generate the pin locations of a circuit with sev-
eral multiple-sink nets in a6 × 6 grid, and then route the nets using
the AHHK algorithm [6]. After that, the coupling capacitance are ex-
tracted and one net is randomly picked as the victim net while others
as aggressors. With the victim net remains at a stable value, the ag-
gressor nets switch adversely at the same time, and we simulate the
coupling noise at the sinks of the victim net with both SPICE sim-
ulation and Devgan’s metric. The above experiment is repeated 100
times, and we rank the 250 or so victim sinks in experiments according
to their noises from SPICE simulation and Devgan’s noise metric. The
rank difference of each sink under the two metrics is then determined,
and we take the relative error in rankings under SPICE simulation and
Devgan’s metric as a measure of the fidelity of Devgan’s noise metric.

With different setup combinations of aggressor rise time and num-
ber of nets in circuit, we found the average error that corresponds to
the distance in ranking (between Devgan’s metric and under SPICE)
is around 13% which suggests that Devgan’s metric has acceptable fi-
delity in estimating and comparing crosstalk noises. On average, while
comparing two structures, if one of them has lower crosstalk noise than
the other under Devgan’s metric, it is very likely to also demonstrate
lower noise under a SPICE simulation.

These results lead to an important conclusion:on average, Dev-
gan’s noise metric has an acceptable fidelity, and can be used as an
estimation in the early phase of physical design.

2.4 Shield Insertion and Noise Calculation
2.4.1 Arrangement of shields

The insertion of a supply wire between two signal wires will shield
them from each other, so that there will be no significant capacitive
coupling noise between the lines. Moreover, the insertion of the constant-
voltage supply wire will reduce the delay uncertainty of adjacent signal
nets, as compared to the case when that signal wire is next to a simul-
taneously and oppositely switching signal wire. We say that a side
of a signal wire is providedprotectionif it neighbors a supply shield.
Figure 2 shows five aggressor nets and a two-sink victim net with two
supply wires as shields.

In the global routing phase, the exact positions of signal nets are
still undetermined and hence neighborhood information is not fully
available. We attempt to determine aworst-casescenario based on
the information that is available. We assume that over a routing edge,
if one side of a signal net is not placed next to a shield, it will (pes-
simistically) be adjacent to an aggressor net that will induce coupling
noise on the net. Thus a signal wire must have supply lines placed on
both sides to be fully protected. However, due to limited routing re-
sources, a net may not be fully protected. We refer to the number of
protected sides of netk at a specific routing edgeeij asPij, k, and this
can take a value of 0, 1, or 2.

If Pij, k is known for the signal wires across edgeeij , the number
of supply wires required for shielding can be found as follows. If there
areS signal wires requiring protection on a single side, andD signal
wires requiring protection on both sides, we must havep power supply
as shields to achieve the protection, and

i I n (i)

NM(i)NM(j)

j In(j)j’

aggressor net

supply shield

Figure 3: Calculation of noise margin by Devgan’s metric.

p =

{
S
2

+ D if S is even
S+1

2
+ D if S is odd

(1)

It is easy to prove that an arrangement of supply and signal wires with
the above numbers exists, so that the desired protection is feasible. The
specific positions of the signal wires and supply wires will be handled
by the detailed routing tools. Since supply wires and signal wires share
the same routing resources, the capacity constraint of edgeeij requires
that

Ce ≥ ws · se + wp · pe (2)

whereCe is the boundary capacity;ws andwp are the width (including
the metal width and the spacing) of a signal wire and a supply wire
respectively;se andpe are the number of signal wires and supply wires
passing the boundarye.
2.4.2 Noise calculation

A noise margin, NMspec, is specified for each gate or buffer input
in the circuit, and represents the largest noise voltage that will not result
in a circuit malfunction. The choice ofNMspec is based on the fidelity
of Devgan’s metric, and can be selected by inflating the actually desired
noise margin, so that it accounts for the overestimation in Devgan’s
metric. For any internal pointi in an interconnect tree, the noise margin
is recursively defined as:

NM(i) = min
all child node j

(NM(j) − Vn(i ↔ j)), (3)

whereVn(i ↔ j) is the noise voltage induced betweeni andj. A net
is noise freeif at both the source and any buffer output,

In · Rd ≤ NM (4)

HereRd is the gate driver resistance, andIn is the induced noise cur-
rent, calculated using Devgan’s metric [5]. The noise reduction is il-
lustrated by an example shown in Figure 3. A signal wire segment
extends from the center of grid celli to the center of its neighbor cell
j with unit length coupling capacitance and resistance to beCc and
Re respectively, and the aggressor voltage change rate isµ. Since the
left side of the wire segment is shielded, only the right side aggressor
will induce noise, giving us the following result according to Devgan’s
noise metric:

In(j) = In(i) + Le · Cc · µ (5)

NM(j) = NM(i) − ReLe(
1

2
CcLeµ + In(i)) (6)

If the noise atj satisfies the constraint (4), the buffer will block the
propagation of noise, and the noise margin atj′ will be recovered to
NMspec, with noise currentIn(j′) back to 0 as well.

2.5 Problem Formulation
The formal statement of the problem is as follows. Given a tiling

of a chip and the corresponding routing graphG = (V, E), netsN =
{n1, n2, ..., nm}, the edge capacityCij for every edgeeij ∈ E, and
the buffer capacityBi for each routing grid celli ∈ V , the problem is
to find a routing solution that:

1. determines the routes for each net on the routing graph,
2. satisfies the power/ground density constraints, i.e., the average

and minimum densityMANi andMNi of each block must be

met,
3. determines the grid cells in which a net is to be buffered, subject

to the buffer capacity constraint,
4. findsPij, k for each edgeeij in the routing of netk, subject to

the edge capacity constraint (2),
5. satisfies noise constraint (4) for all nets.
6. ensures that the total amount of interconnects that can be driven

by a buffer (gate) is at mostM grid units.

3 Routing and Crosstalk Reduction
Our approach to the problem is iterative and proceeds through

three steps: congestion-driven global routing, a dynamic-programming-
like simultaneous buffer and shield insertion procedure, and rip-up-
and-reroute refinements. Steps 2 and 3 iterate until all constraints are
satisfied, or no further improvement is possible. In the above buffer and
shield insertion and rip-up-and-reroute, we process one net at a time
and maintain a fixed order of all nets. We have experimentally found
under different randomly chosen net orderings, the results change very
little, as long as we maintain the same fixed net order through all of
the iterations. This is due to the fact that the early iterations are seen to
create good estimates of resource utilization, and this reduces the order
dependence.

3.1 Step 1: Congestion Driven Routing
The signal wire routing procedure consists of two phases, similar

to that in [1]. The first phase of routing constructs Steiner trees using
the AHHK algorithm [6], and works as a fast estimator of the conges-
tion map. The second phase performs a congestion-driven rip-up-and-
reroute based on this initial solution, with the objective of minimizing
the congestion cost over routing grid edges [1]. If there is still an over-
flow violation after this phase, more rip-up-and-reroute steps will be
performed (with the same net order), as in [16].

We modify the congestion cost function during the congestion-
driven routing to incorporate the consideration of power supply re-
quirements. Since all of the routing capacity is shared by signal and
power routing, signal routing results will determine the power supply
structure, and thus must leave enough capacity for power supply to
satisfy the average and minimum power supply densitiesMANi and
MNi for a blocki of the routing region. The cost function for a signal
wire traversing an edgee in block i is composed of two terms:

routing cost =costtraversing edge e + costpassing block i (7)

This penalizes any violation ofMNi for edgee in block i and any vio-
lation ofMANi of block i respectively. Both terms take the following
form:

cost =

{
U
R

if R > 0
10−R if R ≤ 0

(8)

whereR is the residual signal routing capacity on the edge [block] for
the first [second] term. This value is calculated by subtracting, from
the total edge [block] capacity, the power supply requirements and the
capacity already used for signal routing,U . Note for the first term, the
power supply requirement isMNi; for the second term, it isMANi

multiplied by number of edges in a blocki, sinceMANi is defined
per edge. The exponential form of the cost function after the capacity
violation punishes the over-use of capacity from signal routing, and it
will effectively avoid the aggregation of signal wires.

After every rerouting, each of the grid cells in the final path is
added to the tree as anInternal Node (IN), and a net will then be a set
{s ∪ P ∪ IN ∪ E}, wheres is the source node,P is the set of sink
pins,IN is the set of internal nodes, andE is the set of edges; this data
structure is used for the procedure in Step 2, which follows this.

3.2 Step 2: Buffer and Shield Insertion
With a routing solution from the above step, we simultaneously

allocate shield and buffer resources to each net so that the solution
can meet the noise requirement while using least protection resources.
Each net is processed individually, and the procedure traverses the tree

structure of the net in a bottom-up manner, starting from the sinks and
moving towards the source, moving along one grid square at a time.
Each tree is described in terms of nodes that correspond to the grid
cells that it passes through. Assigning a direction to the tree from the
source to the sinks, we refer to the grid cell that contains the immedi-
ate predecessor [successor] of a given noden in the tree as the parent
[child] cell of the grid cell containingn. If a grid cell has more than
two children, we can insert pseudo-nodes, so that the final tree is a
binary tree for ease of later processing.

While traversing a net across a grid celli, we have two methods
for protecting it from crosstalk noise:

1. By deciding whether to insert a buffer or not at grid celli: this
corresponds to two possible buffer insertion configurations (0 or
1 buffer)

2. By protecting the net using supply shields on one side, on both
sides, or choosing not to shield the net at all. If grid celli is
not the root of the tree, shield(s) may be inserted alongside the
edgeeij connecting current grid celli and its parent grid cellj
in the tree. This results in three possible configurations (0, 1, or
2 sides protected).

Therefore, in each bottom up step, we may have six possible configu-
rations for theprotection structure. However, we cannot locally deter-
mine at each grid point which scheme is globally optimal, and therefore
an enumerative dynamic programming-like approach is adopted here in
the same spirit as in Van Ginneken’s algorithm [18].
3.2.1 Protection Cost and Solution Architecture

While traversing a net bottom-up, at grid celli, we must find the
protection cost corresponding to a protection structure, so as to mea-
sure the resource usage. For the protection cost related to buffer in-
sertion, since the nets are processed one at a time, at any point in our
insertion algorithm, the probability that an unprocessed netni crossing
grid cell i will insert a buffer fromi is 1/M . Letpi be the sum of these
probabilities over all unprocessed nets crossing celli, and the cost for
insertion ofbreq(= 0 or 1) buffer at a specific grid tilei is similar to
that in [1]:

costbuffer i(breq) =

0 if breq = 0
bi+pi+1
Bi−bi

if breq = 1

andbi + breq ≤ Bi
∞ otherwise

(9)

This cost function will significantly increase the cost penalty as buffer
resources become contentious. For shielding cost, we can calculate
the number of power supply wires required based on the number of
sides to be protectedNsh and equation (1). In the same spirit to punish
contentious resource usage, the shielding costcostshield ij for a signal
wire can be obtained from a similar form of equation as (9) above, but
the predicted shield usage takes a different approach: each unprocessed
signal net will probabilistically have 1 side to be protected (assuming
equal probability forNsh = 0, 1, or 2). Both the shielding cost and
buffer cost are a measurement of the number of resources used, and
they are approximately of the same order of magnitude. Therefore, we
can combine them with a weighting factorλ (determined by resources
availability) to develop a metric for resource usage, which we call the
protection costat grid celli, denoted asPCi:

PCi(breq, Nsh) = λcostbuffer i(breq) + costshield ij(Nsh)

wherej is the parent grid cell of grid celli. This comprehensive cost
function can be used as a metric to compare resource usages from
different insertion schemes, and our goal is to find a minimum cost
scheme satisfying the noise requirement, so as to resolve the contention
for protection resources among nets.

At a cell i during the bottom-up traversal, the noise margin and
noise current will vary according to the protection structure we choose,
i.e., whether a buffer is inserted and the number of sides of the net that
are shielded. If a buffer is inserted, the noise current will be “reset”
to 0 and the noise margin set back toNMspec . At each unbuffered
location, depending on the number of sides of a signal wire that are

shielded, we can have the following from equations (5) and (6):
∆In(Nsh) = (2 − Nsh) · Le · Cc · µ (10)

∆NM(Nsh) = Re · (1

2
· (2 − Nsh)LeCcµ + In(i)) (11)

where∆In is the increase in the noise current due to the number of
sides getting shieldedNsh ∈ {0, 1, 2}, and∆NM is the noise margin
decrease during the bottom-up step. To keep a record of the protection
structure in the enumeration, we define aprotection solutionat rout-
ing cell i to be a 4-tupleS = {PC, NM, In, stru}, whereNM is
the noise margin at the end of the edge connecting grid celli to its
parent grid cellj, In is the noise current induced by the neighboring
signal wire at the same point, andPC is the protection cost of the cur-
rent solution. The last component,stru={buffer,Nsh}, represents the
protection structure of the solution, wherebuffer is a binary number
representing the number of buffers utilized at grid celli, andNsh is
the number of sides (0, 1 or 2) on which the wire is protected.

If a solutionS1 is provablyinferior to another solutionS2 at the
same grid cell, i.e., ifPC1 > PC2, NM1 < NM2 andIn1 > In2,
then it is pruned from the set of solutions. To satisfy the constraint that
the total amount of interconnect can be driven by a buffer (gate) is at
mostM grid cells, we maintain asolution set array(SSA) of length
M at each grid cell. Each element inSSAis a set of solutions, and the
array is indexed from0 to M −1. The solutions inSSA[k], k �= 0 cor-
respond to a total downstream interconnect ofk grid cells to the nearest
downstream buffer(s), andSSA[0] stores the solutions that correspond
to the insertion of a buffer at the current grid cell.
3.2.2 Protection Solution Building Algorithm

A unitary step in the enumeration algorithm is to build the solution
set array at the current grid cell based on the arrays at its child cell(s).
The pseudo code for the algorithm is listed in Figure 4. The main pro-
cedure in the algorithm calls functionFind sol set array at the
source cell, and returns the minimum cost solution that satisfies the
noise constraint. In functionFind sol set array, solutions in set
SSA[k], k �= 0 are propagated from solutions in the lower indexed
sets of the children grid cells. The propagation is performed differ-
ently for one child and two children situations as shown in Figure 5 (a)
and (b). During the propagation process, we update the noise margin
and shielding information to form new solutions. At the same time, the
least cost children solutions are selected and combined to build solu-
tions in setSSA[0] in which buffer is inserted right at current grid cell.
In the above steps, functionsPropagate, Insert buf andMerge
are called to build solutions. The solution pruning in the last steps will
greatly reduce the solution set size. There are three types of pruning
techniques employed here: the first discards those solutions that violate
the noise constraints (4), the second discards the solutions that violate
the buffer or wiring capacity, and the third removes any solution that is
inferior to another solution in the sameSSA.

While there is no concrete way of proving that the size of SSA will
be small, the pruning technique works efficiently in practice; our ex-
periments show that the number of solutions at each grid cell is limited
between 3 and 60, and is less than 15 in most cases. We also observe
that the asymptotic total run time increases linearly with the number of
nets in the benchmark circuits.

3.3 Step 3: Refinement
After the simultaneous shield and buffer insertion for noise reduc-

tion, refinement steps are applied if there are still some nets cannot
be protected from noise constraint violation. The procedure is similar
to that used in global routing phase. We rip-up and reroute all of the
nets in the same fixed order as before. After one net is ripped up, it
is rerouted immediately by the rerouting algorithm described in Sec-
tion 3.1. However, the cost function in rerouting is now the combina-
tion of both the wiring congestion cost and the buffer congestion cost.
This will drive the net to go through regions where wiring capacity and
buffers are abundant. The dynamic programming-like algorithm for
simultaneous shield and buffer insertion is then applied. After all of

Algorithm: Shield buffer insertion for noise reduction
Input: NetN = {s ∪ P ∪ IN ∪ E}
Output: A protection solution with least protection cost at sources

1. SSA= Find sol set array(s)

2. return protection solutionS= {PC, NM,In , stru} ∈ SSA, with PC is minimized.
Function:Find sol set array

Input: t is the grid cell to be processed.
Output: TheSSAof this grid cell.

1. SSA[i] = Φ for i = 0, 1, ...M − 1

2. if t ∈ P , is a leaf
for i = 0 toM − 1
SSA[i] = SSA[i] ∪ {0, NMspec, 0, Φ};

3. else ift has one childl
SSAl = Find sol set array(l);
for i = 1 toM − 1
for eachSl ∈ SSAl[i − 1]
SSA[i] = SSA[i]∪ Propagate(Sl, t);

4. Take minimumPC solutionSm from SSAl,
SSA[0] = SSA[0]∪ Propagate(Insert buf(Sm, t), t);

5. else ift has two childrenl andr
SSAl=Find sol set array(l); SSAr=Find sol set array(r);
for i = 2 toM − 1
for eachSl ∈ SSAl[j], Sr ∈ SSAr[k] andj+k=i − 2
SSA[i] = SSA[i]∪Propagate(Merge(Sl, Sr), t);

6. Take minSml.PC + Smr.PC solutionsSml,Smr from SSAl, SSAr ;
SSA[0] = SSA[0]∪Propagate(Insert buf(Merge(Sl, Sr), t), t);

7. Take minimumPC solutionSml from SSAl;
for i = 1 toM − 1

for eachSr ∈ SSAr [i − 1]
SSA[i] = SSA[i]∪Propagate(Merge(Insert buf(Sml,t),Sr),t);

8. Take minimumPC solutionSmr from SSAr

for i = 1 toM − 1
for eachSl ∈ SSAl[i − 1]
SSA[i] = SSA[i]∪Propagate(Merge(Sl,Insert buf(Smr ,t)), t);

9. Prune solution set arraySSA;

Functions:
Propagate(S, t) /* Extend solution by one grid length upward*/

if t is source, returnS;
else return{S.PC + PCt(0,Nsh), S.NM − ∆NM(Nsh), S.In+
∆In(Nsh), S.stru ∪ {0, Nsh}}, Nsh = 0, 1, 2;

Insert buf(S, t) /* Insert a buffer to existing solution S */

return{S.PC + PCt(1, 0), NMspec, 0, S.stru ∪ {1, 0}};
Merge(Sl, Sr) /* Merge two solutions */

return{Sl.PC + Sr.PC, min(Sl.NM, Sr.NM), Sl.In+
Sr.In, Sl.stru ∪ Sr.stru};

Figure 4: Algorithm for building protection solution.

the nets have been ripped up, rerouted, and then protected, the whole
refinement step will be performed again if there is still some noise vi-
olation. However, our experimental results shown that there will not
be much improvement after the third iteration. To provide additional
protection from noise, in the last step, the unprotected nets will greed-
ily take all of the unused wiring and buffer capacities along its path;
however, this step is optional.

4 Experimental Results and Conclusion
Our algorithm is implemented in C++ on a Linux PC with a 2.8GHz

CPU and 1GB memory. Out of the 12 benchmarks, the first ten bench-
marks in Table 1 are obtained from the authors of [10]. The largest
benchmarkssyn1andsyn2with over 10,000 nets are randomly gener-
ated1. We superimpose a grid over the the floorplan so that the geome-
try of each grid cell is almost a square. The number of buffers in each
grid cell is generated randomly and the total number of buffers is listed
in Table 1. We divide the design into several blocks, which correspond
to different styles of circuits, such as control logic, data path, etc, and
in our experiments, we use 7 blocks. The power supply requirements

1We did not use the ISPD98 placement benchmarks, because most of the
nets in it are very short, which makes buffer insertion unnecessary, and cannot
be used to illustrate the buffer contention problems that are projected for future
technology nodes. This is consistent with the experience of the authors of [19].

. . .

.
. . .

. . .

SSA

min PC
solution

(a) (b)
discarded

min PC solution

min PC
solution

0 1 2 3 M−1

0 1 2 3 M−1

SSA

SSA

SSA SSA

j+k=i−2

j k

i0

l r

Figure 5: Updating SSA for one and two child grid cells.

MANi andMNi are randomly generated but in a balanced manner
across the chip (in practice, these will be dictated by the functional
blocks). We also assume that a power grid wire is twice the width of
a signal wire. The routing edge capacities are assigned as shown in
the table, in the units of signal wire width. We assume that the grid
lengthLe = 600µm, that for all gates, the noise margin specification2

NMspec = 0.4V under aVdd of 1.8V, and that the aggressor voltage
change rateµ = 9 × 109V/s. The technology parameters used in the
experiments are derived from [20] and [22] for the 0.18µm technol-
ogy: unit length coupling capacitanceCc=0.0583fF/µm, unit length
resistanceRe=0.373Ω/µm, and buffer driver resistanceRd=180Ω.

We compare our results with those of two other methods. Thefirst
method is similar to the idea of [2], in which only buffers are inserted
to reduce the noise, and the shielding effects are not considered. The
buffers are also inserted by a dynamic programming-like algorithm,
trying to achieve the noise constraint with the fewest number of buffers.
Thesecond methodthat we compared against is a greedy approach, in
which buffers are first assigned in the same way as [1]. With the buffer
positions known, we attempt to insert shield wires for each routing
edge. For each net, the greedy shield insertion is composed of two
steps:

1. We use a bottom-up approach, using every possible shield along
the routing edges to meet the noise constraint.

2. If step 1 is successful, it may be the case that more than enough
shields have been inserted. We then follow a top-down peel-off
procedure to remove all of the unnecessary shields and buffers
until the noise constraint or driving length constraint has been
violated. The peel-off is greedy in the sense that a shield that
is closer to the source of a tree will be removed greedily first.
If there are multiple choices at any step in the top-down pro-
cess, the branch with the higher noise margin will have its shield
peeled off first.

Both of the above comparison methods employ the same routing and
rerouting procedure as our approach.

The experimental results are listed in Table 1. The first eight columns
show some basic properties of the circuits. Next, the results of our
method which introduces buffers and shields (BS), the first method
which introduces buffers only (B), and the greedy buffering and shield-
ing method (G) are shown. Empirically, results show that the asymp-
totic run time of our buffer and shield insertion algorithm is linear in
the number of nets, and our algorithm scales easily to cases with over
10,000 nets. TheB andG columns show that these methods can re-
sult in noise protection failures on as many as53% (circuit apte) and
28% (circuit ami33) of the total number of nets. In comparison, our
simultaneous shield and buffer insertion approach has achieved the pro-
tection goals successfully without much sacrifice in speed, and in all
cases, all of the nets meet the noise constraints.

The buffer-only approach shows poor performance because of the
restricted number of buffers that are available. This will become more
of an issue in future technologies, as projected by [13]. The greedy
approach, on the other hand, performs buffer insertion and shield pro-
tection in separate steps, and no concerns of noise constraint are con-

2The noise threshold chosen here can be user-specified and is used to iden-
tify the nets with the largest noise, rather than as an exact predictor for the noise
value. Since Devgan’s metric has fidelity but not accuracy, the nets violating
this threshold will indeed be those with the highest noise.

Circuit # of Available EC Grid M Average # noise violation nets Run time
nets buffers MAN MN BS G B BS G B

ami33 112 3011 9 30 × 33 6 3.2 1.5 0 31 46 5s 4s 8s
ami49 368 6889 16 30 × 33 7 4.2 1.5 0 66 103 12s 9s 20s
apte 77 1811 9 30 × 33 6 3.4 1.7 0 6 41 5s 3s 5s
hp 68 2386 9 30 × 33 5 3.5 2.2 0 14 21 3s 2s 4s

playout 1294 15884 56 30 × 33 7 18.0 5.5 0 165 568 51s 36s 69s
a9c3 1148 11847 44 30 × 33 6 13.0 5.6 0 106 481 37s 29s 50s
ac3 200 4034 14 30 × 33 6 4.6 2.4 0 20 85 9s 6s 12s
hc7 430 7938 26 30 × 33 7 7.8 4.0 0 59 122 13s 10s 22s

n200b 1714 16903 65 33 × 33 6 19.6 9.4 0 278 850 63s 29s 48s
n300 1893 23295 68 33 × 33 7 19.9 8.4 0 159 879 70s 33s 54s
syn1 10086 87773 334 40 × 40 6 96.5 60.7 0 1057 4836 508s 331s 563s
syn2 10486 90577 348 40 × 40 6 102.8 61.3 0 1345 4963 637s 398s 558s

Table 1: Comparisons of routing and noise protection results. EC is the edge capacity;BS represents the simultaneous buffer and
shield insertion algorithm;G represents the greedy algorithm;B represents the buffer-only algorithm.

Circuit Overflow
BS G

ami33 0 416
ami49 0 583
apte 0 22
hp 0 168

playout 0 1774
a9c3 0 981
ac3 0 228
hc7 0 1054

n200b 0 4666
n300 0 1604
syn1 0 30524
syn2 0 36634

Table 2: Overflow of
routing and protection
if 100% protection is
achieved.

sidered in buffer insertion, resulting in an inferior performance to our
integrated buffer and shield insertion solution.

An additional advantage of our approach is the adaptive P/G archi-
tecture, which enables a flexibility between the requirements of signal
and power routing, so that both routing and P/G requirements are si-
multaneously met. For all three algorithms in Table 1, the routing over-
flow are almost 0 for all benchmarks, and is hence not listed. However,
in cases where more nets must be protected to resolve the remaining
noise violations, extra routing resources must be employed, leading to
overflows. Table 2 reports the overflow results for our algorithm and
the greedy algorithm if 100% protection is desired (the buffer-only al-
gorithm does not use shield resources, and is omitted). The results
show that much more routing resources have to be sacrificed to obtain
a good protection for the greedy algorithm, while our algorithm can
successfully achieve a good protection without extra routing overflow.

Due to the pessimistic nature of Devgan’s metric, our buffer and
shield insertion algorithm may over-optimize and use more than enough
protection resources to accomplish full protection, or under stringent
protection resources, may result in false-failures. To compensate for
the pessimism of Devgan’s metric, we heuristically inflate the actual
specified noise margin in practice. If chosen carefully, the inflated
noise margin as input to our algorithm will generate protection solu-
tions that require fewer protection resources, but still satisfy the origi-
nal noise margin requirement. For example, we have inflated the spec-
ified noise margin from the actual 0.4V to be 0.5V and 0.6V respec-
tively. The protection solutions are simulated with SPICE, and the re-
sults are listed in Table 3. Due to long run times, we randomly selected
up to 700 nets from each circuit for simulation; for smaller benchmarks
such ashp, all nets were simulated. As can be seen, withNMspec in-
flated to be 0.5V, almost 100% of the solutions can still satisfy the
original 0.4V noise margin; while this percentage drops to about 90%
whenNMspec is inflated to 0.6V. Practically, we may choose to inflate
NMspec by about 25% to acquire a good yet economic solution.

Circuit P0.5 P0.6 Circuit P0.5 P0.6

ami33 100% 93.0% ac3 97.4% 95%
ami49 100% 90.6% hc7 100% 93.8%
apte 100% 81.3% n200b 100% 95.0%
hp 97.6% 91.1% n300 100% 92.3%

playout 99.7% 91.6% syn1 100% 94.1%
a9c3 100% 93.1% syn2 100% 95.2%

Table 3: Protection rate with inflatedNMspec. P0.5 andP0.6 are the per-
centage of nets getting fully protected under SPICE simulation with inflated
NMspec at 0.5V and 0.6V respectively.

We have shown in this paper a method for simultaneously inserting
supply shields and buffers during global routing to reduce crosstalk
noise under a novel power supply architecture. Experimental results

show that this method can route nets to meet both capacity and noise
constraints. It is more effective than noise reduction using a buffer-only
approach or a greedy approach.

References
[1] C. Alpert, J. Hu, S. S. Sapatnekar and P. Villarrubia, “A Practical Methodology

for Early Buffer and Wire Resource Allocation,”Proc. DAC, 2001, pp. 189-194.
[2] C. J. Alpert, A. Devgan and S. T. Quay, “Buffer Insertion for Noise and Delay

Optimization,”IEEE Trans. on Comput.-Aided Design, 18(11), November 1999,
pp. 1633-1645.

[3] M. Kuhlmann and S. S. Sapatnekar, ”Exact and Efficient Crosstalk Estimation,”
IEEE Trans. on Comput.-Aided Design, July 2001, pp. 858-866.

[4] S. Khatri, A. Mehrotra, R. Brayton and A. Sangiovanni-Vincentelli, “A Novel
VLSI Layout Fabric for Deep Sub-Micron Applications,”Proc. DAC, 1999, pp.
491-496.

[5] A. Devgan, “Efficient Coupled Noise Estimation for On-chip Interconnect,”Proc.
ICCAD, 1997, pp. 147-151.

[6] C.J. Alpert, T.C. Hu, J.H. Huang, A.B. Kahng and D. Karger, “Prim-Dijikstra
Tradeoffs for Improved Performance-Driven Routing Tree Design,”IEEE Trans.
on Comput.-Aided Design, 14(7), July 1995, pp. 890-896.

[7] H. Zhou and D. F. Wong, “Global Routing with Crosstalk Constraints,”Proc.
DAC, 1998, pp. 374-377.

[8] T. Xue, E. S. Kuh and D. Wang, “Post Global Routing Crosstalk Risk Estimation
and Reduction,”Proc. ICCAD, 1996, pp. 302-309.

[9] M. R. Becer, D. Blaauw and I. N. Hajj, “Early Probabilistic Noise Estimation for
Capacitively Coupled Interconnects,”Proc. SLIP, 2002, pp. 77-83.

[10] H. Su, J. Hu, S. S. Sapatnekar and S. R. Nassif, “Congestion-driven Codesign of
Power and Signal Networks,”Proc. DAC, 2002, pp. 64-69.

[11] P. Saxena and S. Gupta, “Shield Count Minimization in Congested Regions,”
Proc. ISPD2002, pp. 78-83.

[12] S. B. K. Vrudhula, D. Blaauw and S. Sirichotiyakul, “Estimation of Likelihood
of Capacitive Coupling Noise,”Proc. DAC, 2002, pp. 653-658.

[13] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick, “The Scaling Chal-
lenge: Can Correct-by-Construction Design Help,”Proc. ISPD, 2003, pp. 51-58.

[14] J. D. Z. Ma and L. He, “Towards Global Routing with RLC Crosstalk Con-
straints,”Proc. DAC, 2002, pp. 669-672.

[15] F. F. Dragan, A. B. Kahng, I. Mandoiu and S. Muddu, “Provably Good Global
Buffering Using an Available Buffer Block Plan,”Proc. ICCAD, 2000, pp. 358-
363.

[16] R. Nair, “A Simple Yet Effective Technique for Global Wiring,”IEEE Trans. on
Comput.-Aided Design, 6(2), March 1987, pp. 165-172.

[17] J. Cong, “An Interconnect-Centric Design Flow for Nanometer Technologies,”
Int. Symp. on VLSI Tech., Taipei, Taiwan, June 1999, pp. 54-57.

[18] L.P.P.P. Van Ginneken, “Buffer Placement in Distributed RC-tree Networks for
Minimal Elmore Delay,”Proc. ISCAS,1990, pp. 865-868.

[19] J. Cong, T. Kong and D. Z. Pan, “Buffer Block Planning for Interconnect-Driven
Floorplanning,”Proc. ICCAD,1999, pp. 358-363.

[20] J. Cong, “Challenges and Opportunities for Design Innovations in Nanometer
Technologies,” Invited Semiconductor Research Corporation Design Sciences
Concept Paper, January 1998.

[21] P. Gupta and A. B. Kahng, ”Manufacturing-Aware Physical Design,”Proc. IC-
CAD,2003, pp. 681-687.

[22] Semiconductor Industry Association,National Technology Roadmap for Semi-
conductors,1997.

