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ABSTRACT

The increasing clock frequencies in high-end industrial circuits
bring new routing challenges that can not be handled by traditional
algorithms. An important design automation problem for high-
speed boards today is routing nets within tight minimum and max-
imum length bounds. In this paper, we propose an algorithm for
routing bus structures between components on two layers such that
all length constraints are satisfied. This algorithm handles length
extension simultaneously during the actual routing process so that
maximum resource utilization is achieved during length extension.
Our approach here is to process one track at a time, and choose the
best subset of nets to be routed on each track. The algorithm we
propose for single-track routing is guaranteed to find the optimal
subset of nets together with the optimal solution with length exten-
sion on one track. The experimental comparison with a recently
proposed technique shows the effectiveness of this algorithm both
in terms of solution quality and run-time.

1. INTRODUCTION
During the past several years, we have seen dramatic increases in
the clock frequencies of industrial circuits. As the circuits become
smaller and faster, the routing problems become more and more
difficult, and the designers face new challenges, most of which
can not be handled by the traditional routing algorithms. Many
high-end board designs in the industry today need to be routed
manually, since the existing routing tools are usually ineffective
for high-end circuits.

Routing nets within minimum and maximum length bounds
is an important requirement for high-speed VLSI layouts. There
have been several algorithms proposed for the objective of min-
imizing path lengths, or satisfying prespecified maximum length
constraints, especially in the context of timing-driven routing [14,
8, 3, 18, 6, 16]. However, the problem of routing nets with lower
bound constraints has not been studied extensively in the literature.
The main reason is that these bounds were loose most of the time,
and non-sophisticated ad-hoc strategies (such as greedy length ex-
tension in post-processing) were sufficient for most applications.
However as circuits start to use clock frequencies in the order of
gigahertz in the current technology, the timing constraints become
extremely tight, and more aggressive methods for achieving length
bounds are needed in the industrial applications.

We have been working on a project to develop a routing system
for high-end IBM circuit boards, where a typical board contains
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Figure 1: A typical two-layer routing solution. There are two
separate bus structures here: (1) between MCM and I/O (2)
between MCM and memory. No length extension (to satisfy
min-length constraints) has been performed yet.

several bus structures between MCM, memory and I/O modules,
in addition to individual nets. Data is clocked into registers or
other circuits in a typical bus structure; so all signals traveling over
different wires of the bus must arrive at their destinations approxi-
mately at the same time. To achieve this, all the wires constituting
this bus need to have approximately the same length. The preci-
sion with which matching must be done is directly related to the
clock frequency [19]. As the clock frequency increases, the skew
requirements on the propagation delays become more strict, and
so a higher degree of length matching is required. Note here that
this problem is completely different from the minimum-skew clock
tree routing problem, which has been studied extensively in the
literature [12, 13, 5, 22]. The difference here is that a bus con-
sists of a large number of different two-terminal nets, as opposed
to a single net with multiple terminals. The objective here is to
find independent routing solutions for each net while satisfying all
length constraints. Furthermore, there may be more than one bus
structures interleaved with each other, or there may be individual
nets not belonging to any bus. So, we will consider the general
case where each net has individual min-max length constraints as-
signed to it.

In this paper, we focus on a two-layer bus routing problem,
where each layer has a primary routing direction of either horizon-
tal or vertical. A sample routing solution is illustrated in Figure 1,
where there are two bus structures: (1) a vertical bus between
MCM and I/O module, (2) a horizontal bus between MCM and
memory module. Observe in the horizontal layer that the conges-
tion in the area corresponding to the vertical problem (i.e. the area
between MCM and I/O) is considerably lower than the congestion
in the area corresponding to the horizontal problem (i.e. the area
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Figure 2: A sample routing solution on two layers, where each
net has individual min-max length constraints. The terminals
for 12 nets are aligned on the left and right side of the channel.
Two vias (represented as empty circles) are used to route each
net. The dashed lines on layer 2 indicate the length extension
performed to satisfy min-length constraints.

between MCM and MEM), and vice versa. The main reason is that
the horizontal distance between terminals of a net in a horizontal
problem corresponds to the distance between two different com-
ponents, and it is typically much larger than the respective vertical
distance.

Routability in a highly congested area is expected to be limited;
so it will be more effective to perform length extension (to satisfy
min-length constraints) within the less congested areas. For ex-
ample, the vertical layer of a horizontal problem is expected to be
significantly less congested; so it makes more sense to perform
length extension on this layer. In this paper, we propose an algo-
rithm that incorporates the objective of length extension into the
actual routing algorithm. For a horizontal problem, our algorithm
simultaneously extends the lengths of the nets and assigns them to
vertical tracks.

Recently, a general Lagrangian relaxation framework has been
proposed for satisfying min-max length constraints of printed cir-
cuit boards [17]. Although the target class of problems of that
framework is more general, our algorithm has distinct advantages
for the bus routing problem described above. First of all, we route
multiple nets simultaneously on one track in an optimal way, in-
stead of using a net-by-net approach, which has no theoretical
guarantees. Furthermore, the routing solutions are more uniform
in our algorithm, i.e. all nets use two vias, and the number of bends
(due to length extension) is at most 4 for each net. Also, we con-
sider a certain type of length extension methodology here, which
is especially effective for this problem.

The rest of the paper is organized as follows. In Section 2, we
describe the target problem in more detail, and discuss why simple
ad-hoc methodologies are not sufficient for this problem. Then,
we propose an algorithm in Section 3 based on some assumptions
about input circuits. In Section 4, we relax these assumptions,
and discuss how to generalize this algorithm. Finally, we perform
experiments in Section 5 to show the effectiveness of our algorithm
compared to the Lagrangian relaxation framework [17].

2. PROBLEM FORMULATION AND MOTIVATION
For a given set of nets N , and min-max length constraints T min

i ,
T max

i for each net i, our purpose is to find a two-layer routing
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Figure 3: Alternative routing solutions corresponding to Fig-
ure 2, if (a) length extension is performed in post-processing,
and (b) length extension is performed in preprocessing. In part
(a), min-length constraints of nets 1, 5, 7 and 9 are violated. In
part (b), the number of vertical tracks necessary increases to
8 (from 5). For clarity, only the results on the secondary layer
are illustrated.

solution such that all length constraints are satisfied, and the rout-
ing resources are utilized most effectively. We assume that routing
within dense components (escape routing) has already been ac-
complished by the earlier stages of the routing system; hence all
terminals are now aligned on the opposite sides of the channel.
At first glance, this problem may seem similar to the traditional
channel routing problem [11, 23, 20, 4], which has been studied
extensively in the literature. However, the existence of min-max
length constraints due to the high-speed design rules makes this
problem significantly different from the traditional problem.

For simplicity of presentation, we will first focus on a restricted
problem instance, where (1) each pair of adjacent terminals is sep-
arated by at least one grid cell on each side, and (2) there are no
obstacles within the routing area. The algorithms we propose in
Section 3 will be based on these assumptions; however we will
extend our algorithms in Section 4 for the general case.

All algorithms in this paper will be presented for a horizontal
problem (i.e. terminals are aligned on the left and right sides of
the channel); however it is trivial to modify them for a vertical
problem. Let us denote the horizontal routing layer as the primary
layer, and the vertical routing layer as the secondary layer. As
mentioned before, since routing resources are very scarce on the
primary layer, length extension will be performed on the secondary
layer to satisfy all min-length constraints.

Figure 2 illustrates a sample routing solution for 12 nets, where
the dashed lines indicate length extension performed on each net.
Observe that layer 1 and 2 are primarily for routing horizontal and
vertical segments, respectively. However small deviations from the
primary directions are allowed on each layer. For instance, there
are small diagonal segments (for alignment) on layer 1, and small
horizontal segments (for length extension) on layer 2. Further-
more, the second layer is defined to be consisted of vertical tracks,
where each track has width equal to the sum of via diameter and
wire width (plus clearance between them). For example, 5 vertical
tracks are used on layer 2 of this figure. Note that via diameters
are typically much larger than wire widths; so the increase in track
widths due to length extension is normally negligible.

It is important here to note that length extension needs to be
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Figure 4: (a) A vertical segment which needs to be extended
by 16 units. (b) Eight possible configurations corresponding to
the extended segment. (c) Each configuration is represented as
a single line, where dashed lines represent the length extension.

performed simultaneously while determining the positions of ver-
tical segments on the secondary layer. In the example of Figure 2,
the number of vertical tracks used is kept minimum (i.e. 5 ver-
tical tracks used on the second layer), and the routing resources
are utilized most effectively. However, this utilization will be sig-
nificantly reduced if length extension is performed as a separate
step in the routing process. For instance, one can use a traditional
channel routing algorithm (such as left-edge algorithm [11]) first
to assign routing segments to the vertical tracks, and then extend
the lengths of vertical segments in post-processing. Figure 3(a)
shows the corresponding solution of the left-edge algorithm. Ob-
serve that, segments have been assigned to vertical tracks without
considering the min-length constraints. So, it is not guaranteed
that there is enough space around each net such that its length will
be successfully extended in post-processing. For instance, con-
sider net 5 in this figure, which is assigned to the second vertical
track between the segments of nets 1 and 7. Obviously, its length
can not be extended in post-processing (due to lack of space), and
its min-length constraint will be violated. Specifically, there are 4
nets in this example of which length constraints will not be satis-
fied even after post-processing: nets 1, 5, 7, and 9. This example
clearly demonstrates that min-length constraints need to be consid-
ered during the actual routing process, not just as a post-processing
step.

Another approach here can be to extend the lengths of verti-
cal segments using a predefined pattern in preprocessing, and then
to apply a traditional channel routing algorithm to assign them to
vertical channels. Figure 3(b) shows such an example, where seg-
ments have been extended (from bottom) first; then left edge algo-
rithm has been applied on the extended segments. The disadvan-
tage of this approach is that the routing algorithm has no control
over the length extension process; so the resulting solution can not
utilize the routing resources most efficiently. In this example, 8
vertical tracks are used to obtain a feasible solution, while Fig-
ure 2 shows that 5 tracks would be sufficient to satisfy all length
constraints. This example shows that performing length extension
as a preprocessing step is also not an effective strategy.

The algorithms we propose in this paper handle length exten-
sion and track assignment simultaneously, so that a feasible rout-
ing solution is obtained while using minimum number of vertical
tracks. For instance, observe in Figure 2 that net 1 is extended

ri = rmax
i

ri = rmin
i

rmin
i ≤ ri ≤ rmax

i

`i

`i

`i

Figure 5: Three different cases for the vertical segment of net
i are illustrated. Here, length `i is fixed, since it is determined
by the min-length constraint. However, the top row ri can vary
between rmin

i and rmax
i . The solid and dashed lines here rep-

resent the original and extended segments, respectively.

both from top and from bottom, and such an extension allows 3
nets to fit on one track. The next section describes our models and
algorithms in more detail.

3. ALGORITHM DESCRIPTION
3.1. Routing Model
Routing on the horizontal layer is straightforward, because of the
assumptions that there are no obstacles in the routing area, and
each adjacent pair is separated by at least one grid cell (see Sec-
tion 4 for the general case without these assumptions). As illus-
trated in the example of Figure 2, a horizontal connection1 is pos-
sible from each terminal on one side of the channel to the other
side, without any conflicts with others. So, the main problem here
is to determine the positions of vertical segments on the secondary
layer. Once the positions of these vertical segments are fixed, the
horizontal segments on the first layer can be connected to them
using vias, as illustrated in this example.

Figure 4 shows an example illustrating the way length exten-
sion is performed on vertical segments. Here, assume that we
need to extend the length of the segment in part (a) by 16 units
(in terms of grid cells) to satisfy its min-length constraint. Fig-
ure 4(b) shows eight possible configurations, each of which is the
extended version of the original segment. As mentioned before,
one via and one wire is defined to fit on a vertical track together;
so each extended segment in this figure is defined to be on a sin-
gle track. Figure 4(c) gives a simpler representation, where a solid
line represents the original segment, and a dashed line represents
the extended length.

Min length constraint for a net directly determines the mini-
mum length requirement for its vertical segment. Let xi denote
the amount of length extension required to satisfy min length con-
straint of net i. The value of xi is simply equal to the Manhattan
distance between net i’s terminal points subtracted from its min
length constraint. Here, the vertical segment of net i must be ex-
tended by at least xi/2 − 1 from top or from bottom, as in Fig-
ure 4(c). In the example of Figure 4, xi is given as 16, and the
1A small diagonal segment might be necessary to align the hori-
zontal segments on opposite sides, as shown in Figure 2.
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Figure 6: (a) A sample single-track assignment problem with
4 nets. Multiple routing configurations are illustrated for each
net. (b) The optimal solution, which utilizes 21 out of 22 grid
cells of one track. The dashed lines indicate the length exten-
sion performed.

vertical segment of net i needs to be extended by at least 7 units2.
These concepts are formalized by the following definitions:

Definition 3.1. The routing solution for net i is defined based on
the position of its vertical segment, and it is denoted as Ri =
(ti, ri, `i), where ti is the track number, ri is the top row, and `i is
the length of the vertical segment of net i. Here, `i is determined
directly from the min length constraint of net i, as discussed before.
Furthermore, ri must be chosen such that rmin

i ≤ ri ≤ rmax
i ,

where ri = rmin
i , and ri = rmax

i correspond to the extreme cases
where no length extension is performed from the bottom, and from
the top, respectively. The main idea is illustrated in Figure 5.

Definition 3.2. The routing problem for a given set of nets is de-
fined as finding a solution Ri = (ti, ri, `i) for each net i such that:
(1) no two vertical segments on the same track overlap with each
other, and (2) the number of vertical tracks used is minimized.

Note that the min length constraints are captured by the target
length `i defined for each net i, while the max length constraints
do not need to be considered explicitly. The reason is that each net
is routed using the minimum possible length in this algorithm.

3.2. Algorithm Proposed
The problem defined by Definitions 3.1 and 3.2 is actually a special
case of task scheduling problem with release times and deadlines
on a multi-computer. Here, each vertical track can be considered
as a computer; each vertical routing segment can be considered as
a task with length `i, release time rmin

i , and deadline rmax
i . Note

that this problem is known to be an NP-complete problem in the
strong sense, even in the case where there is a single computer [2].
However, the special property of our problem will allow us to give
a polynomial-time exact algorithm for the single-track case.

Here, our approach will be to process one track at a time, and
pack as many routing segments as possible on each track. Note
2As shown in Figure 4(b), the extended part actually consists of
two adjacent vertical wire segments, and one unit of horizontal
wire segment. However for simplicity, we represent it as a single
wire as in part (c).

SINGLE-TRACK-ASSIGNMENT (N : set of nets, t: current track)
create a graph G as follows:

for each row j of track t
create a vertex v[j]
add a unit-weight edge from v[j − 1] to v[j]

for each net i in N

for ri = rmin
i to rmax

i do
create a zero-weight edge from v[ri] to v[ri+`i+1]

Compute the shortest path P from v[1] to v[last] in G

for each edge e ∈ P
if e is a zero-weight edge from v[k] to v[m]

select the vertical segment that spans rows from k to m-1

Figure 7: Algorithm for selecting the maximal subset of non-
overlapping vertical segments

that the best routing configuration for each net should also be de-
termined simultaneously during this process. The following defi-
nition gives a formal description of this objective.

Definition 3.3. The problem of single-track assignment is defined
as follows: Given a set of nets N , and a set of vertical segments
for each net i in N , the objective is to select a subset of these
vertical segments, such that (1) at most one vertical segment is
selected corresponding to each net i, (2) the selected segments do
not overlap with each other, and (3) maximum resource utilization
is achieved on one track (i.e. the number of grid cells unused is
kept minimum).

As an example, consider Figure 6(a), where there are 4 different
nets, and each net has multiple routing configurations. The corre-
sponding optimal solution for single-track assignment is shown in
Figure 6(b). Observe that 21 out of 22 grid cells have been utilized
on this track.

As mentioned above, this problem is a special case of the task
scheduling problem on a single computer, which is an NP-complete
problem in the strong sense. However, we propose an algorithm
in Figure 7, which is guaranteed to find the optimal solution in
polynomial time (due to the special property given in Lemma 3.2).
Here, the main idea is to represent each row of the track as a vertex,
and to model each vertical segment as a zero-weight edge between
the respective rows. Furthermore, there is a unit-weight edge from
each v[j] to v[j +1], which corresponds to the case where the grid
cell on row j is unused. Then, the shortest path from the first row
to the last row is computed to find the optimal assignment with the
maximum resource utilization. Intuitively, the weight of an edge
from v[k] to v[m] indicates the number of grid cells that will be
wasted between rows k and m − 1 if this edge is selected. So,
the shortest path from the top row to the bottom row will give us
the assignment with the minimum waste. Figure 8 illustrates the
graph model corresponding to the problem given in Figure 6(a).
The highlighted path in this graph is the shortest path, and it cor-
responds to the optimal solution in Figure 6(b). For example, the
edge from v[1] to v[6] on the shortest path corresponds to the ver-
tical segment of net 2 from row 1 to row 5. The formal analysis of
this algorithm is given as follows:

Lemma 3.1. Consider any pair of edges ei, ej ∈ G. If there
exists a path P such that ei, ej ∈ P , then the vertical segments
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Figure 8: The graph model corresponding to the problem of
Figure 6(a). The edges corresponding to net segments (solid
arrows) have zero weights, while the others (dashed arrows)
have unit weights. The shortest path (with total weight 1) is
highlighted, and it corresponds to the optimal solution in Fig-
ure 6(b).

corresponding to ei and ej are guaranteed not to overlap with
each other.

PROOF. The direction of edges in G are always towards larger
vertex indices. Furthermore, for a vertical segment that spans rows
k to m, the corresponding edge will be from v[k] to v[m + 1].
Hence, any edge selected after this edge will correspond to a seg-
ment starting from row m + 1. So, any pair of edges in a path can
not correspond to overlapping net segments.

Lemma 3.2. Consider the set of edges En corresponding to net n.
There exists no path P in G such that ei, ej ∈ P and ei, ej ∈ En.
In other words, a path can not contain two edges corresponding to
different vertical segments of the same net.

PROOF. There are different vertical segments corresponding to
net n, because there are different ways of extending the length of
n. However, as can be seen in Figure 5, the original segment (rep-
resented with solid lines) is always fixed; hence all vertical seg-
ments corresponding to the same net will overlap with each other.
From Lemma 3.1, a path can not contain edges corresponding to
overlapping net segments.

Theorem 3.3. The shortest path in G between the first and last
vertices corresponds to the optimal solution of the single-track as-
signment problem defined in Definition 3.3.

PROOF. From Lemma 3.1 and 3.2, the set of edges on any path
corresponds to a valid assignment on one track. Furthermore, there
is a path in G corresponding to any valid assignment on one track.
Since the unit weighted edges in G correspond to the unused rows
of the track, the total weight of path P will be equal to the number
of rows wasted. So, the shortest path from the top row to the bot-
tom row will correspond to the optimal assignment with maximum
utilization.

CHANNEL
COMPONENT

RIGHT
COMPONENT

LEFT

Figure 9: In a typical board routing problem, nets escape from
dense components (solid line segments), and the input to the
bus routing problem is defined as a set of terminals aligned on
the opposite sides of a channel. Since the diameters of the pins
within components are much larger than wire widths, these
terminals are typically well-separated. So, it is possible to align
all horizontal segments (dashed lines) such that there are no
overlaps between them.

Theorem 3.4. Let H denote the number of rows in the channel,
and xi denote the amount of length extension required to satisfy
min-length constraint of net i. The time complexity of the algo-
rithm given in Figure 7 is O(H +

P

i∈N
xi).

PROOF. There are O(xi) different vertical segments defined for
each net. So, the number of edges in G is O(H +

P

i∈N
xi),

while the number of vertices is O(H). Furthermore, G is a directed
acyclic graph, and the shortest path can be computed in linear time
[7].

4. GENERALIZATION OF THE ALGORITHM
In the previous section, we have assumed that each pair of adja-
cent terminals is separated by at least one grid cell. However, this
is not absolutely necessary, as long as it is possible to extend the
horizontal segments from one side of the channel to the other side
without any conflicts, as illustrated in Figure 9. If this is the case,
then there will be no restrictions on the positions of the vertical
segments, and the same algorithm in Section 3 can be used with-
out a change. Note that this assumption is reasonable for a typical
industrial circuit, since the pin diameters within chip components
are much larger than the wire widths; so there will be enough rout-
ing space to align horizontal segments from both sides without any
overlaps (as in Figure 9).

Actually, this corresponds to the unrestricted case of the origi-
nal channel routing problem [11], where there are no vertical con-
straints, i.e. net segments can be assigned to tracks without any
ordering constraints. On the other hand, if overlaps are possible
on the horizontal layer, then we need to define pin constraints to
avoid overlaps. For instance, assume that the horizontal segment
of net i originating from a left terminal overlaps with the horizon-
tal segment of net j originating from a right terminal. In that case,
the vertical segment of net i must be assigned to a track which
is to the left of the vertical segment of net j to avoid an over-
lap on the horizontal layer. Note that if there were no min-max
length constraints, this would correspond to the problem of chan-
nel routing with vertical constraints, which has been studied in the
literature. This problem has been shown to be NP-complete [15,
21]; however there have been several algorithms proposed that give
sufficiently good results [20, 4, 23, 10]. If the assumption of well-
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Figure 10: (a) The horizontal segments of a net are not en-
tirely straight due to an obstacle. (b) The vertical segment is
assigned on a track to the left of the obstacle. (c) The verti-
cal segment is assigned on a track to the right of the obstacle.
The solid and the dashed lines represent the routing segments
on the horizontal and vertical layers, respectively. For clarity,
only one net is displayed, and length extension on the vertical
layer is not shown.

separated terminals (mentioned above) is not valid for a circuit, we
can use similar ideas to extend our algorithm to the general case.
In particular, we can define pin constraints indicating the order-
ing of the vertical segments, and then perform track assignment
based on this ordering. Since our algorithm processes one track at
a time, we can simply consider the set of nets that do not violate
the ordering constraints for the track that is being processed.

We can also generalize our algorithm to the case where there
are some obstacles in the routing region. If the obstacles are on
the horizontal layer, then the horizontal segments will not be en-
tirely straight, as shown in Figure 10(a). Furthermore, the y coor-
dinates of the vertical segments will depend on the track on which
it is assigned, as illustrated in parts (b) and (c) of the same fig-
ure. Since the algorithm we propose processes one track at a time,
the appropriate vertical segments corresponding to each net can
be determined for each track, and the algorithm given in Figure 7
can still be used to choose the best subset. On the other hand, we
can handle the obstacles on the vertical layer by simply removing
the edges corresponding to vertical segments that overlap with an
obstacle on the current track.

5. EXPERIMENTAL RESULTS
We have performed experiments to compare our algorithm with
a recently proposed Lagrangian relaxation (LR) based approach
[17]. All algorithms in this section have been implemented in C++,
and experiments were performed on an Intel Pentium 4 2.4GHz
system with 1GB memory, and a Linux operating system.

A sample output of our algorithm is illustrated in Figure 11,
for a routing problem with 128 nets. Here, each net has individual
length constraints, and terminals are aligned on the top and bot-
tom sides of the channel. Since this is a vertical problem, length
extension is performed on the horizontal (second) layer. Observe
that nets have been assigned to tracks and their lengths have been
extended so that maximum resource utilization is achieved on each
track.

The experiments we have performed on test problems are given
in Table 1. Here, “avg. spacing” is measured in terms of the num-
ber of grid cells between terminal points of adjacent nets, and it
indicates how dense the problem is. On the other hand, columns
“length avg” and “length stdev” give statistical information about
net target lengths. Each problem in this table contains between
100-300 nets, with individual length constraints for each net. The
grid size for the smallest circuit in this table is 100 × 330, and

Table 1: Comparison of our algorithm with the Lagrangian
relaxation based approach

OUR ALGORITHM LR-BASED
Input Avg. Length Length # nets time # nets time
Prob. spacing avg stdev failed (m:s) failed (m:s)
B1 3.40 150.1 39.9 0 0:01 5 38:21
B2 3.19 138.5 18.6 0 0:01 6 44:52
B3 3.46 151.6 40.1 0 0:01 21 57:06
B4 2.91 160.8 38.0 0 0:01 4 46:32
B5 3.16 183.9 30.0 0 0:01 19 52:50
B6 2.94 174.7 18.1 0 0:01 48 52:45
B7 2.12 157.4 20.7 0 0:01 45 73:50
IBM1 7.75 417.6 35.8 3 0:01 3 2:29
IBM2 6.41 382.0 46.0 1 0:01 1 1:50
IBM3 9.16 427.6 73.8 0 0:01 0 7:06

the largest one is 290 × 776. The last 3 problems here have been
extracted from an IBM design, corresponding to the bus routing
problems between MCM, memory and STI modules. Here, layer
assignment and routing inside chips have been performed by the
previous phases of the routing system; so the input for the bus
routing problem is a set of aligned terminals on opposite sides of a
channel. While the first 7 circuits in this table have a single layer
pair, the IBM circuits have multiple layer pairs.

The results in this table indicate that our algorithm performs
significantly better than the Lagrangian relaxation based approach
on most circuits, in terms of both quality and run time. The so-
lution quality for LR-based approach degrades especially when
the average spacing between nets decrease, or the target lengths
increase (hence more aggressive length extension required). The
main reason for this is that LR-based approach uses a variant of
Pathfinder [1, 9] algorithm in the low level, where routing conflicts
are resolved through negotiations. As the problems get denser,
these negotiations take more and more time, and they don’t always
successfully lead to a good result. On the other hand, our algo-
rithm performs length extension in a fast and effective way.

6. CONCLUSIONS
We have proposed a routing algorithm with the objective of satis-
fying length constraints of high-speed printed circuit boards. The
main idea is to perform length extension on the secondary layer
(e.g. vertical layer for a horizontal problem), where routing con-
gestion is typically much lower than the primary layer. We have
proposed an optimal algorithm to select the best subset of nets to
assign to a single track, while satisfying the length constraints.
Our experiments show that compared to a general Lagrangian re-
laxation framework, this algorithm performs considerably better
on its target class of problems.
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