
Reticle Floorplanning with Guaranteed Yield for Multi-Project Wafers

Andrew B. Kahng
CSE and ECE Departments

University of CA, San Diego
La Jolla, CA, 92093

abk@ucsd.edu

Sherief Reda
CSE Department

University of CA, San Diego
La Jolla, CA, 92093
sreda@cs.ucsd.edu

Abstract

With the dramatic increase in mask costs, multi-project
wafers have became an attractive choice for low-volume
chip fabrication. By using the same set of masks to fabri-
cate a number of different chips, the mask-set cost is amor-
tized among different chip providers, leading to significant
cost reduction especially for chip prototyping. In this paper
we present a new algorithm for reticle floorplanning with
wafer yield guarantees. The previous approach of Kahng et
al. [4] considers optimizing both the reticle area and the
wafer yield, leading to suboptimal solutions with no yield
bounds. By contrast, we consider the yield as a constraint
and optimize the area accordingly. We characterize yield
constraints and provide a mechanism through which yield
can be incorporated into an optimal-area packer. The in-
corporation of yield constraints prunes large parts of the
search space of the optimal-area packer, leading to runtime-
efficient optimal-area floorplans with guaranteed yields.
Empirical results demonstrate that our approach dominates
previous results, i.e., we give floorplans that consume less
area and have higher die yields. For the 10 benchmarks
studied in [4], we achieve a yield improvement of 14% with
an area reduction of 2%.

1 Introduction

In recent years, mask (or reticle) costs have dramatically
increased. This is attributed to several factors including (i)
huge rise in number of features due to design size increases
enabled by scaling, and (ii) the use of reticle enhancement
techniques such as optical proximity correction (OPC) and
phase shifting mask (PSM). These elevated mask costs hin-
der cost-effective prototyping and low-volume manufactur-
ing.

To reduce and share manufacturing costs, fabrication
facilities introduced multi-project wafers so that different
chips can share the same set of masks, leading to mask-cost

amortization among the different chips. A crucial step in
multi-project mask (or reticle) preparation is reticle floor-
planning, which arranges the dies within the reticle.

One objective for reticle floorplanning is minimizing the
reticle area, hence increasing the raw number of printed
chips. On the other hand, diamond sawing technology used
for wafer dicing requires any wafer cut to proceed from side
to side. Such side-to-side wafer cuts cut through some die
copies as they extract other dies, and hence decrease the ac-
tual yield of diced chips.

Skillful reticle floorplanning is the key issue in attain-
ing high-yielding multi-project wafers. While classical chip
floorplanning is concerned with minimizing the area and
wirelength [3], the objective of reticle floorplanning is min-
imizing the reticle area as well as maximizing the yield.
Minimizing the area increases the number of reticles a wafer
can accommodate, while maximizing the yield reduces the
number of wafers necessary to manufacture the required
production volume of each die.

Drawbacks of previous approaches include (i) ignoring
yield constraints [5], (ii) assuming expensive wafer dicing
equipment [6], and (iii) simultaneously optimizing the area
and yield [4] leading to no guarantees on either. In this pa-
per we take a different approach to reticle floorplanning:
we consider the yield as a constraint and develop a number
of floorplan constraints that guarantee yield bounds. The
yield constraints prune large portions of the floorplan search
space, and lead to a runtime-efficient optimal-area packer.
Our empirical results indicate that we dominate previous
approaches [4] with floorplans that occupy less area and
provide higher yields.

The organization of this paper is as follows. Section
2 gives the necessary background for understanding this
work, and motivates our approach of floorplanning under
yield guarantees. Section 3 outlines the proposed method-
ology by establishing a characterization for yield guarantee.
Our empirical results are presented in Section 4, and Section
5 gives concluding remarks.
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Figure 1. Reticle/Die overview.

2 Background and motivation

A wafer consists of a number of reticle “shots” arranged
in m rows and n columns as shown in Figure 1; we re-
fer to these as reticle rows and by reticle columns, respec-
tively. Each reticle can have a number of dies from differ-
ent designs. The side-to-side dicing model [4] assumes that
the wafer-cutting tool cannot arbitrarily stop during cutting;
consequently, all reticles in same reticle row (or reticle col-
umn) will be cut (or diced) by the same set of horizontal
(or vertical) cuts. A dicing plan specifies a set of cutting
lines. These cutting lines determine which dies will be us-
able and which will be destroyed. For example, the cutting
line on the first reticle row in Figure 1 successfully extracts
die d3, but destroys dies d1 and d2. Notice also that a cut
line that extracts d1 does not eliminate the need for cut lines
for d2 and d3, since such a cut line will leave excess margin
for each of d2 and d3. Given a reticle floorplan with a set
of dies D = {d1, d2, . . . , dl}, the wafer yield is defined as
the minimum, over all dies dk ∈ D, of the number of suc-
cessfully extracted copies of dk. The objective of a dicing
plan is to maximize the yield, since this translates to fewer
wafers.

In the reticle floorplanning approach of Kahng et al. [4],
the primary objective is minimizing the total reticle area and
the secondary objective is maximizing the yield. We notice
that minimizing the reticle area will likely lead to adverse
impacts on the yield. From Kahng et al. [4] results (dupli-
cated in Table 1 for convenience), we observe that there is
strong correlation between area and yield. Comparing re-
sults from Parquet - a well-established yield-oblivious area
packer - and the “shelf” packer - an area packer with yield
as a secondary objective - we find that there is a strong cor-
relation between the area and yield in the results of these
floorplanners, i.e., smaller areas lead to lower yields and
larger areas lead to higher yields. The low yield associ-
ated with smaller areas will eventually lead to large wasted
die areas during side-to-side dicing, outweighing any initial
area savings.

In this work we suggest a different approach. We con-
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Figure 2. Reticle floorplans as grids.

struct floorplans that consider specified yield bounds as con-
straints and find a packing that minimizes the reticle area
while respecting the constraints. The main challenge with
our approach is specifying and satisfying the yield con-
straints at all times while constructing the reticle floorplan.
To simplify the yield calculations, we restrict the floorplans
to grids as shown in Figure 2 and use this as a starting point
for developing a characterization for yield guarantee. We
note that Andersson et al. [5] propose a Polynomial-Time
Approximation Scheme (PTAS) to pack dies into grids un-
der the sole objective of minimizing the reticle area with no
regard to the yield. Our work is different: we take the yield
as a constraint and develop a practical methodology for reti-
cle floorplanning. Our approach can be summarized in three
steps: (i) restrict floorplans to grids, (ii) develop a charac-
terization for yield of grid floorplans, and (iii) pack the dies
in the grid optimally using branch and bound respecting the
specified rules for yield guarantee.

3 Proposed Methodology

In our methodology, we restrict floorplans to grids. A
grid is composed of a number q of grid rows and a number
p of grid columns as shown in Figure 2 (compare against
reticle rows and columns). A grid representation allows
the development of a characterization for yield guarantee
which we give in Subsection 3.2. We discuss our optimal
area packer in Subsection 3.3. We now formulate the reticle
floorplan problem.

3.1 Problem Formulation

Given a set of dies D = {d1, d2, . . . , dl}, we define the
following:

• wi gives the width of a given die di ∈ D.

• hi gives the height of a given die di ∈ D.

Let a variable xijk = 1 if and only if die dk is placed at
grid row i and grid column j; otherwise, xijk = 0. Define
the following two sets:

λj = {wk | ∃i, k such that xijk = 1}, (1)



and
πi = {hk | ∃j, k such that xijk = 1}. (2)

λj (πi) gives the set of width (height) values of cells placed
in grid column j (grid row i). Considering that the width
(height) of a column (row) is determined by the largest
width (height) die residing in that row (column), the ob-
jective of minimizing the grid area can be written as

min

p∑

j=1

max
w∈λj

w ×

q∑

i=1

max
h∈πi

h, (3)

such that
∀k :

p∑

j=1

q∑

i=1

xijk = 1 (4)

∀i, j :
l∑

k=1

xijk ∈ {0, 1} (5)

The constraint given by Equation (4) states that each die
must be placed, and the constraint given by Equation (5)
states that each slot in the grid can be occupied by at most
one die.

While optimizing the objective function given by Equa-
tion (3) gives an optimal grid packing, these packings offer
no yield guarantees. We next develop the necessary con-
straints for attaining any desired yield, and for obtaining a
smooth tradeoff between yield and packing area.

3.2 Floorplanning with Yield Guarantee

An independent row set is a set of dies within a grid row
that have the same height; πi (as given by Equation 2) gives
the number of independent row sets within a grid row i.
Similarly, an independent column set is a set of dies within
a grid column that have the same width; λj (as given by
Equation 1) gives the number of independent column sets
within a column grid j. An independent set can be diced at
the same time.

For the special case of 100% yield, there must be at
most one independent row set per row and at most one in-
dependent column set per column, i.e, ∀i : πi = 1 and
∀j : λj = 1. That is, if 100% yield is to be achieved,
each row in a grid must accommodate dies of only the same
height and each column in the grid must accommodate dies
of only the same width. Given 100% yield as a constraint,
one has to find the minimum area floorplan that satisfies this
yield. To reduce the reticle area at the expense of the yield,
we can allow (i) different die heights to reside in the same
grid row, and (ii) different die widths to reside in the same
grid column. Under the assumed dicing model, if a row
(column) contains dies of different heights (widths) then
any dicing plan that extracts dies of the one height (width)
must damage all dies of different heights (widths).

Assume a wafer has m reticle rows and n reticle
columns, with a total of m × n reticles shots. Further

assume that we are given a reticle floorplan where some
die dk is placed at grid row i and grid column j, i.e.,
xijk = 1. Then, a constructive lower bound on the number
of reticle rows where copies of die dk are extracted is
b m
|πi|

c. Similarly, a constructive lower bound on the number
of reticle columns where copies of die dk are extracted is
b n
|λj |

c. Hence the number of copies ck extracted of die

dk is at least ck = b m
|πi|

c × b n
|λj |

c. The yield is equal
to mindk∈D ck. The following example illustrates yield
calculation.

Example 1: Assume a wafer of m = 10 reticle rows and
n = 10 reticle columns. Consider some grid row i that has
a set of dies of two different heights πi = {h1, h2}, while
for all grid columns j, |λj | = 1, i.e., no grid column ac-
commodates dies of different width. Furthermore, assume a
number m1 of reticle rows will be used to extract all dies of
height h1, while a number m2 of reticle rows will be used
to extract dies of height h2. Since m = m1 + m2 maxi-
mizing the yield implies maximizing the minimum of m1n

and m2n. This occurs when m1 = m2 = 10
2 = 5, giving a

yield of 50.
The general relationship between yield, the number of

different heights per row πi, and the number of different
widths per column λj is captured by the following theorem.
We derive the relation between yield and area using a
single parameter γ ∈ Z+. As γ increases, the reticle area
decreases and the yield decreases. To produce concise
expressions, we make the reasonable assumption that
m = n.

Theorem 1. Given a wafer of m rows and n columns, a
yield of at least m2−m(γ+1)

γ
is attained if the following con-

straint is met: ∀dk ∈ D : [ xijk = 1 ] → [ |πi| × |λj | ≤ γ ].
Proof: Assume ∀dk ∈ D : [ xijk = 1 ] → [ |πi| × |λj | ≤
γ ]. Hence, according to our earlier discussion: for any
die dk, where xijk = 1, a constructive lower bound ck on
the number of die copies of dk is ck = bm

πi
c × b n

λj
c =

m−m mod πi

πi
×

n−n mod λj

λj
. Since πiλj ≤ γ,

ck ≥
(m − m mod πi)(n − n mod λj)

γ
. (6)

Assuming that m = n then

ck ≥
(m2 − m(m mod πi + m mod λj) + (m mod πi × m mod λj)

γ
.

(7)

Since m mod πi < πi and m mod λj < λj , we get

ck ≥
(m2 − m(πi + λj) + (πi × λj)

γ
≥

m2 − m(γ + 1)

γ
, (8)

since πi + λj ≤ πi × λj + 1 = γ + 1. ut



Input: Die d to be placed. n is the total number of dies. w

is the number of grid columns. h is the number of grid
rows. Initialize bestcost = ∞

Output: Optimal floorplanning for the specified yield

1. if d ≤ n then

2. for i = 1 to h + 1 do

3. for j = 1 to w + 1 do

4. if no dies are placed at (i, j) and placing d at (i, j)
does not violate yield constraints then

5. Place die d at (i, j)

6. cost = evaluate area of partial floorplan

7. if cost < bestcost then search(d + 1, n, w + 1,
h + 1)

8. Undo placing d at (i, j)

9. Flip die d and repeat steps 4 . . . 7

10. else

11. cost = evaluate area of complete floorplan

12. if cost < bestcost then

13. bestcost = cost

14. Store the current floorplan as the best floorplan

Figure 3. search(): a branch and bound pro-
cedure with yield guarantee.

Maintaining the constraint of Theorem 1 while reticle
floorplanning ensures packings with guaranteed yields as
given by Equation (6). Note that Equation (8) gives a less
tight lower bound than that given by Equation (6); this was
necessary to arrive to a concise expression. The addition
of the yield constraint to the formulation of Subsection 3.1
prunes the search space for finding optimal packings under
guaranteed yields. We exploit this in the next subsection.

3.3 Floorplanning Under Yield Guarantees

Our reticle floorplanner seeks to construct a grid floor-
plan with optimal area as given by Equation (3) while re-
specting the yield rule as given by Theorem 1 and the con-
straints given by Equations (4) and (5). For this purpose, we
employ a branch and bound procedure with lower bounds.
Experimental results show that such approach is practically
feasible. We can attribute this to three reasons: (i) reticle
floorplan instances are small, (ii) yield constraints prune
a huge amount of the search space, and (iii) using lower
bounds further prunes large portions of the search space.

The complete branch and bound search() procedure is
given in Figure 3. Given a grid of w columns and h rows,
the branch and bound procedure places die sequentially.
Given a current die d, the procedure places d at each grid
slot (steps 2 . . . 3) and branches (step 7) to place the remain-

ing dies. For a die to be legally placed in a grid slot, none
of the yield constraints should be violated (step 4). Lower
bounds are utilized (steps 6 . . . 7) to prune solutions that are
not promising. The procedure also expands the current grid
by an extra column and row (in loop bounds of steps 2 and
3), and evaluates placements in the additional slots. This
expansion is required since it is possible that none of cur-
rent grid slots is legal. For each die, we also consider flip-
ping, i.e., rotating the die by 90 degrees as given in Step
9. If all dies are placed then grid area is evaluated and com-
pared to the best grid floorplan area constructed so far (steps
11 . . .14).

4 Experimental Results

We evaluate our technique using the benchmarks sup-
plied by authors of [4]. We also utilize the dicing-plan
code of [4] as an independent means to evaluate the yield
of our reticle floorplans. We assume (as [4]) a wafer that
can accommodate m = 10 reticle rows and n = 10 reticle
columns. This means that the wafer has 100 reticle shots.
All of our experiments are run using a Linux Intel Xeon
2.4GHz workstation with 2GB memory.

For convenience, we duplicate all the results of [4] in Ta-
ble 1. #Die gives the number of dies in each test case, and
Die area gives the total die area. GTMuch [2] is a com-
mercial reticle floorplanner. Parquet [1] is a yield-oblivious
min-area floorplanner. Shelf+Shift and SA+IASA are the
two approaches proposed by [4]. For each floorplanner, we
report the yield, reticle area, and the CPU runtime. All of
these approaches allow die flipping.

Table 2 gives the results from our method. We give
a spectrum of results for yields corresponding to γ =
1, 2, 3, 4, and 5. We observe that our approach allows a
graceful tradeoff between the reticle area and yield. The
right most column of Table 2 “Matched Yield” gives results
when we use the best yield values of [4] in Table 1 as a
lower bound on the yield for our floorplanner, and calcu-
late the area using our approach. Our approach outperforms
previous method in the following respects:

• We afford the ability to control the yield, in contrast to
previous approaches which offer no guarantees about
the yield. Furthermore, our results offer a graceful
tradeoff between yield and area.

• Our matched yield approach dominates the SA+IASA
technique of [4] for all but one benchmark, i.e., we give
reticle floorplans that are better in both yield and area.
For the 10 reticle floorplans studied in [4], we achieve
a simultaneous yield improvement of 14% and an area
reduction of 2%.

The results of Table 2 are summarized in the plot of Fig-
ure 4, where we plot all Pareto points corresponding to the



Case No.
# Die Die area GTmuch Parquet Shelf+shift SA+IASA

yield area yield area CPU(s) yield area CPU(s) yield area CPU(s)

1 10 231 18 255 14 255 0.03 16 276 0.00 28 288 80
2 18 226 16 285 5 252 0.07 21 253 0.16 25 270 783
3 11 252 15 280 10 272 0.03 16 280 0.01 30 294 132
4 9 203 18 221 14 220 0.03 25 224 0.01 30 288 118
5 10 226 12 272 15 247 0.02 25 280 0.00 25 260 94
6 15 227 10 285 6 252 0.06 18 238 0.00 18 238 226
7 15 234 14 285 9 252 0.06 15 288 0.01 20 285 782
8 14 232 20 285 9 255 0.03 20 288 0.00 20 288 152
9 10 231 20 285 14 255 0.03 16 276 0.00 28 288 161

10 20 215 6 304 6 238 0.09 15 255 0.01 20 260 1020
Total 2277 149 2757 102 2518 187 2668 244 2757

Table 1. Results of [4]. Yield is the minimum percentage of die copies diced from the wafer under the
respective dicing plan.

Case
# Die Die γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 Matched Yield

area yield area CPU(s) yield area CPU(s) yield area CPU(s) yield area CPU(s) yield area CPU(s) yield area CPU(s)

1 10 231 100 494 0.02 50 312 0.03 30 288 0.02 25 270 0.07 20 264 0.01 30 288 0.02
2 18 226 100 396 25.23 50 286 227.02 30 275 344.09 28 260 4705.30 20 275 417.11 28 260 4705.30
3 11 252 100 456 0.04 50 312 0.04 30 300 0.03 30 290 0.15 20 288 0.01 30 290 0.15
4 9 203 100 500 0.01 50 300 0.03 30 264 0.01 25 252 0.14 20 256 0.02 30 264 0.01
5 10 226 100 560 0.03 50 336 0.05 30 285 0.09 25 260 0.33 20 280 0.04 25 260 0.03
6 15 227 100 494 8.61 50 306 10.22 30 275 6.46 25 276 93.55 30 275 6.41 30 275 6.41
7 15 234 100 416 0.41 50 297 4.03 30 280 4.00 25 270 49.78 30 280 1.46 25 270 49.78
8 14 232 100 416 0.41 50 297 2.58 30 280 3.66 25 270 48.58 20 273 1.55 25 270 48.58
9 10 231 100 494 0.02 50 312 0.03 30 288 0.02 25 270 0.07 20 264 0.01 30 288 0.02
10 20 215 100 360 36.74 50 270 290.32 30 240 306.33 25 270 6446.10 30 240 278.07 30 240 278.07

Total 2277 1000 4586 - 500 3028 - 300 2775 258 2688 230 2443 - 283 2705 -

Table 2. Results of the proposed technique. Yield is the minimum percentage of die copies diced
from the wafer under the respective dicing plan. γ is an upper bound on πi × λj for all rows i and
columns j as defined in the text.

(yield, area) tradeoff. The results establish a Pareto frontier,
allowing a graceful tradeoff between area and yield.

5 Discussions and Conclusions

In this paper we have presented a new algorithm for ret-
icle floorplanning in multi-project wafers. The challenging
aspect of reticle floorplanning is the need to optimize both
the packing area and the yield. Previous approaches lead
to suboptimal results and offer no guarantees with respect
to either area or yield. We propose a reticle floorplanning
algorithm that guarantees a prescribed level of yield, and
optimizes the floorplan area as an objective. Our empirical
validation shows that our approach delivers solutions along
a Pareto frontier that trades yield versus area. Moreover,
our solution quality dominates that achieved by previous ap-
proaches, i.e., we achieve packings of higher yields in less
area. For the 10 benchmarks studied in [4], we achieve a
yield improvement of 14% with an area reduction of 2%.

A number of extensions are possible for future work: (i)
satisfying different production volume requirements since
different dies may have different production volumes, and
(ii) respecting reticle aspect ratio restrictions.
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