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Abstract

Abstraction refinement is a key technique for applying model
checking to the verification of real-world digital systems. In pre-
vious work, the abstraction granularity is often limited at the
state variable level, which is too coarse for verifying industrial-
scale designs. In this paper, we propose a finer grain abstraction
in which intermediate variables are selectively inserted to parti-
tion large combinational logic cones into smaller pieces; these in-
termediate variables, together with the state variables, are then
treated as “atoms” in abstraction refinement. With this fine-grain
approach, refinement is conducted in two different directions, se-
quential and Boolean. We propose a SAT-based method for pre-
dicting the appropriate refinement direction, and apply greedy
minimization in both directions to keep the refinement set small.
We also explore the use of approximate reachable states of the re-
maining submodules to help verifying the abstract model. Experi-
mental studies show that the proposed techniques significantly im-
prove the performance of abstraction refinement, and therefore in-
crease the model checker’s ability to handle large designs.

1. Introduction

Model checking is a formal method for proving that a model
satisfies a given specification under all possible input conditions.
The model of a digital system must have a finite number of states;
the user-defined specification, or property, is often expressed in
temporal logics. The major challenge in applying model checking
to large systems remain the state explosion problem—the number
of states of the model is exponential in the number of its concur-
rent subcomponents. Because of this, state-of-the-art model check-
ers cannot directly handle most industrial-scale designs.

Abstraction is a key to bridge this capacity gap, especially for
verifying real-world properties that have a certain degree of lo-
cality. The idea is to use a simplified model to help verifying the
property in the original model. Simplification is often achieved
by pruning irrelevant details as much as possible. Abstraction re-
finement is an iterative process for the search of such a simplified
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model—one with which the given property can be either proven
or refuted. In this process, one starts with a very small abstract
model, in which the given property is checked. If the property
passes, it is guaranteed to pass also in the original model; in this
case, the model checking problem is solved. However, if the prop-
erty fails, the counter-examples generated in the abstract model
must be checked against the original model, to see if they contain
real paths. If real counter-examples exist, the property is refuted.
Otherwise, more details of the system are added to refine the cur-
rent abstract model, after which the property is checked again. This
process continues until either the property is decided, or the avail-
able computing resources (CPU time and memory) are exhausted.

For a given pair of model M and property ψ, there exists a
minimum size abstract model Mopt with which the property can
be decided. (When the property fails, the length of the shortest
counter-examples in Mopt must match the length of the shortest
counter-examples in M .) The smaller the size of Mopt, the higher
is the degree of locality of the given property. However, finding
the optimal abstraction is hard, and existing methods all use vari-
ous heuristics in the hope of coming close to such an optimal ab-
stract model. We define the abstraction efficiency in the following,
as a way of evaluating the performance of different abstraction re-
finement methods:

η(M,φ) = 1 − final abstract model size

concrete model size
.

Each verification problem has a maximum abstraction efficiency;
problems with higher ηopt are more suitable for abstraction refine-
ment. Furthermore, how close to this optimal value a certain ab-
straction refinement algorithm can get is a good indicator of how
good the algorithm is.

In many existing methods [4, 5, 10, 16, 8], the model size is
given in terms of the number state variables (or latches). This cor-
responds to a “coarse-grain” abstraction approach, in which each
state variable is treated as an atom—its entire fan-in combinational
logic cone is either included in or completely excluded from the
abstract model. However, not every one of its fan-in logic gates
might be necessary for the verification, even if the state variable it-
self is indeed necessary. Including these redundant gates may sig-
nificantly increase the complexity of the abstract model. This is
especially true for industrial-scale designs that have huge combi-
national logic cones—an abstract model with few state variables
may contain a large number of logic gates. As a result, the BDD-



based image and pre-image computations in the abstract model be-
come too expensive to perform.

In this paper, we propose a finer grain abstraction refine-
ment approach for the verification of safety properties. Intermedi-
ate variables are selectively inserted in large combinational logic
cones to partition them into smaller pieces. In the abstraction as
well as the successive refinement steps, these immediate vari-
ables, or Boolean network variables (BNVs), are treated as state
variables—both are considered atoms. By controlling the size of
the partition clusters, one can fine-tune the granularity of the ab-
straction. With the fine-grain abstraction, refinement can be con-
ducted in two different directions: the sequential direction, in
which more state variables are added to the current abstract model,
and the Boolean direction, in which more Boolean network vari-
ables are added. We show that the control of refinement directions
is important to achieve a better performance, and propose a SAT-
based method for predicting the appropriate direction. Greedy
minimization is also applied in both directions to remove the pos-
sible redundant variables from the refinement set.

We also explore the use of approximate reachable states of the
remaining submodules (those that are abstracted away) to help the
verification. In previous works, the remaining submodules were
discarded; to the best of our knowledge, we are the first to ana-
lyze these remaining submodules in abstraction refinement. Ap-
proximate reachable states are used to constrain the behavior of
the abstract model, by disabling certain valuations of its pseudo-
primary inputs. With this approach, abstraction refinement be-
comes a multi-way circuit partition refinement process, in which
all parts are considered during verification.

After surveying related work in Section 2 and establishing no-
tation in Section 3, we present our fine-grain abstraction approach
in Section 4. In Section 5, we explain the SAT-based method for
predicting the refinement direction, and the application of greedy
minimization in both directions; we also briefly review the algo-
rithm we have adopted in picking refinement variables. The use of
sequential don’t cares is illustrated in Section 6, followed by the
experimental results in Section 7. We conclude in Section 8.

2. Related work

Abstraction refinement was first introduced by Kurshan [9] in
verifying linear time properties. Since then, significant progress
has been made on the concretization test and the refinement algo-
rithms [4, 5, 2, 10, 16, 8]. However, in these methods, the abstrac-
tion granularity remains at the state variable level. In [17], Wang et
al. propose to use min-cut to further reduce the size of the abstract
model. They compute a minimum size cut-set of signals between
the free-cut signals and the combinational inputs, and then include
only logic gates above this cut in the reduced min-cut model. The
transition relation may become simpler when expressed in terms
of these min-cut signals; however, the abstraction granularity is
still at the state variable level. In particular, logic gates above the
free-cut are always included in the abstract model, even though
they sometimes may not be necessary for verification. A similar
approach was also proposed by Chauhan et al. in [2], where fur-
ther reduction of the abstract model is achieved by pre-quantifying
the pseudo-primary inputs dynamically.

In [7], Glusman et al. pointed out that restricting the abstrac-
tion granularity at the state variable level might be too coarse. They
compute a min-cut set of signals between the boundary of the cur-
rent abstract model and the combinational inputs, and include logic
gates above this cut in the refined model. Since an arbitrary sub-
set of the fan-in combinational logic gates of a state variable can be
added to the abstraction, the abstraction granularity is at the gate
level. However, there are some significant differences between our
approach and theirs: (1) we treat each elementary transition rela-
tion cluster as an abstraction atom and our goal is to reduce the
BDD size of the abstract transition relation, while they aimed at
reducing the number of cut-set variables (or pseudo primary in-
puts) in the refined model; (2) we use a SAT-based method for
predicting the appropriate refinement direction, while they did not
differentiate between the sequential and Boolean directions dur-
ing the refinement; (3) in their approach, logic gates cannot be re-
moved once they are added, while in our approach, they may be
removed from the abstract model if later they are proven to be ir-
relevant during the greedy minimization.

In [11], McMillan and Amla proposed an automatic abstraction
technique based on the unsatisfiability proof of bounded model
checking instances. When abstract models are constructed directly
from the UNSAT proof, the granularity can be at the gate level.
Its major difference from our approach is that, it is a SAT-based
method and is based on the construction of an UNSAT subfor-
mula, while ours is based on BDD computations. Furthermore, the
abstractions are not cumulative in their method, and are not min-
imized with respect to the spurious counter-examples to remove
the possibly redundant refinement variables.

The concept of abstraction efficiency was first mentioned in
[16] as a performance measurement of refinement algorithms. The
GRAB algorithm for picking refinement variables was also pro-
posed there; experimental studies showed that, guided by all short-
est counter-examples, GRAB is often superior to single counter-
example driven algorithms. In this paper, we also adopt the al-
gorithm for picking refinement variables of GRAB. However, the
main concern of this paper is the abstraction granularity (the gran-
ularity of [16] is at the state variable level). We will demonstrate
that, with the fine-grain abstraction and the use of sequential don’t
cares, our method significnatly outperforms GRAB. With the fine-
grain approach, abstraction efficiency can be defined in terms of
the number of transition relation clusters (e.g., latches and BNVs),
or even the number of logic gates.

3. Prelimaries

In symbolic model checking, both transition graphs and sets
of states are represented symbolically by Boolean functions. Let
x = {x1, ..., xm} be the present-state variables, y = {y1, ..., ym}
be the next-state variables, and w = {w1, ..., wn} be the pri-
mary inputs; the model is represented symbolically by M =
〈T (x, w, y), I(x)〉, where T (x, w, y) is the transition relation, and
I(x) is the set of initial states. The transition relation is the con-
junction of all the transition bit-relations, each of which is associ-
ated with a binary state variable. Let J = {1, ..., m}, then

T (x, w, y) =
∧
j∈J

Tj(x, w, yj) .



abstractionRefine(M, ψ) {
Ma = initAbstraction(M, ψ)
while (1) {

ACEs = computeAbstractCEx(Ma, ψ)
if (ACEs is empty)

return TRUE
CCE = computeConcreteCEx(M, Gp, ACEs)
if (CCE not empty)

return (FALSE, CCE)
Ma = refineAbstraction(M, Ma, ACEs)

}
}

Figure 1. Generic abstraction refinement.

Here, Tj(x, w, yj) = yj ↔ ∆j(x, w) is the bit-relation of the
jth binary state variable, and ∆j(x, w) is the transition function
in terms of the present-state variables and inputs.

In conventional, or coarse-grain, abstraction methods, the tran-
sition bit-relations of state variables are treated as atoms—a bit-
relation is either included in or completely excluded from the ab-
stract model, depending on whether the corresponding state vari-
able is included or not. Let the abstract model contain a subset of
state variables Ĵ = {1, ..., k} ⊆ J , and let x̂ ⊆ x and ŷ ⊆ y be
the subsets of present- and next-state variables, respectively. The
coarse-grain abstract model is represented by Ma = 〈T̂ , Î〉. The
abstract transition relation is defined as follows:

T̂ (x, w, ŷ) =
∧
j∈Ĵ

Tj({x̂, x̆}, w, yj) ,

where x̂ is the set of visible state variables, and x̆ = x \ x̂ is
the set of the invisible state variables. The transition bit-relations
of invisible variables are replaced with tautologies; therefore, in-
visible variables are considered as inputs in the abstraction model
(or pseudo-primary inputs). The abstract initial states Î(x̂) are the
projection of I(x)—an abstract state is initial if and only if there
is a concrete one inside it.

Since more transitions are allowed by T̂ , an abstract model is
an over-approximation of the concrete model; this naturally im-
plies the simulation relation M � Ma. Passing universal proper-
ties, such as the invariant property Gp, are preserved: If Ma |= ψ,
it is also true that M |= ψ; however, if Ma �|= ψ, the property may
not hold in M—that is, there may be false negatives.

The generic abstraction refinement framework for checking
universal properties with over-approximated abstractions is given
in Fig. 1. It starts with a primitive abstract model, which contains
only the variables mentioned in the given property. The property
is then checked in the abstract model, with the model checker. If
Ma |= ψ, the property has been proven for the concrete model
as well. Otherwise, a non-empty set of abstract counter-examples
(ACEs) are generated. These counter-examples are then checked
against the concrete model, to see if they contain real paths. If
a concrete counter-example (CCE) exists, the property is refuted.
Otherwise, some invisible variables and their corresponding tran-
sition bit-relations are added to refine Ma.

Counter-examples to the property Gp (i.e., the propositional
formula p is always true) are paths from initial states to the states

labeled ¬p. All the counter-examples of the shortest length can
be captured by a data structure called the Synchronous Onion
Rings (SORs): With breadth-first search starting from the initial
states, the sets of new states encountered in the BFS steps form
the forward reachable onion rings. As soon as some ¬p states are
reached, the backward breadth-first search from these “bad states”
gives the backward reachable onion rings. The pair-wise intersec-
tion of the forward and backward onion rings forms the SORs. Let
{S0, S1, ..., SL} be the SORs, and s0s1...sL be an arbitrary short-
est counter-example; then, si ∈ Si, S0 ⊆ I , and SL ⊆ ¬p .

A Boolean satisfiability (SAT) solver can be used to check
whether the ACEs are real or not (i.e., if they pass the concretiza-
tion test). The SAT problem is formulated as Ψ = ΨM ∧ ΨS , de-
fined as follows:

ΨM = I(X0) ∧ ∧
0≤l<L

T (Xl, W l, Xl+1)

ΨS =
∧

0≤l≤L
Sl(Xl) ,

where ΨM represents the unrolling of the concrete model for L
time frames, ΨS represents the constraints coming from the ab-
stract SORs, Xl and W l are the state and input variables at the
lth time frame, and Sl(Xl) is the CNF encoding the lth ring. Real
counter-examples of length L exist if and only if the Boolean for-
mula Ψ is satisfiable, in which case the satisfiable assignments in-
duce a concrete counter-example.

The selection of refinement variables can be guided by the anal-
ysis of spurious counter-examples. The algorithm adopted in this
paper for picking good refinement variables is the GRAB algo-
rithm of [16]. We will briefly explain it in Section 5.2. However,
our refinement must be conducted in both the sequential and the
Boolean directions. Before delving into the details of refinement,
we present our fine-grain abstraction approach in Section 4.

4. Fine-grain abstraction

Our fine-grain abstraction considers not only the state vari-
ables, but also the Boolean network variables. Boolean network
variables are the intermediate variables selectively inserted in the
combinational logic cones of latches; they are used to partition
large combinational logic cones so that a compact BDD represen-
tation of their transition relations can be achieved. Once inserted,
each Boolean network variable is associated with a small area of
the combinational circuit; similarly to the state variables, there is
an elementary transition relation for each Boolean network vari-
able. The transition relation of the entire system is the conjunction
of all these elementary transition relations. The following exam-
ple shows how fine-grain abstraction works.

In Fig. 2, there are 10 gates in the fan-in combinational logic
cones of the two latches; y1 and y2 are the next-state variables,
and x1, ..., x5 are the present-state variables, among which, x1, x2

correspond to y1, y2. Let ∆y1 be the output function of Gate 9
in terms of the present-state variables and inputs only; similarly,
let ∆y2 be the output function of Gate 10. ∆y1 and ∆y2 are also
called the transition functions of Latch 1 and Latch 2, respectively.
According to the definition in the previous section, the transition
bit-relation of Latch 1 is defined as follows:

T1 = y1 ↔ ∆y1(x1, x2, x3, x4) .
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Figure 2. Example of fine-grain abstraction.

Boolean network variables can be inserted in the fan-in combi-
national cones to partition them into smaller pieces. To illustrate
this, we insert 4 intermediate variables, t1, t2, t3, and t4, into this
piece of circuit. We use δv to represent the output function of the
signal v, but in terms of both present-state variables and Boolean
network variables. These new functions and their corresponding
finer grain elementary transition relations are defined as follows:

δt1 = x1 ⊕ x2 Tt1 = t1 ↔ δt1

δt2 = ¬(x2 ∧ x3) ⊕ t1 Tt2 = t2 ↔ δt2

δt3 = ¬(x3 ∨ x5) ∧ x4 Tt3 = t3 ↔ δt3

δt4 = x2 ⊕ t3 Tt4 = t4 ↔ δt4

δy1 = ¬(x1 ∧ t2) ∨ ¬(x4 ∧ t1) Ty1 = y1 ↔ δy1

δy2 = ¬(x4 ∧ t1) ∧ t4 Ty2 = y2 ↔ δy2

Note that y1 is now associated with the elementary transition re-
lation δy1 only. The transition bit-relation of Latch 1 is a conjunc-
tion of three elementary transition relation clusters

T1 = Ty1 ∧ Tt1 ∧ Tt2 .

In coarse-grain abstraction methods where only state variables
are treated as atoms, when Latch 1 is included in the abstract
model, all the six fan-in gates (Gates 1, 2, 4, 5, 7, and 9) are also
included; that is, T̂ = Ty1 ∧ Tt1 ∧ Tt2 . However, not all these
gates might be necessary for the verification of the given prop-
erty, even if Latch 1 is indeed necessary. In our fine-grain abstrac-
tion, Boolean network variables, as well as the latches, are treated
as atoms. When Latch 1 is in the abstraction, only those gates cov-
ered by the elementary transition relation cluster Ty1 are included;
this is indicated in the figure by the cut φ1, which contains Gates 5,
7, and 9. In successive refinements, only the clusters that are rel-
evant to the verification are added. In the next section, we present
an algorithm that can identify which clusters should be included.
Meanwhile, let us assume that the current abstract model contains
only Latch 1 (e.g., includes Gates 5, 7, and 9), and the property
fails in the abstract model. At this point, we may add the Boolean
network variable t1 as indicated by the new cut φ2 in the figure;
this means T̂ = Ty1 ∧ Tt1 . Note that this time the abstract model
contains Latch 1 and Gates 2, 5, 7, and 9. Continuing this pro-
cess, we may keep adding y2, t4, . . . until we get a proof or refu-
tation.

It is possible in our fine-grain approach that gates covered by
the transition cluster Tt2 (i.e., Gates 1 and 4) never appear in the
abstract model—if they are indeed irrelevant to the verification of
the given property. This demonstrates the advantage of fine-grain

abstraction. In a couple of real-world circuits, we have observed
that over 90% of the gates in some large fan-in cones are indeed re-
dundant, even though the corresponding latches are necessary for
verification of the given property.

The granularity of abstraction depends on the size of the transi-
tion relation clusters, as well as the algorithm used to perform the
partition. In our current implementation, the frontier [14] method
is used to selectively insert the Boolean network variables. The
procedure works as follows: First, the elementary transition func-
tion of each gate is computed from the combinational inputs to
the combinational outputs, in some topological order. If the BDD
size of an elementary transition function exceeds a given thresh-
old, a Boolean network variable is inserted to associate with that
gate. For all the gates in the fan-outs of that gate, their elementary
transition functions are computed in terms of the new Boolean net-
work variable.

When the partition threshold is set to 1, a Boolean network
variable will be inserted for every logic gate; in this extreme case,
the optimal abstraction, among all the possible final proofs, is the
one that contains the smallest number of gates. In other words, ab-
straction refinement becomes a process of synthesizing such an
optimal abstract model.

5. Smart refinement

Refinement is to select a small set of invisible variables and
then add their elementary transition relations back to T̂ . To achieve
higher abstraction efficiency, we want to add a small subset of in-
visible variables such that after refinement, the chance of removing
the spurious ACEs is maximized. This boils down to three ques-
tions: (1) what type of variables to add? (2) how to identify the
important variables? and (3) how to remove the possible redun-
dant variables from the refinement set? For picking the important
variables, we use the GRAB algorithm in [16], and will explain
it briefly in Section 5.2. The other two questions, however, are
unique to our fine-grain abstraction approach.

5.1. Refinement directions

With the fine-grain abstraction, refinement can be conducted in
two different directions. In the sequential direction, more invisi-
ble state variables can be added; in the Boolean direction, more
Boolean network variables (e.g. logic gates) can be added. Adding
Boolean network variables may remove the transitions allowed by
the current abstract model; adding state variables, however, will
also increase the state space.

According to our experience, if no distinction is made between
these two types of variables, the refinement result can be quite
sub-optimal—many redundant state variables may be added dur-
ing the refinement process. This suggests that we need a method
to predict which refinement direction to go at a certain time. A sat-
isfiability check similar to the concretization test can be used to
get the refinement direction. The idea is that, if adding the entire
fan-in cones of the current visible state variables cannot remove
the spurious ACEs, more invisible state variables are needed—we
should refine in the sequential direction; otherwise, we refine in
the Boolean direction.
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Given a fine-grain abstract model, its extended abstract model
is defined as the one with the same set of visible state variables,
but containing all the gates in their fan-in cones. Refer to Fig. 2 as
an example: when the current abstract model contains Latch 1 and
Gates 5, 7, and 9, the extended abstract model contains Latch 1,
and Gates 1, 2, 4, 5, 7, and 9. Let T̂ε be the transition relation of
the extended abstract model, the SAT formula for predicting the
refinement direction is defined as Ψ′ = Ψ′

M ∧ ΨS , where

Ψ′
M = I0(X

0) ∧
∧

0≤i<L

T̂ε(X
i, W i, Xi+1)

is the unrolling of the extended abstract model for exactly L time
frames, and ΨS is the constraint from the SORs. If Ψ′ is unsat-
isfiable, we choose to refine in the Boolean direction. Otherwise,
even adding all the logic gates in the Boolean direction cannot kill
all the spurious counter-examples; therefore, we need to refine in
the sequential direction by adding more state variables.

5.2. Refinement variable selection

For picking good refinement variables, we use the GRAB al-
gorithm in [16], which is explained with the example in Fig. 3 as
follows. Let f and g be the invisible variables appearing in one
segment of the spurious abstract SORs; according to the figure:
(1) Before refinement, every state in Si has successors in the next
ring—this is because invisible variables are treated as inputs and
are existentially quantified during symbolic traversal. Therefore,
we can always reach the next ring from every state in Si. (2) Af-
ter f is added to the abstract model, only three out of the four
new states have successors in the next ring—State [2,¬f ] now be-
comes a dead-end state. Note that f becomes a state variable af-
ter refinement. (3) After g is added instead of f , only two out of
the four new states have successors in the next ring—both [1,¬g]
and [2, g] become dead-end states.

From the above analysis, we draw the following conclusions:
(1) g is a better candidate for refinement; and (2) even if we re-
fine both f and g, the spurious counter examples may still exist—
{f, g} is not a sufficient refinement set, and we need to add more
invisible variables. The quantitive measurement of the chance of

reaching the next level after refining f is computed as follows(cf.
[16]):

N{f} = |Sj (̂x)∧∃(x̌,w).∀f.∃ŷ.[T̂ (x̌,̂x,w,̂y)∧Sj+1(ŷ)]|
|Sj (̂x)|

,

where |.| is the cardinality of a set. For more detailed explanation,
the readers are referred to the original paper.

5.3. Refinement minimization

Once the entire spurious SORs are gone, all the newly added
variables forms a sufficient refinement set—that is, they are suf-
ficient for removing all the current length spurious ACEs. This
refinement set, however, may not be minimal. SAT-based greedy
minimization with respective to the entire SORs can be used to re-
move the possible redundant variables [17, 2]. The greedy mini-
mization is based on trial-and-error: for each variable in the new
refinement variable list, if dropping it does not make the spuri-
ous counter examples come back, we know it is redundant; other-
wise, it is necessary. In our approach, however, the minimization
must be applied in both refinement directions.

For the ACEs with a certain length, we choose to refine first in
the sequential direction. As soon as a sufficient set of latches are
added, we minimize it with respect to the entire bundle of ACEs,
before shifting to the Boolean direction. Every time a latch is re-
moved, all the Boolean network variables that are used only by
this latch are also pruned away. Note that although we have added
a sufficient set of latches, the ACEs may not be killed entirely at
this point. After shifting to the Boolean direction, we keep adding
Boolean network variables only until the entire SORs is removed;
at this point, we greedily minimize the set of newly added Boolean
network variables.

6. Sequential don’t cares

Previous work in abstraction refinement divided the original
system into two parts: a set of visible variables and a set of
invisible variables. Model checking was applied to the abstract
model that contains only the elementary transition relations of
visible variables. The elementary transition relations of invisible
variables, on the other hand, were completely ignored. Because
the transition constraints are removed, the invisible variables are
treated as pseudo-primary inputs in model checking—they can
take arbitrary values at all times. These pseudo-primary inputs are
the reason why the abstract counter-examples may be spurious:
The valuations of these variables that are responsible for trigger-
ing these counter-examples may not be allowed in the concrete
system. In this section, we show that with additional analysis of
the invisible part of the system, we can further constrain the invis-
ible variables.

As illustrated in Fig. 4, we decompose the invisible part of the
system into a series of submodules, each of which contains a sub-
set of the invisible latches. The decomposition is based on the ma-
chine decomposition algorithm originally proposed by Cho et al.
[3] in the context of reachability analysis and improved in [12].
Approximate reachable states of the invisible part can be computed
by analyzing each submodule in turn, assuming that the other sub-
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Figure 4. DCs from remaining submodules.

modules are in any states that have already been estimated to be
reachable. The process is iterated until a least fixpoint is reached.

The set of approximate reachable states of the invisible part is
an upper bound on the set of exact reachable states. It can be used
to constrain the behaviors of the invisible variables, or pseudo-
primary inputs, of the abstract model. If certain valuations of the
invisible variables are not even in the set of approximate reachable
states, they can never appear in the original system. During the
reachability analysis of the abstract model, these pseudo-primary
input conditions can be disabled.

In our current implementation, the machine decomposition is
applied on the entire system, followed by the LMBM traversal of
the submachines [12]. The approximate reachable states are com-
puted only once at the beginning; they are then used in abstraction
refinement to constrain the forward reachability analysis of the ab-
stract models at different abstraction levels. Specifically, the BDD
operation constrain [6] is used to remove spurious transitions from
T̂ using the approximate reachable states as the care set. Con-
straints on the behavior of the abstract model due to the neighbor-
ing submachines prevent some spurious abstract counter-examples
from occurring, possibly leading to the decision of a property ear-
lier in the refinement cycle.

A more systematic integration of machine decomposition and
approximate reachability into the abstraction refinement paradigm
is possible. The result is a multi-way partition refinement process.
Partitioning of the model into submachines can be done so that
the abstract model is one of the many submachines. Refinement is
considered as merging the abstract model with some other subma-
chines. We leave this for the future work.

7. Experiments

We have implemented our new methods in VIS-2.0 [1, 15],
and compared it with the GRAB algorithm in [16]. Our implemen-
tation uses the CUDD package for the BDD-based computation,
and Chaff [13] for the SAT-based computation. The comparison is
based on the same set of test cases used in [16], which are real-
world hardware designs with invariant properties, kindly provided
by the authors of [2]. In our implementation, the frontier partition
threshold was set to 1000: every time the BDD size of the transi-
tion function went beyond this threshold, a Boolean network vari-
able was inserted. The latch group size for computing the approx-
imate reachable states with LMBM was set to 8. Dynamic vari-

Test Cases GRAB [16] FINEGRAIN +ARDC
name regs gates T/F CPU regs CPU reg CPU regs

D24-p1 147 8 k 9 1 4 1 4 1 4
D24-p2 147 8 k T 3 8 3 8 3 8
D24-p3 147 2 k T 20 8 4 6 2 5
D24-p4 147 8 k T 43 8 4 6 2 5
D24-p5 147 8 k T 3 5 4 6 2 5
D12-p1 48 2 k 16 14 23 24 23 19 24
D23-p1 85 3 k 5 20 21 3 21 14 21
D5-p1 319 25 k 31 31 18 42 13 32 13
D1-p1 101 5 k 9 9 21 12 20 14 20
D1-p2 101 5 k 13 51 23 27 23 29 23
D1-p3 101 5 k 15 56 25 32 23 33 23
D16-p1 531 34 k 8 92 14 25 14 21 14
D2-p1 94 18 k 14 180 48 108 49 59 48
M0-p1 221 29 k T 136 16 204 13 942 13
rcu-p1 2453 38 k T 195 10 188 10 216 10
B-p0 124 2 k T 1256 24 1507 24 1484 24
B-p1 124 2 k T 173 18 189 19 159 18
B-p2 124 2 k 17 93 7 95 7 90 7
B-p3 124 2 k T 223 43 76 43 62 43
B-p4 124 2 k T 393 42 101 43 108 42
D22-p1 140 7 k 10 720 132 242 132 191 132
D4-p2 230 8 k T 1103 38 204 38 195 38
D21-p1 92 14 k 26 2817 66 2725 70 622 67
D21-p2 92 14 k 28 4635 70 1748 75 868 67
IU-p1 4494 154 k T >8 h - 2226 12 2263 12
IU-p2 4494 154 k T >8 h - 930 14 699 12

Table 1. Comparison of the three algorithms.

able reordering was enabled with method sift for all BDD opera-
tions. The experiments were done on 1.7 GHz Intel Pentium 4 ma-
chines with 2 GB of RAM. We set a time limit of 8 CPU hours.
The experimental results are shown in Table 1.

The first four columns of Table 1 give the statistics of the test
cases: the first column shows the names of the designs; the sec-
ond and third columns shows the numbers of registers and gates
in the cone of influence, respectively. The forth column indicates
whether the properties are true (T) or false (F). When the prop-
erties are false, the lengths of the shortest counter-examples are
given. The following six columns compare the performance of
three different methods: GRAB is the algorithm in [16], FINE-
GRAIN is our fine-grain abstraction method, and +ARDC is our
fine-grain abstraction method augmented with the use of sequen-
tial don’t cares. For each method, the CPU time in seconds and
the number of registers in the final abstract model are shown. Note
that, for the purpose of controlled experiments, the underlying al-
gorithm for picking refinement variables is the same for the three
methods.

Our fine-grain abstraction approach shows a significant perfor-
mance improvement over GRAB. First, it finishes the two largest
test cases that cannot be verified by GRAB. Careful analysis of
IU-p1 and IU-p2, two problems from the instruction unit of the Pi-
coJava microprocessor, shows that some of their registers have ex-
tremely large fan-in combinational logic cones. Without the fine-
grain abstraction, abstract models with less than 10 registers will
be too complex to be dealt with by the model checker. Further-
more, for the test cases that both methods managed to finish, FINE-
GRAIN is significantly faster than GRAB. In fact, the total CPU
time to finish these remaining 24 test cases is 12,207 seconds for
GRAB, and 7,562 seconds for FINEGRAIN.



With the use of sequential don’t cares (DCs), the performance
of our method is further improved. For more than half of the 26
test cases, +ARDC is significantly faster than both FINEGRAIN

and GRAB; for the remaining ones, the performance is compara-
ble. The total CPU time to finish all the 26 test cases is 10,724 sec-
onds for FINEGRAIN, and 8,130 seconds for +ARDC; this is an
average of 25% speed-up.

8. Conclusion

We have introduced a finer grain abstraction refinement ap-
proach for model checking industrial-scale digital systems.
Boolean network variables are selectively inserted to par-
tition large combinational logic cones into smaller pieces.
These Boolean network variables, together with the state vari-
ables, are treated as atoms for abstraction refinement. With this
fine-grain approach, refinement can be conducted in two dif-
ferent directions, sequential and Boolean. We have proposed
a SAT-based method for computing the appropriate direc-
tion, and have applied greedy minimization in both direc-
tions to keep the refinement set small. Experimental results
have shown that our fine-grain abstraction and smart refine-
ment is a must for dealing with large designs. In particular, the
two large test cases can only be verified with fine-grain abstrac-
tion enabled.

We have also explored the use of approximate reachable states
of the remaining submodules to help verifying the abstract model.
This, in general, corresponds to multi-way machine decomposi-
tion. According to our experimental studies, the use of DCs has
improved the performance of abstraction refinement significantly.

Future work includes exploring the many different methods for
inserting Boolean network variables into the combinational logic
cones, which is currently limited to the frontier method. Machine
decomposition and approximate reachability analysis of the re-
maining submodules can also be integrated more tightly into the
abstraction refinement process. In particular, the reachable states
of the abstract model can be fed back to the remaining submod-
ules to improve the quality of the ARDCs. With this approach,
abstraction refinement becomes a special case of the machine de-
composition and approximate state space traversal.
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