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Abstract 
A negative effect of ever-shrinking supply and 

threshold voltages is the larger percentage of total power 
consumption that comes from leakage current. Several 
techniques have been developed to help reduce leakage in 
SRAM-based memory, in which the percent leakage 
power is especially acute. SRAM-based field 
programmable gate arrays (FPGAs) pose similar leakage 
problems, but their structure and function require 
different solutions. This paper introduces a low 
complexity post-processing approach to reducing FPGA 
leakage current by ground-gating off SRAM cells that are 
unused in a particular device configuration. The 
approach is general enough to apply to any device 
configuration, and results reveal that significant leakage 
current reduction can be achieved with no delay penalty 
and acceptable area overhead. 

1. Introduction 

As CMOS VLSI technology continues to scale, with 
ever-decreasing minimum feature sizes and increasing 
logic and memory densities, dynamic power consumption 
magnitude and density pose significant problems. 
Designers have historically addressed this issue by 
reducing the supply voltage. This in turn has led to a 
reduction in threshold voltages to maintain performance. 
However, due to the exponential dependence of 
subthreshold leakage current on threshold voltage, static 
power consumption has exploded and become a key area 
of concern and investigation. In fact, we are nearing a 
break-even point where it is no longer possible to reduce 
overall power consumption by scaling supply and 
threshold voltages due to the resulting increase in leakage 
current. 

According to [7], leakage power will surpass active 
power and represent over 50% of total power in 
microprocessors at the 70nm technology node. To meet 
the ITRS roadmap restriction of static power comprising 
less than 10% of maximum power dissipation, the 
reduction in static power needed by circuit and 

architecture innovations reaches 98% by the end of the 
roadmap [14]. 

In order to keep power consumption in check, while 
still reaping the benefits of technology scaling, techniques 
for reducing static power consumption have recently been 
investigated. Most efforts have focused primarily on 
circuit-level techniques. In recent years, investigative 
work has begun to focus on static-power-hungry 
architecture-level structures such as SRAM-based cache 
memories. Because they are composed of a large number 
of leaky SRAM cells, these cache memories represent a 
prime target for static power reduction techniques. 

SRAM-based FPGAs represent another opportunity 
for the development of leakage control techniques. Due to 
their reliance on SRAM cells for programmable logic and 
routing, FPGAs will require leakage control techniques to 
continue to benefit from technology scaling. With the 
increasing proliferation of FPGAs and the effort to utilize 
them in embedded low-power environments, the control 
of static power must be addressed in these devices. 

In this paper, we present a methodology for leakage 
current reduction in SRAM-based FPGAs. For any given 
design mapped to an FPGA, a significant number of 
SRAM cells are unused, and leakage reduction techniques 
can be used to place these cells in a low leakage state. In 
this work, circuit gating (specifically ground-gating [1]) 
is used to turn off unused resources. The techniques 
presented are exclusively post-processing and do not 
restrict the CAD tool flow or require designer 
intervention. There is no effect on circuit performance, 
with the only penalty being the additional area required to 
implement ground-gating. Using a combined bottom-up 
circuit-level and top-down architecture-level approach, 
we have identified appropriate granularities for turning 
off SRAM cells in both FPGA logic and routing 
resources. Prior work has only identified the importance 
of the FPGA leakage problem [8,15]. To our knowledge, 
this paper represents the first effort to address the 
problem. While the post-processing techniques we 
present are straightforward, they provide significant 
leakage current reduction with minimal overhead. 



  

In the next section, we present related work on FPGA 
leakage analysis and circuit-level techniques for leakage 
reduction. Section 3 introduces our general post-
processing approach to leakage current reduction in 
FPGAs. Section 4 presents results for a theoretical 70nm 
FPGA employing our leakage reduction methodology. 
Section 5 gives our conclusions and direction of future 
work. 

2. Background and related work 

Two key areas of background and related work that 
we leverage concern leakage current analysis in FPGAs 
and circuit-level techniques to reduce leakage current. 

2.1. Leakage current analysis in FPGAs 

FPGAs have generally followed suit with the rest of 
the VLSI community and progressively scaled supply and 
threshold voltages with each technology generation to 
keep power consumption in check while maintaining 
performance. The resulting increase in leakage current is 
forcing designers to address this issue. Only recently have 
power evaluation tools and techniques for FPGAs, which 
give thorough consideration to the issue of leakage 
power, been developed. 

[10] modified the VPR tool [2] to determine dynamic 
and static power consumption in a circuit placed-and-
routed to a user-specified FPGA architecture. The model 
assumes that the gate-source voltages of inactive 
transistors are half of their threshold voltages and uses a 
formula to calculate leakage. 

The work of [8] counters that this assumption is not 
usually valid. Their resulting method, fpgaEva-LP, 
models static leakage power using SPICE simulation of 
individual FPGA components with equal-probability 
input vectors. An important conclusion drawn by the 
authors is that up to 59% of the total power is attributed 
to leakage power. 

In [15], leakage analysis is performed on a 90nm 
FPGA architecture. This work focuses on logic blocks as 
well as their access points to general-purpose routing. An 
analysis of the contribution of unused components to 
overall leakage power is also given. At 100% logic block 
utilization, unused resource leakage still accounts for 
35% of total leakage. It is these unused resources that are 
the focus of the work presented here. 

2.2. Circuit-level leakage current reduction 

Both static and dynamic leakage reduction techniques 
in CMOS circuits have been studied. Static techniques 
utilize a multiple-threshold voltage (MTCMOS) 
fabrication process to selectively place faster low Vt 
transistors on the critical path, while employing less leaky 

high Vt transistors off the critical path. Such an approach 
is appropriate for ASICs, in which the function of the 
circuit is constant, but FPGAs require post-fabrication 
flexibility. Therefore, dynamic techniques are necessary. 
One such technique is the pre-characterization of a 
circuit's inputs in terms of minimal leakage power [16]. 
When the circuit is placed in standby mode, the input 
pattern with the lowest leakage can be applied. 

A second post-fabrication leakage reduction 
technique is circuit gating. Circuit gating is the method of 
cutting off a circuit's path to Vdd or ground by insertion of 
‘sleep’ transistors controlled by configuration signals or 
bits. When the sleep transistor is on, the circuit is in 
active mode. When it is off, the circuit is in a low-leakage 
mode. The gating approach may be single- or multiple-
threshold-based. A higher Vt sleep transistor using 
MTCMOS provides increased leakage reduction, but the 
fabrication process is more expensive than single 
threshold [1]. In addition, single-Vt sleep transistors 
enable SRAM cells to maintain state [11]. In this paper, 
we explore both regular and high Vt transistors for 
ground-gating. 

Ground-gating using NMOS sleep transistors has 
been successfully applied to SRAM-based cache 
memories. In [1], a single NMOS sleep transistor is 
inserted between the SRAM cells of each cache line and 
the ground plane. The technique utilizes the stacking 
effect of having two NMOS transistors connected in 
series [6]. The row decoder of the cache controls the sleep 
transistors, resulting in all lines being in sleep mode 
except when being accessed. Results show that compared 
to a conventional cache, their DRG-Cache leaks 32% less 
energy while the relative read time is only 2.8% slower. 

Circuit gating has been employed in the FPGA 
domain as a proof of concept of an MTCMOS design 
methodology. [4] uses high-Vt local sleep transistors in 
FPGA logic blocks. These transistors give the capability 
to place individual regions of the logic block in sleep 
mode, including a group of four 4-input lookup tables 
(LUTs), a 4-bit adder, a 4-bit register, and the remaining 
control circuits. While this approach to ground-gating in 
an FPGA is similar to what we detail in this paper, the 
sleep transistor granularities considered in [4] were 
significantly more coarse, and only logic block leakage 
was considered. We explore a variety of granularities and 
show that the majority of SRAM cell leakage current 
savings can be derived from unused routing resources. 

3. Methodology 

A primary contribution of this paper is the derivation 
of appropriate granularities for turning off SRAM cells in 
FPGA logic and interconnect that are unused in a given 
configuration. While the ability to gate each SRAM cell 



  

individually would ensure the maximum number of off 
cells regardless of the configuration, the overhead (in 
terms of not only area but also the additional leakage 
current introduced by the SRAM cells controlling the 
sleep transistors) would be unacceptable. 

We therefore use a combined bottom-up/top-down 
approach for determining appropriate granularities. The 
bottom-up aspect considers circuit-level issues that affect 
the area and leakage overhead introduced at various 
granularities. The top-down portion explores architecture-
level issues by considering cell groups left unused by real 
designs that are mapped onto the device. While bottom-
up issues call for a coarse granularity (to minimize 
overhead), top-down pushes for a finer one (to maximize 
number of off cells). Finding the appropriate balance is 
the focus of this section. 

3.1. Bottom-up analysis 

In determining the appropriate granularity for sleep 
transistor insertion, several issues must be considered. It 
is necessary to determine the ability of a single sleep 
transistor to reduce leakage current for multiple SRAM 
cells and whether there is an effective limit to the number 
of cells that can be gated by a single transistor. The 
existence of a limit would dictate what granularities were 
feasible. The sizing ratio of the sleep transistor and 
whether regular or high Vt transistors should be used 
must also be explored. Finally, any potential delay 
introduced by the sleep transistor need be considered. 

To answer these questions, we performed SPICE-
level simulations of different sleep-transistor 
configurations applied to basic blocks of SRAM 
equivalent to those used in various FPGA resources. 
Berkeley BSIM device models from the Berkeley 
Predictive Technology Model (BPTM) 70nm process 
technology model [3,5] at Vdd=1.2V were used in these 
simulations, following the conservative approach 
discussed in [14]. 

SRAM leakage 

Figure 1 gives the results for leakage reduction using 
regular Vt (Vt0 (NMOS) = 0.1902 V, Vt0 (PMOS) = -0.213 V) 
sleep transistors. We can see the general trend of 
decreased leakage reduction as the sleep transistor is sized 
up. We can also see that leakage savings continues to 
improve as the sleep transistor is shared amongst more 
SRAM cells. This is true up to the grouping of 64 cells, 
which is the upper limit appropriate for consideration 
given a target architecture of four 4-input LUTs. 

Figure 2 shows the results of the same simulations 
performed using high Vt (Vt0 (NMOS) = 0.2402 V, Vt0 (PMOS) 
= -0.263 V) sleep transistors. It is clear that the high Vt 
results offer improved leakage savings across transistor 

widths and SRAM cell grouping sizes. This information 
can be used to make a design cost tradeoff. If the 
additional leakage savings is worth any additional process 
cost and the system does not require state-preserving 
gated cells, the high Vt approach is the obvious choice. 
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Figure 1. SRAM leakage reduction – regular Vt 

sleep transistors 
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Figure 2. SRAM leakage reduction – high Vt 

sleep transistors 

Sleep transistor delay 

Potential circuit-level impact on delay of applying 
gated-ground to the SRAM cells used in FPGA logic and 
routing is an important consideration. When sleep 
transistors have been used to reduce leakage in caches, 
simulations revealed a delay penalty due to degraded 
bitline and sense amplifier delay [1]. 

However, circuit gating FPGA SRAM does not incur 
the same delay penalties as in caches due to the fact that 
reads from SRAM cells in FPGAs occur differently than 
in a cache, and the cells are not written to after 
configuration. FPGA resources using SRAM do not use 
bitlines and sense amplifiers to read the value of the cells. 
In an FPGA, only one of the two nodes is used to read the 
state of the cell. A connection is made directly from this 
node to the circuit it is used to control. SRAM cells thus 
continuously present their values (which remain constant 



  

for a given FPGA configuration) directly to the circuitry 
they are used to control and therefore do not encounter 
the same delay issues as in a cache. 

However, to verify that there is no delay penalty 
when gating SRAM-based resources in FPGAs we must 
consider the ability of gated SRAM cells in the active 
mode to provide sufficient drive strength to the FPGA 
circuits they are used to control. FPGA logic was 
evaluated by simulating LUTs and configurable logic 
blocks (CLBs) with various load capacitances at the 
outputs. These simulations showed no measurable 
increase in delay over non-gated circuits when sleep 
transistors are used to gate LUTs or CLBs. FPGA 
interconnect was also evaluated by examining the signal 
quality from the gated SRAM cells in active mode, as 
signal degradation on the gate input could cause a switch 
to misbehave or behave sub-optimally by not driving the 
transistor into saturation or cut-off. Simulations 
performed on active routing switches revealed no 
degradation in the quality of a logical one or zero signal 
observed. Finally, the effect of gating on inactive cells 
was also evaluated. Inactive ground-gated SRAM cells 
exhibited a node zero voltage rise, potentially causing 
switches gated by these cells to partially turn on, which 
could lead to unnecessary loading on interconnect 
segments. It is therefore necessary to restrict the cells that 
can be gated off to those where an active signal is not 
present anywhere on the affected segments. Future work 
will explore alternate gating techniques (e.g. Vdd gating) 
to address this issue. 

3.2. Top-down analysis 

Unused resources in FPGAs represent a particularly 
wasteful source of static power consumption. Given that 
FPGA family size increments are typically quite large and 
that the logic/interconnect ratio is set, there tends to be a 
significant number of unused logic and routing resources, 
regardless of the design configured onto the device. In the 
architectural analysis, we explore how many of the 
unused logic and routing resources can be gated off with 
various granularities of gating control. 

Area overhead is calculated in terms of the 
equivalent number of minimum sized transistor areas 
introduced by the sleep transistors and the controlling 
SRAM cells at each granularity. This approach is process 
independent, and therefore the area overhead for each 
technique should stay relatively constant [12]. 

All of the techniques considered here are post-
processing, in that they involve the evaluation of already 
placed-and-routed designs. There is therefore no impact 
on the design process and the resulting quality of 
implementation. While putting restrictions on the 
synthesis, mapping, and place-and-route tools may 

increase the percentage of SRAM cells that can be turned 
off with coarser sleep transistor granularities, this must be 
traded off against additional delay and area overhead. 
This tradeoff will be explored as part of future work. 

Architecture model 

The architecture we chose is modeled after the 
island-style SRAM-based Xilinx Spartan IIe [13]. While 
we model the Spartan IIe as closely as possible, the 
approach presented here is general for any SRAM-based 
island-style FPGA. Such FPGAs are composed of CLBs 
in a sea of programmable routing. CLBs in turn are 
composed of some number of LUTs, flip-flops, and 
additional architecture-specific logic and local 
interconnect. Following the Spartan IIe, each CLB in our 
architecture contains four 4-input LUTs and four flip-
flops. CLBs are interconnected through routing channels 
running in rows and columns adjacent to each of their 
sides. 

Multiple tracks exist in each channel and a CLB 
input or output pin could have a potential connection to 
any or all of these tracks. These multiple connections for 
a single pin could be controlled by either SRAM-gated 
pass-transistor switches or SRAM-controlled MUXes. 
The MUX approach is typically used for CLB input pins 
since these pins can only be driven by a single signal. 
However, output pins may fanout to more than one track 
and thus require individual connections to each accessible 
track in a channel. It was therefore assumed in this work 
that input pins employ the multiplexer style approach 
while output pins use individual pass transistor 
connections. In this paper, only unused CLB inputs are 
considered, as we found that the multiple-fanout nature of 
CLB outputs requires that constraints be placed on the 
router to enable coarse ground-gating of the SRAM cells 
controlling the CLB output pass transistors. This paper 
focuses only on post-place-and-route leakage reduction 
opportunities, but such tool alterations, and their resulting 
tradeoffs, will be considered as part of future work. 

At the intersection of the routing channels, switch-
boxes direct signals to adjacent channels. Several styles 
of switch-box exist, with each type having a different 
connection pattern to the tracks in adjacent channels. The 
“subset” style, in which a track in one channel can only 
connect to its corresponding track in each of the three 
other directions, is common. These connections are 
controlled by switch points, each containing six SRAM-
gated pass transistors. Therefore, assuming symmetrical 
routing channels, each switch-box contains n switch-
points and 6n SRAM-gated pass transistors, where n 
corresponds to the number of tracks in each channel 
routed through that switch-box. This subset style of 
switch-box is assumed in this work. Other switch-box 



  

styles, such as the universal and Wilton switch-boxes, 
will be the subject of future work. 

Following the Spartan IIe, we defined our 
architecture so that each routing channel contained 108 
tracks. These segmented tracks consisted of 24 single-
length segment, 72 hex-length segments, and 12 long 
lines. Assuming that each CLB input can connect to half 
of the tracks in its channel, a 54:1 MUX (with six SRAM 
control signals) is used at each input. The flexibility of 
the VPR tool allowed us to model this architecture by 
creating a custom architecture file. 

The various gating granularities were applied to the 
set of sixteen MCNC benchmark circuits detailed in Table 
1. Each circuit was targeted to the smallest equivalent 
Xilinx Spartan IIe device that would accommodate it. 

Table 1. MCNC circuits used 
Circuit # Clusters Spartan IIE Device
alu4 381 XC2S50E

apex4 316 XC2S50E
diffeq 375 XC2S50E
ex5p 266 XC2S50E

misex3 350 XC2S50E
apex2 470 XC2S100E
s298 483 XC2S100E
seq 438 XC2S100E

tseng 262 XC2S100E
elliptic 901 XC2S200E
ex1010 1150 XC2S200E

frisc 889 XC2S200E
pdc 1144 XC2S200E
spla 923 XC2S200E
clma 2096 XC2S400E

s38417 1602 XC2S400E  

Logic granularity 

The three granularities of LUT leakage control 
investigated for this architecture were the ability to gate a 
CLB, a LUT, and a single half of a LUT, turning off 64, 
16, and 8 SRAM cells, respectively. A full CLB or LUT 
can be turned off only when completely unused, but 
gating half of a LUT puts to sleep half of the SRAM cells 
in a LUT when less than four inputs are used. In order to 
use only one sleep transistor per LUT, this technique 
requires that the input that is unused is known a priori 
and always appears in the same place. It is logical to 
speculate that most FPGA CAD tools use a consistent 
ordering or can be easily modified to do so. Indeed, the T-
VPack tool used in this work follows such an approach 
[9]. Also, the unused input to the LUT must be set to 
insure that the asleep portion of the LUT is never 
accessed. 

These three granularities were tested individually and 
in all possible combinations to determine the overall 
possible leakage savings in terms of gated SRAM cells. 
The T-VPack tool [9] was modified to gather logic 
resource utilization statistics for the benchmark circuits. 

The distributed version of the tool accepts as its input a 
blif file composed of LUTs and flip-flops representing the 
circuit and packs the logic resources into architecture 
specified CLBs. The modified version of the tool 
examines the internal representation of the circuit and 
determines the number of unused and partially used LUT 
resources that can be gated off at various granularities. 

Table 2 gives the arithmetic average across the set of 
benchmark circuits for the various logic granularities, 
presented in terms of both logic SRAM asleep and total 
device SRAM asleep. Several combination strategies are 
nearly equivalent to the granularities presented and are 
omitted for space. Another important point to note is the 
dramatic difference between the percentages of logic 
SRAM asleep and total SRAM asleep at each granularity. 
This stems from the fact that, on average, logic SRAM 
represents less than 10% of total device SRAM, while 
routing SRAM occupies over 90%. The area overhead of 
each strategy is given in the last row of Table 2. 

Table 2. % LUT SRAM cells asleep and area 
overheads for different granularities 

Granularity CLB 0.5 LUT Full LUT CLB+0.5LUT
% Logic SRAM Asleep 19.33% 23.41% 19.39% 33.07%
% Total SRAM Asleep 1.55% 1.97% 1.55% 2.75%

Area Overhead 0.16% 0.66% 0.66% 0.82%  
The data presented in Table 2 yields some important 

insights. The CLB granularity provides a modest 
percentage of asleep cells but with a very small area 
overhead. The full LUT granularity does not provide 
much in additional sleep percentage over the CLB (as T-
VPack packs an entire CLB before starting a new one), 
and the significantly higher area overhead dictates that the 
granularity be discarded. The half-LUT granularity 
provides better results than the CLB granularity, as there 
are a large number of utilized LUTs that use less than 
four inputs. The largest percentage of asleep cells is 
provided by the combination of CLB and half-LUT 
granularities. Overall, if maximum leakage savings is 
desired, the combined CLB/half-LUT granularity should 
be used, but if area overhead must be minimized, the pure 
CLB granularity still provides good savings. 

Routing granularity 

Even greater amounts of SRAM-based resources can 
be gated by targeting interconnect because FPGA area is 
dominated by routing resources. Given the need to 
accommodate a wide variety of potential signal routings, 
FPGAs are designed with an extensive flexible routing 
network. However, when a circuit is actually placed and 
routed, the vast majority of the routing network goes 
unused. Thus, another ideal opportunity is presented for 
the application of post place-and-route gating. 

Our methodology examines the routing utilization 
characteristics of circuits to identify unused switch-points 



  

and CLB inputs. By providing sleep transistors for the 
configuration SRAM cells of switch-point and MUX 
select line groups, we are able to gate a large amount of 
unused routing resources. Unused switch-points are 
identified by examining the four tracks connected to each 
switch-point. Due to the node zero voltage rise issue 
discussed in Section 3.1, only switch-points that connect 
to entirely signal-free tracks can be considered unused 
and be safely gated. Coarser granularities of control can 
be created by clustering switch-points and controlling 
each group with a single sleep transistor. The finest 
interconnect gating granularity is the individual switch-
point while the coarsest granularity is that of gating a full 
switch-box. MUX select line control cells may also be 
successfully gated when a CLB input is unused. 

In order to measure the desired routing resource 
utilization characteristics, the VPR place and route tool 
[2] was modified to track these statistics. The number of 
switch-boxes is easily determined based on the size of the 
CLB array and interconnect network. To determine the 
number of switch-points in the entire FPGA, the routing 
resource graph on which VPR is built is parsed to identify 
the true number of signals being routed through each 
switch-box. To identify switch-point usage statistics at 
various granularities, VPR’s internal representation of the 
placed and routed netlist of a circuit is parsed to 
determine the track usage on each side of a given switch-
box. Each switch-box was then analyzed to determine the 
number of unused switch-points that could be gated off. 
VPR was also modified to examine the placed-and-routed 
netlist and determine the pin usage for each CLB. 

Table 3 gives the arithmetic mean across all of the 
benchmark circuits of the gating ability of the routing 
strategies and granularities. We consider the two extremes 
of switch-point granularity, full switch-box and individual 
switch-point, as well as CLB input gating. We also 
consider the combination of switch-point and input 
gating. Results are presented in terms of both routing only 
SRAM asleep and total device SRAM asleep. The area 
overhead introduced by each technique is also given. 
Table 3. % Routing SRAM cells asleep and area 

overheads for different resources and 
granularities 

Granularity Switchbox Switchpoint Inputs SP & Inputs
% Routing SRAM Asleep 4.50% 47.71% 7.72% 55.42%

% Total SRAM Asleep 4.14% 43.86% 7.09% 50.95%
Area Overhead 0.18% 11.13% 2.62% 13.75%  
It is clear from these results that the majority of 

unused SRAM cells are in the interconnect network. We 
also note that the combination of switch-point gating and 
input gating enables almost 51% of device SRAM to be 
gated with a 13.75% area overhead. This gating 
percentage is a direct combination of the two individual 
gating percentages and results from the complimentary 
nature of the two gating strategies. It is clear from these 

results that there is significant opportunity for reducing 
SRAM leakage by gating unused routing resources. 

4. Results 

The analysis in Section 3 identified effective logic 
and routing granularities for sleep transistor gating. In this 
section, we analyze the leakage current reduction 
provided by these techniques and granularities. To gauge 
the leakage reduction obtained by the various gating 
techniques, the circuit-level and architecture-level results 
have been synthesized into a model of a 70nm FPGA. 
The detailed circuit-level leakage simulation results for 
the various blocks of the FPGA form basic units of 
leakage for each resource type. These leakage values are 
then combined linearly based on the architecture-level 
resource usage statistics and gating strategy to determine 
an overall leakage value for a given circuit and target 
architecture. 

This total leakage is compared against a base leakage 
for each target architecture to determine leakage savings. 
When determining the base leakage, a conservative 
assumption was made that each resource is programmed 
in its lowest leakage state. The results presented can thus 
be viewed as the minimum of the attainable leakage 
savings. 

The percentage leakage reduction results of applying 
the combination of the most effective gating techniques to 
each benchmark circuit are shown in Table 4. As derived 
in Section 3, the most effective gating granularities 
(considering both leakage reduction and area overhead) 
are CLBs, switch-points (SP), and CLB inputs. The 
additional savings of gating half LUTs and CLBs is also 
considered. The second column in the table shows the 
base SRAM leakage current for the device. The 
percentage leakage current reduction results presented 
here are given for regular and high Vt sleep transistors for 
both combinations of granularities. The average savings 
across the benchmark set and the area overheads of each 
strategy are also given. There is no delay penalty for any 
of the configurations due to the circuit-level (no SRAM 
switching and no load on active interconnect segments) 
and architecture-level (no CAD tool restrictions) factors 
discussed in Section 3. 

As these results indicate, approximately 30-40% 
reductions in leakage can be achieved depending on the 
gating strategy. Given that [8] has shown that leakage 
represents 59% of the total power consumption in an 
SRAM-based FPGA, the leakage current reduction 
provided by our approach will result in significant power 
savings. It is clear that the choice of logic granularity has 
little effect on the overall leakage current savings. This is 
again due to the dominance of routing resources in 
FPGAs. It is also important to note the non-trivial leakage 



  

differences between using regular vs. high Vt sleep 
transistors. The decision to use one over the other must be 
determined by process cost and power goals. 

Table 4. SRAM cell leakage current reduction 

Reg Vt High Vt Reg Vt High Vt
alu4 4.62 23.22% 38.55% 24.02% 39.44%

apex4 4.62 26.41% 40.17% 27.20% 41.05%
diffeq 4.62 25.28% 40.42% 26.12% 41.35%
ex5p 4.62 31.16% 42.81% 31.29% 42.98%

misex3 4.62 25.05% 39.28% 25.86% 40.17%
apex2 6.93 29.02% 40.27% 29.58% 40.90%
s298 6.93 34.10% 44.23% 34.50% 44.70%
seq 6.93 31.39% 42.34% 31.96% 42.98%

tseng 6.93 43.38% 51.32% 43.51% 51.49%
elliptic 12.93 31.84% 41.51% 32.49% 42.24%
ex1010 12.93 19.94% 34.21% 21.13% 35.52%

frisc 12.93 32.53% 41.47% 33.02% 42.02%
pdc 12.93 17.54% 31.01% 17.86% 31.40%
spla 12.93 28.75% 38.58% 28.98% 38.87%
clma 25.35 25.78% 35.71% 26.29% 36.29%

s38417 25.35 36.02% 43.14% 36.81% 44.01%
28.84% 40.31% 29.41% 40.96%

Circuit
CLB+SP+Inputs CLB&0.5LUT+SP+InputsBase

Ioff (mA)

13.91% 14.57%
Average

Area Overhead  

5. Conclusions and future work 

In this paper, we have shown how significant leakage 
current reduction can be achieved in SRAM-based 
FPGAs. Combining a bottom-up/top-down approach for 
determining effective ground-gating granularities for 
turning off SRAM cells in FPGA logic and routing 
resources, significant leakage current reductions were 
achieved with manageable area overhead and no delay 
penalty. In future FPGA generations, the use of these 
techniques can help control the inherent leakage problems 
induced by scaling. This work provides a straightforward 
yet effective start in addressing this significant problem. 

The techniques presented here were static for a given 
FPGA configuration, and no restrictions were placed on 
the synthesis, mapping, and place-and-route tools. Once 
the circuits are placed-and-routed onto the device using 
VPR, our post-processing techniques identify which 
resources are unused, and the SRAM cells at the gate 
inputs of the sleep transistors can be programmed 
accordingly. Putting restrictions on the design tools may 
increase the percentage of SRAM cells that can be turned 
off with coarser sleep transistor granularities, but the 
impact on area and delay must be considered. Future 
work in this area will quantify this tradeoff. Finally, the 
tradeoffs associated with other gating techniques (e.g. Vdd 
gating) and multi-threshold processes will be explored, as 
will the impact of temperature on leakage. 
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