

A General Post-Processing Approach to
Leakage Current Reduction in SRAM-based FPGAs

John Lach
ECE Department

University of Virginia
jlach@virginia.edu

Jason Brandon
ECE Department

University of Virginia
jmb2ac@virginia.edu

Kevin Skadron
CS Department

University of Virginia
skadron@cs.virginia.edu

Abstract
A negative effect of ever-shrinking supply and

threshold voltages is the larger percentage of total power
consumption that comes from leakage current. Several
techniques have been developed to help reduce leakage in
SRAM-based memory, in which the percent leakage
power is especially acute. SRAM-based field
programmable gate arrays (FPGAs) pose similar leakage
problems, but their structure and function require
different solutions. This paper introduces a low
complexity post-processing approach to reducing FPGA
leakage current by ground-gating off SRAM cells that are
unused in a particular device configuration. The
approach is general enough to apply to any device
configuration, and results reveal that significant leakage
current reduction can be achieved with no delay penalty
and acceptable area overhead.

1. Introduction

As CMOS VLSI technology continues to scale, with
ever-decreasing minimum feature sizes and increasing
logic and memory densities, dynamic power consumption
magnitude and density pose significant problems.
Designers have historically addressed this issue by
reducing the supply voltage. This in turn has led to a
reduction in threshold voltages to maintain performance.
However, due to the exponential dependence of
subthreshold leakage current on threshold voltage, static
power consumption has exploded and become a key area
of concern and investigation. In fact, we are nearing a
break-even point where it is no longer possible to reduce
overall power consumption by scaling supply and
threshold voltages due to the resulting increase in leakage
current.

According to [7], leakage power will surpass active
power and represent over 50% of total power in
microprocessors at the 70nm technology node. To meet
the ITRS roadmap restriction of static power comprising
less than 10% of maximum power dissipation, the
reduction in static power needed by circuit and

architecture innovations reaches 98% by the end of the
roadmap [14].

In order to keep power consumption in check, while
still reaping the benefits of technology scaling, techniques
for reducing static power consumption have recently been
investigated. Most efforts have focused primarily on
circuit-level techniques. In recent years, investigative
work has begun to focus on static-power-hungry
architecture-level structures such as SRAM-based cache
memories. Because they are composed of a large number
of leaky SRAM cells, these cache memories represent a
prime target for static power reduction techniques.

SRAM-based FPGAs represent another opportunity
for the development of leakage control techniques. Due to
their reliance on SRAM cells for programmable logic and
routing, FPGAs will require leakage control techniques to
continue to benefit from technology scaling. With the
increasing proliferation of FPGAs and the effort to utilize
them in embedded low-power environments, the control
of static power must be addressed in these devices.

In this paper, we present a methodology for leakage
current reduction in SRAM-based FPGAs. For any given
design mapped to an FPGA, a significant number of
SRAM cells are unused, and leakage reduction techniques
can be used to place these cells in a low leakage state. In
this work, circuit gating (specifically ground-gating [1])
is used to turn off unused resources. The techniques
presented are exclusively post-processing and do not
restrict the CAD tool flow or require designer
intervention. There is no effect on circuit performance,
with the only penalty being the additional area required to
implement ground-gating. Using a combined bottom-up
circuit-level and top-down architecture-level approach,
we have identified appropriate granularities for turning
off SRAM cells in both FPGA logic and routing
resources. Prior work has only identified the importance
of the FPGA leakage problem [8,15]. To our knowledge,
this paper represents the first effort to address the
problem. While the post-processing techniques we
present are straightforward, they provide significant
leakage current reduction with minimal overhead.

In the next section, we present related work on FPGA
leakage analysis and circuit-level techniques for leakage
reduction. Section 3 introduces our general post-
processing approach to leakage current reduction in
FPGAs. Section 4 presents results for a theoretical 70nm
FPGA employing our leakage reduction methodology.
Section 5 gives our conclusions and direction of future
work.

2. Background and related work

Two key areas of background and related work that
we leverage concern leakage current analysis in FPGAs
and circuit-level techniques to reduce leakage current.

2.1. Leakage current analysis in FPGAs

FPGAs have generally followed suit with the rest of
the VLSI community and progressively scaled supply and
threshold voltages with each technology generation to
keep power consumption in check while maintaining
performance. The resulting increase in leakage current is
forcing designers to address this issue. Only recently have
power evaluation tools and techniques for FPGAs, which
give thorough consideration to the issue of leakage
power, been developed.

[10] modified the VPR tool [2] to determine dynamic
and static power consumption in a circuit placed-and-
routed to a user-specified FPGA architecture. The model
assumes that the gate-source voltages of inactive
transistors are half of their threshold voltages and uses a
formula to calculate leakage.

The work of [8] counters that this assumption is not
usually valid. Their resulting method, fpgaEva-LP,
models static leakage power using SPICE simulation of
individual FPGA components with equal-probability
input vectors. An important conclusion drawn by the
authors is that up to 59% of the total power is attributed
to leakage power.

In [15], leakage analysis is performed on a 90nm
FPGA architecture. This work focuses on logic blocks as
well as their access points to general-purpose routing. An
analysis of the contribution of unused components to
overall leakage power is also given. At 100% logic block
utilization, unused resource leakage still accounts for
35% of total leakage. It is these unused resources that are
the focus of the work presented here.

2.2. Circuit-level leakage current reduction

Both static and dynamic leakage reduction techniques
in CMOS circuits have been studied. Static techniques
utilize a multiple-threshold voltage (MTCMOS)
fabrication process to selectively place faster low Vt
transistors on the critical path, while employing less leaky

high Vt transistors off the critical path. Such an approach
is appropriate for ASICs, in which the function of the
circuit is constant, but FPGAs require post-fabrication
flexibility. Therefore, dynamic techniques are necessary.
One such technique is the pre-characterization of a
circuit's inputs in terms of minimal leakage power [16].
When the circuit is placed in standby mode, the input
pattern with the lowest leakage can be applied.

A second post-fabrication leakage reduction
technique is circuit gating. Circuit gating is the method of
cutting off a circuit's path to Vdd or ground by insertion of
‘sleep’ transistors controlled by configuration signals or
bits. When the sleep transistor is on, the circuit is in
active mode. When it is off, the circuit is in a low-leakage
mode. The gating approach may be single- or multiple-
threshold-based. A higher Vt sleep transistor using
MTCMOS provides increased leakage reduction, but the
fabrication process is more expensive than single
threshold [1]. In addition, single-Vt sleep transistors
enable SRAM cells to maintain state [11]. In this paper,
we explore both regular and high Vt transistors for
ground-gating.

Ground-gating using NMOS sleep transistors has
been successfully applied to SRAM-based cache
memories. In [1], a single NMOS sleep transistor is
inserted between the SRAM cells of each cache line and
the ground plane. The technique utilizes the stacking
effect of having two NMOS transistors connected in
series [6]. The row decoder of the cache controls the sleep
transistors, resulting in all lines being in sleep mode
except when being accessed. Results show that compared
to a conventional cache, their DRG-Cache leaks 32% less
energy while the relative read time is only 2.8% slower.

Circuit gating has been employed in the FPGA
domain as a proof of concept of an MTCMOS design
methodology. [4] uses high-Vt local sleep transistors in
FPGA logic blocks. These transistors give the capability
to place individual regions of the logic block in sleep
mode, including a group of four 4-input lookup tables
(LUTs), a 4-bit adder, a 4-bit register, and the remaining
control circuits. While this approach to ground-gating in
an FPGA is similar to what we detail in this paper, the
sleep transistor granularities considered in [4] were
significantly more coarse, and only logic block leakage
was considered. We explore a variety of granularities and
show that the majority of SRAM cell leakage current
savings can be derived from unused routing resources.

3. Methodology

A primary contribution of this paper is the derivation
of appropriate granularities for turning off SRAM cells in
FPGA logic and interconnect that are unused in a given
configuration. While the ability to gate each SRAM cell

individually would ensure the maximum number of off
cells regardless of the configuration, the overhead (in
terms of not only area but also the additional leakage
current introduced by the SRAM cells controlling the
sleep transistors) would be unacceptable.

We therefore use a combined bottom-up/top-down
approach for determining appropriate granularities. The
bottom-up aspect considers circuit-level issues that affect
the area and leakage overhead introduced at various
granularities. The top-down portion explores architecture-
level issues by considering cell groups left unused by real
designs that are mapped onto the device. While bottom-
up issues call for a coarse granularity (to minimize
overhead), top-down pushes for a finer one (to maximize
number of off cells). Finding the appropriate balance is
the focus of this section.

3.1. Bottom-up analysis

In determining the appropriate granularity for sleep
transistor insertion, several issues must be considered. It
is necessary to determine the ability of a single sleep
transistor to reduce leakage current for multiple SRAM
cells and whether there is an effective limit to the number
of cells that can be gated by a single transistor. The
existence of a limit would dictate what granularities were
feasible. The sizing ratio of the sleep transistor and
whether regular or high Vt transistors should be used
must also be explored. Finally, any potential delay
introduced by the sleep transistor need be considered.

To answer these questions, we performed SPICE-
level simulations of different sleep-transistor
configurations applied to basic blocks of SRAM
equivalent to those used in various FPGA resources.
Berkeley BSIM device models from the Berkeley
Predictive Technology Model (BPTM) 70nm process
technology model [3,5] at Vdd=1.2V were used in these
simulations, following the conservative approach
discussed in [14].

SRAM leakage

Figure 1 gives the results for leakage reduction using
regular Vt (Vt0 (NMOS) = 0.1902 V, Vt0 (PMOS) = -0.213 V)
sleep transistors. We can see the general trend of
decreased leakage reduction as the sleep transistor is sized
up. We can also see that leakage savings continues to
improve as the sleep transistor is shared amongst more
SRAM cells. This is true up to the grouping of 64 cells,
which is the upper limit appropriate for consideration
given a target architecture of four 4-input LUTs.

Figure 2 shows the results of the same simulations
performed using high Vt (Vt0 (NMOS) = 0.2402 V, Vt0 (PMOS)
= -0.263 V) sleep transistors. It is clear that the high Vt
results offer improved leakage savings across transistor

widths and SRAM cell grouping sizes. This information
can be used to make a design cost tradeoff. If the
additional leakage savings is worth any additional process
cost and the system does not require state-preserving
gated cells, the high Vt approach is the obvious choice.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

105 525 700 1050

Sleep Transistor Width (nm)

%
 L

ea
ka

ge
 R

ed
uc

tio
n

in
 S

le
ep

 M
od

e

1 cell
4 cells
8 cells
16 cells
64 cells

Figure 1. SRAM leakage reduction – regular Vt

sleep transistors

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

105 525 700 1050

Sleep Transistor Width (nm)

%
 L

ea
ka

ge
 R

ed
uc

tio
n

in
 S

le
ep

 M
od

e

1 cell
4 cells
8 cells
16 cells
64 cells

Figure 2. SRAM leakage reduction – high Vt

sleep transistors

Sleep transistor delay

Potential circuit-level impact on delay of applying
gated-ground to the SRAM cells used in FPGA logic and
routing is an important consideration. When sleep
transistors have been used to reduce leakage in caches,
simulations revealed a delay penalty due to degraded
bitline and sense amplifier delay [1].

However, circuit gating FPGA SRAM does not incur
the same delay penalties as in caches due to the fact that
reads from SRAM cells in FPGAs occur differently than
in a cache, and the cells are not written to after
configuration. FPGA resources using SRAM do not use
bitlines and sense amplifiers to read the value of the cells.
In an FPGA, only one of the two nodes is used to read the
state of the cell. A connection is made directly from this
node to the circuit it is used to control. SRAM cells thus
continuously present their values (which remain constant

for a given FPGA configuration) directly to the circuitry
they are used to control and therefore do not encounter
the same delay issues as in a cache.

However, to verify that there is no delay penalty
when gating SRAM-based resources in FPGAs we must
consider the ability of gated SRAM cells in the active
mode to provide sufficient drive strength to the FPGA
circuits they are used to control. FPGA logic was
evaluated by simulating LUTs and configurable logic
blocks (CLBs) with various load capacitances at the
outputs. These simulations showed no measurable
increase in delay over non-gated circuits when sleep
transistors are used to gate LUTs or CLBs. FPGA
interconnect was also evaluated by examining the signal
quality from the gated SRAM cells in active mode, as
signal degradation on the gate input could cause a switch
to misbehave or behave sub-optimally by not driving the
transistor into saturation or cut-off. Simulations
performed on active routing switches revealed no
degradation in the quality of a logical one or zero signal
observed. Finally, the effect of gating on inactive cells
was also evaluated. Inactive ground-gated SRAM cells
exhibited a node zero voltage rise, potentially causing
switches gated by these cells to partially turn on, which
could lead to unnecessary loading on interconnect
segments. It is therefore necessary to restrict the cells that
can be gated off to those where an active signal is not
present anywhere on the affected segments. Future work
will explore alternate gating techniques (e.g. Vdd gating)
to address this issue.

3.2. Top-down analysis

Unused resources in FPGAs represent a particularly
wasteful source of static power consumption. Given that
FPGA family size increments are typically quite large and
that the logic/interconnect ratio is set, there tends to be a
significant number of unused logic and routing resources,
regardless of the design configured onto the device. In the
architectural analysis, we explore how many of the
unused logic and routing resources can be gated off with
various granularities of gating control.

Area overhead is calculated in terms of the
equivalent number of minimum sized transistor areas
introduced by the sleep transistors and the controlling
SRAM cells at each granularity. This approach is process
independent, and therefore the area overhead for each
technique should stay relatively constant [12].

All of the techniques considered here are post-
processing, in that they involve the evaluation of already
placed-and-routed designs. There is therefore no impact
on the design process and the resulting quality of
implementation. While putting restrictions on the
synthesis, mapping, and place-and-route tools may

increase the percentage of SRAM cells that can be turned
off with coarser sleep transistor granularities, this must be
traded off against additional delay and area overhead.
This tradeoff will be explored as part of future work.

Architecture model

The architecture we chose is modeled after the
island-style SRAM-based Xilinx Spartan IIe [13]. While
we model the Spartan IIe as closely as possible, the
approach presented here is general for any SRAM-based
island-style FPGA. Such FPGAs are composed of CLBs
in a sea of programmable routing. CLBs in turn are
composed of some number of LUTs, flip-flops, and
additional architecture-specific logic and local
interconnect. Following the Spartan IIe, each CLB in our
architecture contains four 4-input LUTs and four flip-
flops. CLBs are interconnected through routing channels
running in rows and columns adjacent to each of their
sides.

Multiple tracks exist in each channel and a CLB
input or output pin could have a potential connection to
any or all of these tracks. These multiple connections for
a single pin could be controlled by either SRAM-gated
pass-transistor switches or SRAM-controlled MUXes.
The MUX approach is typically used for CLB input pins
since these pins can only be driven by a single signal.
However, output pins may fanout to more than one track
and thus require individual connections to each accessible
track in a channel. It was therefore assumed in this work
that input pins employ the multiplexer style approach
while output pins use individual pass transistor
connections. In this paper, only unused CLB inputs are
considered, as we found that the multiple-fanout nature of
CLB outputs requires that constraints be placed on the
router to enable coarse ground-gating of the SRAM cells
controlling the CLB output pass transistors. This paper
focuses only on post-place-and-route leakage reduction
opportunities, but such tool alterations, and their resulting
tradeoffs, will be considered as part of future work.

At the intersection of the routing channels, switch-
boxes direct signals to adjacent channels. Several styles
of switch-box exist, with each type having a different
connection pattern to the tracks in adjacent channels. The
“subset” style, in which a track in one channel can only
connect to its corresponding track in each of the three
other directions, is common. These connections are
controlled by switch points, each containing six SRAM-
gated pass transistors. Therefore, assuming symmetrical
routing channels, each switch-box contains n switch-
points and 6n SRAM-gated pass transistors, where n
corresponds to the number of tracks in each channel
routed through that switch-box. This subset style of
switch-box is assumed in this work. Other switch-box

styles, such as the universal and Wilton switch-boxes,
will be the subject of future work.

Following the Spartan IIe, we defined our
architecture so that each routing channel contained 108
tracks. These segmented tracks consisted of 24 single-
length segment, 72 hex-length segments, and 12 long
lines. Assuming that each CLB input can connect to half
of the tracks in its channel, a 54:1 MUX (with six SRAM
control signals) is used at each input. The flexibility of
the VPR tool allowed us to model this architecture by
creating a custom architecture file.

The various gating granularities were applied to the
set of sixteen MCNC benchmark circuits detailed in Table
1. Each circuit was targeted to the smallest equivalent
Xilinx Spartan IIe device that would accommodate it.

Table 1. MCNC circuits used
Circuit # Clusters Spartan IIE Device
alu4 381 XC2S50E

apex4 316 XC2S50E
diffeq 375 XC2S50E
ex5p 266 XC2S50E

misex3 350 XC2S50E
apex2 470 XC2S100E
s298 483 XC2S100E
seq 438 XC2S100E

tseng 262 XC2S100E
elliptic 901 XC2S200E
ex1010 1150 XC2S200E

frisc 889 XC2S200E
pdc 1144 XC2S200E
spla 923 XC2S200E
clma 2096 XC2S400E

s38417 1602 XC2S400E

Logic granularity

The three granularities of LUT leakage control
investigated for this architecture were the ability to gate a
CLB, a LUT, and a single half of a LUT, turning off 64,
16, and 8 SRAM cells, respectively. A full CLB or LUT
can be turned off only when completely unused, but
gating half of a LUT puts to sleep half of the SRAM cells
in a LUT when less than four inputs are used. In order to
use only one sleep transistor per LUT, this technique
requires that the input that is unused is known a priori
and always appears in the same place. It is logical to
speculate that most FPGA CAD tools use a consistent
ordering or can be easily modified to do so. Indeed, the T-
VPack tool used in this work follows such an approach
[9]. Also, the unused input to the LUT must be set to
insure that the asleep portion of the LUT is never
accessed.

These three granularities were tested individually and
in all possible combinations to determine the overall
possible leakage savings in terms of gated SRAM cells.
The T-VPack tool [9] was modified to gather logic
resource utilization statistics for the benchmark circuits.

The distributed version of the tool accepts as its input a
blif file composed of LUTs and flip-flops representing the
circuit and packs the logic resources into architecture
specified CLBs. The modified version of the tool
examines the internal representation of the circuit and
determines the number of unused and partially used LUT
resources that can be gated off at various granularities.

Table 2 gives the arithmetic average across the set of
benchmark circuits for the various logic granularities,
presented in terms of both logic SRAM asleep and total
device SRAM asleep. Several combination strategies are
nearly equivalent to the granularities presented and are
omitted for space. Another important point to note is the
dramatic difference between the percentages of logic
SRAM asleep and total SRAM asleep at each granularity.
This stems from the fact that, on average, logic SRAM
represents less than 10% of total device SRAM, while
routing SRAM occupies over 90%. The area overhead of
each strategy is given in the last row of Table 2.

Table 2. % LUT SRAM cells asleep and area
overheads for different granularities

Granularity CLB 0.5 LUT Full LUT CLB+0.5LUT
% Logic SRAM Asleep 19.33% 23.41% 19.39% 33.07%
% Total SRAM Asleep 1.55% 1.97% 1.55% 2.75%

Area Overhead 0.16% 0.66% 0.66% 0.82%
The data presented in Table 2 yields some important

insights. The CLB granularity provides a modest
percentage of asleep cells but with a very small area
overhead. The full LUT granularity does not provide
much in additional sleep percentage over the CLB (as T-
VPack packs an entire CLB before starting a new one),
and the significantly higher area overhead dictates that the
granularity be discarded. The half-LUT granularity
provides better results than the CLB granularity, as there
are a large number of utilized LUTs that use less than
four inputs. The largest percentage of asleep cells is
provided by the combination of CLB and half-LUT
granularities. Overall, if maximum leakage savings is
desired, the combined CLB/half-LUT granularity should
be used, but if area overhead must be minimized, the pure
CLB granularity still provides good savings.

Routing granularity

Even greater amounts of SRAM-based resources can
be gated by targeting interconnect because FPGA area is
dominated by routing resources. Given the need to
accommodate a wide variety of potential signal routings,
FPGAs are designed with an extensive flexible routing
network. However, when a circuit is actually placed and
routed, the vast majority of the routing network goes
unused. Thus, another ideal opportunity is presented for
the application of post place-and-route gating.

Our methodology examines the routing utilization
characteristics of circuits to identify unused switch-points

and CLB inputs. By providing sleep transistors for the
configuration SRAM cells of switch-point and MUX
select line groups, we are able to gate a large amount of
unused routing resources. Unused switch-points are
identified by examining the four tracks connected to each
switch-point. Due to the node zero voltage rise issue
discussed in Section 3.1, only switch-points that connect
to entirely signal-free tracks can be considered unused
and be safely gated. Coarser granularities of control can
be created by clustering switch-points and controlling
each group with a single sleep transistor. The finest
interconnect gating granularity is the individual switch-
point while the coarsest granularity is that of gating a full
switch-box. MUX select line control cells may also be
successfully gated when a CLB input is unused.

In order to measure the desired routing resource
utilization characteristics, the VPR place and route tool
[2] was modified to track these statistics. The number of
switch-boxes is easily determined based on the size of the
CLB array and interconnect network. To determine the
number of switch-points in the entire FPGA, the routing
resource graph on which VPR is built is parsed to identify
the true number of signals being routed through each
switch-box. To identify switch-point usage statistics at
various granularities, VPR’s internal representation of the
placed and routed netlist of a circuit is parsed to
determine the track usage on each side of a given switch-
box. Each switch-box was then analyzed to determine the
number of unused switch-points that could be gated off.
VPR was also modified to examine the placed-and-routed
netlist and determine the pin usage for each CLB.

Table 3 gives the arithmetic mean across all of the
benchmark circuits of the gating ability of the routing
strategies and granularities. We consider the two extremes
of switch-point granularity, full switch-box and individual
switch-point, as well as CLB input gating. We also
consider the combination of switch-point and input
gating. Results are presented in terms of both routing only
SRAM asleep and total device SRAM asleep. The area
overhead introduced by each technique is also given.
Table 3. % Routing SRAM cells asleep and area

overheads for different resources and
granularities

Granularity Switchbox Switchpoint Inputs SP & Inputs
% Routing SRAM Asleep 4.50% 47.71% 7.72% 55.42%

% Total SRAM Asleep 4.14% 43.86% 7.09% 50.95%
Area Overhead 0.18% 11.13% 2.62% 13.75%
It is clear from these results that the majority of

unused SRAM cells are in the interconnect network. We
also note that the combination of switch-point gating and
input gating enables almost 51% of device SRAM to be
gated with a 13.75% area overhead. This gating
percentage is a direct combination of the two individual
gating percentages and results from the complimentary
nature of the two gating strategies. It is clear from these

results that there is significant opportunity for reducing
SRAM leakage by gating unused routing resources.

4. Results

The analysis in Section 3 identified effective logic
and routing granularities for sleep transistor gating. In this
section, we analyze the leakage current reduction
provided by these techniques and granularities. To gauge
the leakage reduction obtained by the various gating
techniques, the circuit-level and architecture-level results
have been synthesized into a model of a 70nm FPGA.
The detailed circuit-level leakage simulation results for
the various blocks of the FPGA form basic units of
leakage for each resource type. These leakage values are
then combined linearly based on the architecture-level
resource usage statistics and gating strategy to determine
an overall leakage value for a given circuit and target
architecture.

This total leakage is compared against a base leakage
for each target architecture to determine leakage savings.
When determining the base leakage, a conservative
assumption was made that each resource is programmed
in its lowest leakage state. The results presented can thus
be viewed as the minimum of the attainable leakage
savings.

The percentage leakage reduction results of applying
the combination of the most effective gating techniques to
each benchmark circuit are shown in Table 4. As derived
in Section 3, the most effective gating granularities
(considering both leakage reduction and area overhead)
are CLBs, switch-points (SP), and CLB inputs. The
additional savings of gating half LUTs and CLBs is also
considered. The second column in the table shows the
base SRAM leakage current for the device. The
percentage leakage current reduction results presented
here are given for regular and high Vt sleep transistors for
both combinations of granularities. The average savings
across the benchmark set and the area overheads of each
strategy are also given. There is no delay penalty for any
of the configurations due to the circuit-level (no SRAM
switching and no load on active interconnect segments)
and architecture-level (no CAD tool restrictions) factors
discussed in Section 3.

As these results indicate, approximately 30-40%
reductions in leakage can be achieved depending on the
gating strategy. Given that [8] has shown that leakage
represents 59% of the total power consumption in an
SRAM-based FPGA, the leakage current reduction
provided by our approach will result in significant power
savings. It is clear that the choice of logic granularity has
little effect on the overall leakage current savings. This is
again due to the dominance of routing resources in
FPGAs. It is also important to note the non-trivial leakage

differences between using regular vs. high Vt sleep
transistors. The decision to use one over the other must be
determined by process cost and power goals.

Table 4. SRAM cell leakage current reduction

Reg Vt High Vt Reg Vt High Vt
alu4 4.62 23.22% 38.55% 24.02% 39.44%

apex4 4.62 26.41% 40.17% 27.20% 41.05%
diffeq 4.62 25.28% 40.42% 26.12% 41.35%
ex5p 4.62 31.16% 42.81% 31.29% 42.98%

misex3 4.62 25.05% 39.28% 25.86% 40.17%
apex2 6.93 29.02% 40.27% 29.58% 40.90%
s298 6.93 34.10% 44.23% 34.50% 44.70%
seq 6.93 31.39% 42.34% 31.96% 42.98%

tseng 6.93 43.38% 51.32% 43.51% 51.49%
elliptic 12.93 31.84% 41.51% 32.49% 42.24%
ex1010 12.93 19.94% 34.21% 21.13% 35.52%

frisc 12.93 32.53% 41.47% 33.02% 42.02%
pdc 12.93 17.54% 31.01% 17.86% 31.40%
spla 12.93 28.75% 38.58% 28.98% 38.87%
clma 25.35 25.78% 35.71% 26.29% 36.29%

s38417 25.35 36.02% 43.14% 36.81% 44.01%
28.84% 40.31% 29.41% 40.96%

Circuit
CLB+SP+Inputs CLB&0.5LUT+SP+InputsBase

Ioff (mA)

13.91% 14.57%
Average

Area Overhead

5. Conclusions and future work

In this paper, we have shown how significant leakage
current reduction can be achieved in SRAM-based
FPGAs. Combining a bottom-up/top-down approach for
determining effective ground-gating granularities for
turning off SRAM cells in FPGA logic and routing
resources, significant leakage current reductions were
achieved with manageable area overhead and no delay
penalty. In future FPGA generations, the use of these
techniques can help control the inherent leakage problems
induced by scaling. This work provides a straightforward
yet effective start in addressing this significant problem.

The techniques presented here were static for a given
FPGA configuration, and no restrictions were placed on
the synthesis, mapping, and place-and-route tools. Once
the circuits are placed-and-routed onto the device using
VPR, our post-processing techniques identify which
resources are unused, and the SRAM cells at the gate
inputs of the sleep transistors can be programmed
accordingly. Putting restrictions on the design tools may
increase the percentage of SRAM cells that can be turned
off with coarser sleep transistor granularities, but the
impact on area and delay must be considered. Future
work in this area will quantify this tradeoff. Finally, the
tradeoffs associated with other gating techniques (e.g. Vdd
gating) and multi-threshold processes will be explored, as
will the impact of temperature on leakage.

6. Acknowledgements

This work is supported in part by the National
Science Foundation under grant No. CCR-0105626.

7. References

[1] Agarwal, A., Roy, K., “A Single-Vt Low-Leakage Gated-
Ground Cache for Deep Submicron,” IEEE Journal of Solid-
State Circuits, Vol. 38, No. 2, pp, 319-328, February 2003.
[2] Betz, V., Rose, J., “VPR: A New Packaging, Placement and
Routing Tool for FPGA Research,” International Conference on
Field-Programmable Logic and Applications, pp. 213-222,
1997.
[3] Berkeley Predictive Technology Model: http://www-
device.eecs.berkeley.edu/~ptm
[4] Calhoun, B., Honore, F., Chandrakasan, A., “Design
Methodology for Fine-Grained Leakage Control in MTCMOS,”
International Symposium on Low Power Electronics and
Design, pp. 104-109, 2003.
[5] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu,
“New paradigm of predictive MOSFET and interconnect
modeling for early circuit design,” Custom Integrated Circuits
Conference, pp. 201-204, 2000.
[6] Chen, Z., Johnson, M., Wei, L., Roy, K., “Estimation of
Standby Leakage Power in CMOS Circuits Considering
Accurate Modeling of Transistor Stacks,” International
Symposium on Low Power Electronics and Design, pp. 239-244,
1998.
[7] Kam, T., Rawat, S., Kirkpatrick, D., Roy, R., Spirakis, G.,
Sherwani, N., Peterson, C., “EDA Challenges Facing Future
Microprocessor Design,” IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, Vol. 19, No.
12, pp. 1498-1506, December 2000.
[8] Li, F., Chen, D., He, L., Cong, J., “Architecture Evaluation
for Power-Efficient FPGAs,” International Symposium on
Field-Programmable Gate Arrays, pp. 175-184, 2003.
[9] Marquardt, S., Betz, V., Rose, J., “Using Cluster-Based
Logic Blocks and Timing Driven Packing to Improve FPGA
Speed and Density,” International Symposium on Field-
Programmable Gate Arrays, pp. 37-46, 1999.
[10] Poon, K., Yan, A., Wilton, S., “A Flexible Power Model for
FPGAs,” International Conference on Field-Programmable
Logic and Applications, pp. 312-321, 2002.
[11] Rabaey, J., Chandrakasan, A., Nikolic, B., Digital
Integrated Circuits, 2nd Edition, Prentice Hall, New Jersey,
2003.
[12] Rose, J., Betz, V., Marquardt, S., Architecture and CAD for
Deep-Submicron FPGAs, Kluwer Academic Publishers, Boston,
1999.
[13] Spartan IIe 1.8 V FPGA Family: Complete Data Sheet.
[14] Sylvester, D., Kaul, H., “Future Performance Challenges in
Nanometer Design,” Design Automation Conference, pp. 3-8,
2001.
[15] Tuan, T., Lai, B., “Leakage Power Analysis of a 90nm
FPGA,” Custom Integrated Circuits Conference, pp. 57-60,
2003.
[16] Wolff, F., Knieser, M., Weyer, D., Papachristou, C., “High-
Level Low Power FPGA Design Methodology,” National
Aerospace Conference, pp. 554-559, 2000.

