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Abstract

This paper describes XTalkDelay, an industrial-strength
methodology and tool for measuring the impact of crosstalk
on delays of paths in a design. The main cornerstone of
XTalkDelay methodology, vis-a-vis other approaches, is its
high delay computation accuracy. It deliberately avoids
the use of approximate models for cells and nets and in-
terconnect reductions. XTalkDelay employs a path-based
approach; uses detailed and accurate distributed RC par-
asitics for critical nets and their aggressors; uses BSIM3-
accurate gate models; and invokes HSPICE for delay com-
putation using only the minimum required set of input pat-
terns. XTalkDelay has been successfully applied on two
industrial designs.

1 Introduction

In deep sub-micron circuit designs, the coupling capaci-
tance between adjacent interconnects has become signif-
icant as the wires become taller and narrower while the
distance between them decreases. Due to these changes,
crosstalk noise between physically adjacent nets has be-
come an important concern [3]. The affected net is known
as thevictim � and the neighboring switching net(s)� caus-
ing the noise is (are) calledaggressor(s). As shown in Fig-
ure 1, crosstalk can cause the arrival time of the victim to
increase (decrease) when aggressors switch in a direction
opposite to (same as) the victim. The distributed coupling
capacitance between� and� is shown as���. Crosstalk can
also lead to logic hazards and circuit malfunction [2]. For
instance, if i) the delay change is large enough to render a
critical path slower than the clock cycle and thus cause a
timing violation, or ii) the large spike generated on the vic-
tim due to capacitive coupling with a switching aggressor is
close enough to the clock edge so as to latch a wrong value
at the target flip-flop, the circuit can malfunction.

Accurate computation of the delay change due to
crosstalk then becomes very important in the circuit design
process. The paper addresses this problem in the context
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Figure 1: Crosstalk & its impact on delay of victim�

of a chip-level design and computes accurate path delays in
the presence of crosstalk coupling. The paper organization
is as follows. Previous work on crosstalk and its impact on
delay is summarized in Section 2. We present the proposed
methodology and toolXTalkDelay in Section 3, including
its I/O and flow details. Section 4 presents and analyzes
results obtained by applyingXTalkDelay on two industrial
designs. In Section 5, we critique our approach and con-
clude with directions for future work.

2 Previous Work

The relevant literature can be classified broadly as address-
ing two problems: 1) the problem of crosstalk-aware delay
computation for a single net and 2) the problem of crosstalk-
aware timing analysis of a circuit. A solution to the second
problem requires applying the solution to the first problem
to at least a subset of nets in the circuit.

An accurate solution to the first problem (i.e., crosstalk-
aware delay computation for a single net) can be provided
by circuit or timing simulation techniques such as SPICE.
However, such techniques are inherently slow and cannot
be used to analyze large systems. When the system can
be modeled as a linear circuit, linear model reduction tech-
niques such as [13, 12] can improve the speed and hence
help handle larger systems. However, the cost is still too
much for the complex interconnects. Examples of apply-
ing reduction techniques to the crosstalk domain include
[4, 6, 8, 11]. [4] derives closed form equations for slow-



down and speed-up effects of crosstalk. However, the inter-
connect model used is a single self capacitance for the vic-
tim and for the aggressor and a single coupling capacitance
between victim and aggressor. This is simplistic, since i)
it uses a lumped model and ii) it ignores the interconnect
resistance, thus ignoring resistive shielding and attenuation
of signal strength. [6] and [8] improve the circuit template
used to model the interconnect. [11] derives an expression
of the victim voltage assuming a linear ramp for the input
waveform (or at most a combination of three linear ramps)
and a two-pole approximation for the victim waveform. The
accuracy is shown to be within 12% of SPICE.

Techniques have also been proposed to estimate the max-
imum crosstalk noise [7, 18]. Their main strength is that
they are fast and can be used in the inner loop of physical
design to quickly calculate an upper bound on the noise.
However, due to the unrealistic assumptions such as the ag-
gressor input being an infinite ramp, the accuracy of [7] is
quite low and its applicability is limited to short aggressor
wires with large slews. [18] derives an upper bound on the
effective peak noise. However, the bound can be optimistic
and the authors do not provide the maximum resulting error.
Moreover, these two papers do not address the problem of
delay change due to crosstalk.

We believe that due to simplifying assumptions and re-
ductions used, most of the aforementioned techniques such
as [4, 6, 7, 11, 18] are neither accurate nor general enough to
be included in an accurate crosstalk-aware timing analysis
methodology for a circuit.

A separate body of research work focuses on the second
problem, i.e., that of crosstalk-aware timing analysis of a
circuit [15, 9, 1, 16]. [15] describes a static timing analysis
(STA) tool to calculate the longest path in the design tak-
ing into account the impact of crosstalk on gate delays.1

This work, however, uses a simplistic net-based analysis
and ignores changes in net delays due to crosstalk. [9] pro-
poses a novel two-step approach in the timing analysis tool
CASTA: initially use a simple yet pessimistic interconnect
macromodel and obtain a quick net ranking according to
the crosstalk effects, and in the second step, progressively
reduce the pessimism by applying more accurate macro-
models. To cut down the run-time, it derives Thevenin
equivalent model for the driver and uses interconnect re-
duction techniques. But no accuracy results vis-a-vis an
accurate simulator like SPICE are presented to justify the
driver models and reductions. Another problem with this
approach is that it is net-based. Two paths passing through
a victim net� can have different switching times at� and de-
pending on the aggressors timing windows, may be affected
non-identically by different aggressors at those times. A
net-based technique does not distinguish between the two
paths and uses the worst-case scenario for�. Subsequently,
the delay of a path is computed by adding the worst-case

1In this paper, we will use gate & cell interchangeably. Same holds for
arrival & switching times, and slew & transition time.

net (and cell) delays. The path pessimism in the net-based
approach is thus at least the sum of the net pessimisms.
Like [9], [1] also proposes a two-step STA methodology, al-
beit slightly different. In the first step, a switch factor (also
called coupling compensation) approach [10] is used to cal-
culate the worst-case equivalent capacitance-to-ground for
each net, which is then used to derive a superset of violat-
ing paths. In the second step, these paths are analyzed more
carefully. Although this approach seems to finally avoid the
source of pessimism inherent in the net-based analysis, the
details of the all-important second step are sketchy and no
results on the accuracy of the technique are provided. [16]
presents a method where degradation tables are built which
capture the delay effects due to crosstalk for different values
of relative signal arrival time (difference between aggressor
and victim signal arrival time). These degradation tables
can be used during timing analysis.

3 XTalkDelay

We propose a highly accurate analysis methodology and
tool calledXTalkDelay to measure the effects of crosstalk
on path and circuit delay. The main highlights of our ap-
proach are as follows.

1. Our approach is path-based and does not suffer from
the pessimism inherent in the net-based analysis de-
scribed above. For each path� under analysis, for a
given victim net, the true aggressors and their switch-
ing times are computed based on the switching time of
the victim net with respect to�.

2. For a given path, the delays through gates and nets (ly-
ing on the path) in the presence of crosstalk are com-
puted very accurately using HSPICE. Our approach
models nets as distributed RC network. We apply no
macromodel reduction techniques.

3. As we will show, crosstalk has a significant impact on
gate delays (in addition to the net delays). Hence it is
very important to use accurate gate delay models. Our
approach uses BSIM3 gate models, which is in con-
trast to the simple resistive models used in the previous
work.

4. To compute gate delays, static timing analysis tools
typically replace the interconnect parasitics at the out-
put net by a single effective capacitance�eff. Com-
putation of�eff is approximate and is an attempt to
fit the output-load based cell delay model used in STA
tools. Instead, our methodology uses HSPICE and the
complete RC network at the output net to compute the
pin-to-pin delay through the gate and is very accurate.

5. For cell delay recomputation, we present a method
which generates the minimum number of patterns that
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Figure 2:XTalkDelay flow

should be simulated to derive the worst case pin-to-
pin delay through a cell on the critical path for a given
input-output pin pair and transition directions.

6. XTalkDelay generates SPICE-accurate delay reports
for the critical paths for two scenarios: one, in the
presence of switching aggressors and coupling capaci-
tances, and the other, in their absence. This allows the
designers to see the impact of crosstalk easily.

7. We have successfully applied our methodology on two
industrial designs and present the results in this paper.

The overall methodology ofXTalkDelay is as follows. It
assumes that a mapped, placed and routed design is avail-
able.XTalkDelay recomputes the delay of a set of (critical)
paths in the presence of neighboring aggressor nets. First,
XTalkDelay identifies potential aggressor nets for each net
� of a (critical) path�. Then it extracts parasitics for�
in the presence of the aggressors. The parasitics include
distributed coupling capacitances, self capacitances and re-
sistances. Finally,XTalkDelay recomputes�’s delay by
traversing� from the start-point, recomputing the delay and
slew through each cell on� & the associated output net�
in the presence of the coupling capacitances and aggressor
transitions.

3.1 I/O

XTalkDelay reads a mapped and post-routed design, in-
cluding a gate-level hierarchical netlist and placement and
routing data. The designer can also provide an optional list
� of paths which he/she wishes to analyze for delay in the
presence of the capacitive coupling. If such a list is pro-
vided, it is expected to have the actual arrival times and tran-

sition times for all points (pads or pins) on each path of� . If
the path list� is not provided (default mode),XTalkDelay
will automatically generate an intermediate timing report
��� which contains the list� of critical and near-critical
paths in the design.XTalkDelay also requires the cell li-
brary and SPICE model files.

Currently,XTalkDelay invokes CAD vendor tools for the
following tasks: PrimeTime for STA, StarXtract for para-
sitic extraction, and HSPICE for circuit analysis and delay
computation.2

The output ofXTalkDelay are two timing reports��� and
���. The timing report��� contains timing information for
each path� in � in the presence of crosstalk. Actual arrival
times and slews at all points and delays through cells and
nets on� are reported. The second report��� contains
the same timing information, but in the absence of crosstalk
from switching aggressors. The difference between� �� and
the timing report��� generated by PrimeTime is that��� is
generated using HSPICE. Since PrimeTime is usually pes-
simistic as compared to HSPICE (i.e., PrimeTime reports
higher delay numbers as compared to HSPICE), it is better
to compare��� with���: both are generated using HSPICE
and are more accurate than PrimeTime.

3.2 Flow

The main steps in theXTalkDelay flow are shown in Figure
2 and are as follows.
1. (Critical) Path Generation: If not provided, generate
the set of critical paths� . All nets on� along with their
directions (i.e., rise or fall) and arrival times constitute the
set� of victim nets. For our designs, a PrimeTime script
is used to generate this set. This script also reads in the net
parasitics to model the interconnect. Let��� be the path
delay computed by PrimeTime.

2. Aggressor Net Generation: For each net	 in � ,
compute the set of potential aggressor nets,
�	�. These
are the nets that arephysically close to 	. Given	, the
following procedure computes
�	�. First, from the
layout, all the net segments���	� of 	 and their end
point coordinates are determined. Next, those segments
in the entire design which are within some user-defined
maximum distance (in terms of grids) from some segment
in ���	� are extracted. The owning nets of these segments
determine the set of possible aggressor nets
�	� for 	.
The user can also specify the minimum length for which a
net segment must run in parallel with a segment in���	�
to qualify as an aggressor. Let	 � 
�	� � ��	�, also
called thevictim-aggressor set.

3. Parasitics Extraction: For each	 � � , a parasitic
extraction tool (StarXtract) is used to generate the parasitics
for the victim-aggressor set��	�. The parasitics form an

2All the three tools are from Synopsys.
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Figure 3: Path delay recomputation

RC network, which includes distributed net resistances,
capacitances to ground and coupling capacitances between
the nets in��	�. An example of such a network is shown
in Figure 1 for the victim� and a single aggressor�.

4. Timing Window Generation: Compute timing window
for each net
 in ���� ��	�. Ideally, in order to reduce
pessimism and false timing violations, we would like the
timing window to explicitly list delays of all sub-paths
that pass through
, i.e., delays from their respective
start-points up to
. However, we do not have access to
any tool that generates such information. We were forced
to use PrimeTime, which only computes the shortest and
the longest paths. Then, in our case, the timing window
consists of min/max & rise/fall arrival times and transition
times. These timing windows are used to generate aggres-
sor nets’ waveforms, which will be used in the subsequent
SPICE simulations.

5. Path Delay Recomputation: The delay of each critical
path� � � is recomputed taking into account coupling and
aggressor information. As shown in Figure 3, a path� is
an alternation of cells and nets, along with the transition
direction (rise or fall) at each point.� is traversed from
the start-point and delay of each cell�� from the input pin
����� to the output pin����� and net	� rooted at����� are
recomputed. The arrival time and transition time at the sink
������� of 	� are updated. They will be used to compute
the delay of the stage���. The process is continued till the
new arrival time at the end-point of� is known.

The delays of the cell�� and net	� are computed in the
presence of the entire parasitic RC network (including cou-
pling capacitances in the nets��	��) and transitions on the
aggressor nets
�	��. To compute the maximum impact
of the aggressor� � 
�	�� on the victim delay,� should
make a transition in a direction opposite to that of the vic-
tim 	�, if the timing window of� contains the actual arrival
time of	� on the path�. The arrival time of� is identical
to that of	�, and its transition time or slew is the minimum

slew in the appropriate direction. This timing information
is obtained from static timing analysis. Note that, in gen-
eral, the minimum slew on the aggressor will result in the
maximum delay increase. When the aggressor�’s timing
window does not contain the arrival time of	 �, � is kept
static at VDD (if	� is falling) or GND (if 	� is rising). The
arrival time, transition time and direction (rising, falling,
or constant VDD/GND) together constitute the aggressor
waveform.

The parasitics extracted for	� and
�	�� nets are com-
bined with the aggressor waveforms into a SPICE deck. The
only missing information in the deck is the values on the
side inputs of the cell��. The side inputs of�� are all in-
puts of�� except�����. Note that the waveform on�����
is already known: it is based on the new arrival time and
the transition time computed from the previous stage�� �.
To measure the worst delay through� �, all possible values
need to be specified at the side inputs of��. The delay is
measured with HSPICE for each case, and the maximum
of all these delay values yields the worst pin-to-pin delay
through��. This is thenaive approach for delay computa-
tion. We can speed up the delay characterization process
significantly by utilizing the information about sensitivity
and input/output transitions at��. For instance, if�� is a
three-input AND gate, with critical input����� � �� ris-
ing and the output����� also rising as a result, the naive
approach requires 4 SPICE simulations, corresponding to
the 4 vectors 00, 01, 10, and 11 at�� and��. However,
the input transition at�� can propagate to the output only
if the side inputs�� and�� are both 1. So only one in-
put vector needs to be applied and simulated. We call this
the smart approach. In general, assume we are given that
the output����� of the cell �� implements logic function
����� ��� � � � � �	�, where����� � �� is on the critical path.
Without loss of generality assume�� makes a rising tran-
sition and� makes a falling transition. We are interested
in computing the minimum set of patterns that need to be
simulated to compute the worst case delay from�� to the
output� of the cell�� for the given pair of transitions on��



and� . Before�� rises,�� � � and� � �. This corresponds
to the condition

����� ��� � � � � �	� � �
�

�
� (1)

where�
�

�
is the cofactor of� with respect to�� � � and

represents exactly those input combinations at�� through
�	 for which � � � when�� is set to 0. After�� rises,�
falls. The other inputs of� do not change. The final state is
�� � � and� � �. This corresponds to the condition

����� ��� � � � � �	� � � �
� � (2)

where� �
� represents exactly those input combinations for
which � � � when�� is set to 1. Since the only input that
has changed is��, the function

������ ��� � � � � �	� � �
�

�
� �
� (3)

represents exactly all the combinations at�� through�	
which are possible both before and after�� and� make the
transitions in the specified directions. It is easy to see that
�
�

�
� �
� also represents the set of combinations for the case

when�� falls and� rises. When both�� and� rise (or fall),
the desired function is

�
��
�


�

�

(4)

Example 3.1 Consider the above three-input AND gate
example, where �� rises and � rises as a result.
����� ��� ��� � ������. � ����� ��� ��� � ��� � ��� � ���.
From (4), the function �
��

�


�

�

� ��������� � ���� yields
all the �� and �� combinations under which rising �� can
result in rising � . This implies �� � �� � �.

We have developed a SIS-based [17] library pre-
processor, which applies the above analysis for each input-
output pin pair (and their transition directions) of all library
cells, computes the above functions, and generates the mini-
mum set of patterns that need to be simulated.XTalkDelay
incorporates these patterns and computes the worst delay
through�� from the input pin����� to the output pin�����.
From the arrival time at����� and the cell delay, arrival time
at����� is computed. Corresponding to this worst case, we
also measure using HSPICE the new net delay from��� ��
to ������� (which in turn determines the new arrival time at
�������) and the transition time at�������. This completes
the delay recomputation through the cell� � and net	�.

Repeating this for all the stages of�, we compute�’s
new delay,��� , which we call thecrosstalk-aware delay.

6. Since PrimeTime and HSPICE can yield quite different
delay values, for an accurate computation of delay change
due to crosstalk, we recompute the path delay of� by re-
peating the above delay computation process, but without
using any aggressor switchings: in other words, all aggres-
sors are assumed to be either at VDD or GND. This ef-
fectively replaces the coupling capacitances in��	 �� with
capacitances to ground. The path delay thus obtained is
called theSPICE delay (��� ).

design #cells #nets
D1 165K 167K
D2 454K 460K

1K = 1000.
Both benchmarks are in 0.11-� technology.

Table 1: Benchmark statistics

4 Experimental Results

We have appliedXTalkDelay on two industrial designs:��

and��. Both use 0.11-� technology and�

 of 1.2V. Ta-
ble 1 shows the numbers of cells and nets in these two de-
signs. We analyzed the designs after they had been success-
fully placed and detail-routed. We also extracted the layout
parasitics and used them in the static timing analysis tool
PrimeTime (version 2002.03-SP1).

In the next subsections, we present results on the impact
of crosstalk on path delays and gate delays for�� and��,
accuracy of our methodology, and the comparison between
naive and smart approaches for cell delay characterization.

4.1 Impact of Crosstalk on Path Delays

First, we report the results on��. Initially, PrimeTime
reports 65 critical or near-critical paths in��. Out of
these, only 36 are unique: 29 were found to be duplicates
and removed. This simple utility reduced the run-time of
XTalkDelay by a factor of almost 2, since the run-time is
roughly linear in the number of paths analyzed. The total
number of critical or victim nets on these 36 paths was 130.
The total number of aggressor nets was 309. On average,
there were about 2.4 aggressor nets per victim net. It turned
out that 68 victim nets had no neighboring aggressor nets.
We appliedXTalkDelay on each of the 36 paths to compute
��� (HSPICE delay without crosstalk) and��� (HSPICE
delay in the presence of crosstalk). It turns out that only
11 of these paths had a delay change of more than 10ps,
i.e., �� � ��� � ��� � ��p�. Table 2 provides delay
information for each of the 11 paths. Paths 7 and 10 have
maximum��: more than 350ps. This prompted us to inves-
tigate them further. We discovered that on path 7, there was
a net	� that had four aggressors.	� had an overlap length
of 950�with two of them and 180-255�with the other two.
On path 10, there were two nets with significant overlaps:
400-650�. These paths, their��� and��� delays, and the
overlap lengths with aggressors were reported to the design-
ers. They verified that coupling did cause these paths to be-
come longer and moved the relevant victim and aggressor
nets away from each other to reduce the delay increase.

For the second design��, PrimeTime reports 60 (unique)
critical paths. In all, there are 450 (victim) nets on these
paths. They had a total of 247 aggressor nets. It turned out
that 336 critical nets did not have any aggressors.XTalkDe-



path ��� ��� ��� �� � ��� � ��� �� ��
��
���

1 3754.5 3641.83 3682.85 41.02 34.29 83.6
2 3769.3 3663.32 3703.21 39.89 33.22 83.3
3 3769.1 3663.13 3703.02 39.89 33.22 83.3
4 3768.73 3668.61 3707.47 38.86 32.19 82.8
5 3767.42 3661.60 3701.49 39.89 33.22 83.3
6 1672.37 1641.73 1657.86 16.13 9.54 59.2
7 4057.18 4027.49 4379.20 351.71 350.35 99.6
8 1653.58 1626.83 1637.37 10.54 10.54 100.0
9 1404.57 1335.93 1354.03 18.10 14.97 82.7
10 4089.96 4015.67 4384.56 368.89 347.88 94.3
11 1348.9 1294.35 1332.07 37.72 37.72 100.0

All delays are in ps.

Table 2: Critical path delays by PrimeTime, HSPICE, & crosstalk-aware analysis for� �

path ��� ��� ��� �� � ��� � ���
1 1878.27 1821.26 1833.89 12.63
2 1791.09 1758.72 1776.79 18.07
3 1947.89 1893.51 1911.73 18.22
4 1834.71 1798.49 1816.67 18.18

All delays are in ps.

Table 3: Critical path delays by PrimeTime, HSPICE, & crosstalk-aware analysis for� �

lay found only four paths to have a delay increase of more
than 10ps. They are listed in Table 3. The main reason why
�� had smaller impact from crosstalk is that the average
number of aggressors per victim net was 0.55 as compared
to 2.4 for��. In turn, this was because�� had already
been optimized by the designers for crosstalk prevention.
This version of the design was obtained after increasing the
spacing between the net segments that had significant cou-
pling.

During our experiments, we also found that any overlap
of smaller than 20� between two net segments did not result
in significant coupling capacitance.

4.2 Impact of Crosstalk on Gate Delays

We performed an experiment to study the impact of
crosstalk on gate delays and the relative contribution of gate
delay changes to the path delay degradation��. For the
chip ��, for each path reported in Table 2, we computed
the sum of the gate delay changes due to crosstalk. This
is listed under the column�� in Table 2. The percentage
fraction is shown in the column��

��
���. For instance, for

path 1, the crosstalk resulted in a delay increase of 41.02ps,
out of which 34.29ps was contributed by the gate delay in-
crease. Only 6.73ps increase was due to interconnect. For
almost all paths, the contribution of gate delay change to
�� was found to be over 83%. This points to a very high
impact of crosstalk on gate delays. Therefore, it is impor-

tant to accurately model and compute not only interconnect
delays but also gate delays.3

4.3 Accuracy of XTalkDelay

We would like to make a few observations on the accuracy
of XTalkDelay methodology.

First, note from Table 2 that the PrimeTime delay���
for a path� is different from��� on average by 72.5ps
(for all these paths, the PrimeTime delay values are greater).
This significant difference, we believe, is due to three fac-
tors: 1) PrimeTime reduces the interconnect at an output
pin to a single�eff in order to compute the cell delay, 2)
PrimeTime uses a look-up-table based scheme to compute
the cell delay, and 3) PrimeTime does not compute the de-
lay through interconnect as accurately as HSPICE. We no-
ticed several cases where the interconnect delays computed
by PrimeTime differed by more than 10% from those com-
puted by HSPICE. Usually the PrimeTime-computed inter-
connect delays are smaller. This justifies the use of HSPICE
in XTalkDelay.

Next, we present data to highlight the inaccuracy of
net-based analysis as compared to path-based analysis for
crosstalk. In net-based analysis, the maximum arrival time
of a net is used to derive aggressors’ waveforms. In de-

3We did not conduct a similar study for��, since the path delay degra-
dations�� were not significant for��.



sign��, we found a critical net	 whose maximum arrival
time was�	 = 4694ps. The net-based analysis will result
in aggressors switching at�	. In this case, only one ag-
gressor’s timing window contained�	. However,	 was on
two critical paths, and on one of these paths (path 7 in Ta-
ble 2), the arrival time of	 was � = 3520ps. Path 7 will
not be analyzed correctly using net-based analysis, since
the aggressor switching time is forced to�	, very differ-
ent from the correct value�. In fact, the net-based analysis
computed that the delay of path 7 changed by less than 15ps
over��� . However, in the path-based analysis ofXTalkDe-
lay, the switching times of aggressors are set at� instead
of �	. The net	 had two aggressors whose timing win-
dows contained�. By setting the switching times of these
two aggressors to� and carrying out the analysis, the de-
lay of path 7 was found to increase by more than 350ps
over ��� , as shown in Table 2! Another similar case was
discovered on path 10. This example illustrates the inaccu-
racy inherent in the net-based crosstalk delay analysis (in
terms of the aggressors that should switch and their switch-
ing times to model the worst-case scenario and its inability
to distinguish different signal arrival times at a single net)
and strengthens the case for a path-based analysis.

4.4 Naive vs. Smart Cell Delay Characteriza-
tion

We compared the naive and smart approaches for cell delay
characterization in the presence of crosstalk. Recall from
Section 3 that the naive approach applies all possible input
transitions to the side inputs of a cell, whereas the smart ap-
proach only applies the minimum set of vectors needed. On
��, using the smart technique, the total number of HSPICE
simulations (for 36 paths) was reduced from 484 (for the
naive method) to 327: a reduction of 32%. The total run-
time for characterization went down from 173 minutes to
109 minutes, a speed-up of 1.59. This data underscores the
effectiveness of the smart approach for delay computation.

5 Discussion

We have developed an industrial-strength analysis tool
XTalkDelay for measuring the impact of crosstalk on de-
lays of (critical) paths in a design. The crosstalk-aware de-
lay information is used by the designers to modify the de-
sign and prevent crosstalk. The main cornerstone of our
approach, vis-a-vis other approaches, is its high delay com-
putation accuracy. We deliberately avoided the use of ap-
proximate models for cells and nets and interconnect reduc-
tions. XTalkDelay employs a path-based approach, uses
detailed and accurate distributed RC parasitics for critical
nets and their aggressors, uses BSIM3-accurate gate mod-
els, and invokes HSPICE for delay computation using only
the minimum complete set of input patterns. We have ap-

plied XTalkDelay to two real designs. We found that the
crosstalk impact was much greater on one design��, since
a significant number of critical net segments in the other
design (��) had no neighboring nets (owing to previous
crosstalk optimization). We also demonstrated the severe
impact of crosstalk on gate delays, which underscores the
need to model gate delays very accurately.

As pointed out in Section 1, most of the earlier crosstalk
estimation work is pessimistic and does not meet the strin-
gent accuracy requirements. On the other hand, an exhaus-
tive path-based approach, though accurate, is impractical
due to exponential number of paths. We believe that a hy-
brid two-step methodology similar to the one proposed in
[1] and this paper is a viable way to solve the problem. The
first step prunes the number of paths that will be passed to
the second step. In the first step, either a pessimistic net-
based crosstalk analysis can be used to report a superset of
actual paths that may violate timing requirements, or as in
XTalkDelay, simply the most critical or near-critical paths
can be chosen. The second step then accurately analyzes for
crosstalk effects each of the paths selected in the first step
and determines the true violations. It may use an approach
similar to the one proposed in this paper.

Finally, we describe the limitations ofXTalkDelay and
directions for fixing them in the near future.

1. XTalkDelay makes heavy use of the extraction tool
StarXtract (which is invoked once for each victim net) and
HSPICE for cell delay characterization. Although smart
pattern generation speeds up delay characterization, delay
computation and extraction are the bottlenecks in our flow.
The current version of our tool is useful for analyzing up
to about 150 paths. Beyond that, the run-time may become
very large (depending upon the total number of nets on the
selected paths). We are currently exploring faster extrac-
tion and circuit simulation techniques, for instance [14, 19].
Another solution is parallel computing. Parallelization can
be carried out at various levels. Different paths can be ana-
lyzed in parallel. Or, extraction for each victim net and its
associated aggressors can be done in parallel. Finally, dur-
ing delay recomputation, multiple HSPICE invocations for
a single stage can be done in parallel.

2. To capture the maximum impact on the victim de-
lay, XTalkDelay assumes that if the timing window of the
aggressor contains the victim arrival time, the aggressor ar-
rival time can be made to coincide with the victim arrival
time. However, this may not be possible, since the timing
window computed by PrimeTime contains information only
about the minimum and maximum arrival times at a gate.
Storing more detailed timing information can help alleviate
this problem.

3. For HSPICE simulation, the aggressor arrival time
is derived from that of the victim net (for the path under
consideration) as reported by PrimeTime. This is because
the true victim arrival time in the presence of aggressors is
not known (that is whatXTalkDelay will compute). From



Table 2, we can see discrepancies between PrimeTime and
HSPICE numbers. One way to fix this is as follows. If the
victim arrival time as reported by PrimeTime is different
from that computed by HSPICE in the presence of coupling,
say by more than 5ps, the new arrival time is used to gener-
ate the aggressor waveform and the delay characterization
is repeated. This fix can be expensive if the convergence
is slow, in which case a limit on the maximum number of
iterations may be required.

4. XTalkDelay does not check if there exists a pair of
input vectors that will cause aggressors to make transitions
in a direction opposite to that of the victim at a certain time.
In other words, we assume that such a pair exists. Such
a check can be done using ATPG (or SAT), but the signal
arrival times, transition times and gate delays need to be
incorporated [5].

5. Any change in the timing window of an aggressor due
to coupling at its transitive fanin nets is ignored.
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