A Flexible Data Structure for Efficient Buffer Insertion ‘

Ruiming Chen and Hai Zhou
Electrical and Computer Engineering
Northwestern University
Evanston, IL 60208
{rch659, haizhou}@ece.northwestern.edu

ABSTRACT

With continuous down-scaling of minimum feature sizes and
increasing of chip areas, buffering has become a necessary
technique to control the interconnect delays in VLSI chips.
Recently, Shi and Li proposed an efficient O(nlogn) time
algorithm to speed up buffering. Based on balanced binary
search trees, their algorithm showed superb performance
with the most unbalanced sizes of merging solution lists.
We propose in this paper a more flexible data structure for
the same buffering operations. With parameters to adjust,
our algorithm works better than Shi and Li under all cases:
unbalanced, balanced, and mix sizes. Our data structure is
also simpler than theirs.

1. INTRODUCTION

With aggressive scaling down of feature sizes in VLSI
fabrication, the interconnect delay becomes more and more
dominant. Buffer insertion has been widely used to reduce
interconnect delay [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Recently,
projections of historical scaling trends by Saxena et al. [11]
have predicted synthesis blocks with 70% of their cell count
dedicated to interconnect buffers within a few process gen-
erations. Thus, a fast buffer insertion method is very nec-
essary.

Van Ginneken [6] proposed a dynamic programming method

to complete buffer insertion in distributed RC-tree networks
for minimal Elmore delay, and his method runs in O(n?)
time and space, where n is the number of legal buffer po-
sitions. Then many works based on his work emerged [1,
3,4,5,2, 7, 8. So the speed-up of van Ginneken’s algo-
rithm can benefit many other algorithms. Shi and Li [§]
presented an O(nlogn) algorithm for the optimal buffer in-
sertion problem. Their work is based on the work proposed
by Shi [12], which improves Stockmeyer’s algorithm [13] for
area minimization in slicing floorplan. The main idea of
both works is that balanced binary search tree is used to
represent solution candidates, and it avoids updating every
candidate during the merging of two candidate lists. Since
the most costly step in buffer insertion is the merging of two
candidate lists, Shi’s algorithm can get good speedup. How-
ever, as is shown in [12], the merging of two candidate lists
based on balanced binary search tree can only speed-up the
merging of two candidate lists of much different lengths (un-
balanced situation) while for the merging of two candidate
lists of similar lengths (balanced situation), the performance
of their methods is worse than the method based on linked

*This work was supported by NSF under CCR-0238484.

list.

unbalanced situation

/falranced binary tree

maxplus-list

balanced situation

linked-list f
(totally skewed tree)

Figure 1: The flexibility of maxplus list

Figure 1 illustrates the best data structure for maintain-
ing solutions in each of the two extreme cases: the balanced
situation requires the linked list which can be viewed as a
totally skewed tree; the unbalanced situation requires the
balanced binary tree. However, most cases in reality are
between these extremes, where neither data structure is the
best. As we can see, the most balanced situation requires
the most skewed data structure while the most unbalanced
situation requires the most balanced data structure. There-
fore, we need a data structure that is between a linked list
and a balanced binary tree for the cases in the middle. We
discovered that the skip list [14] is such a data structure as
it migrates smoothly between a linked list and a balanced
tree. In this paper, we propose a flexible data structure
called mazplus list based on the skip list and related algo-
rithms for operations in dynamic programming for buffer
insertion. As is shown in Figure 1, we can migrate maxplus
lists to suitable positions based on how balanced the routing
tree is: a maxplus list will become a linked-list in balanced
situations; it will behave like a balanced binary tree in un-
balanced situations. So the performance of our algorithm
is always very good. The experimental results show that
it is even faster than the algorithm based on balanced bi-
nary search tree in unbalanced situations, and especially, it
is much faster in balanced situations. Besides, maxplus list
data structure is much easier to understand and implement
than balanced binary search tree.

The rest of this paper is organized as follows. In Sec-
tion 2, the general problem of merging two candidate lists
is formulated, and the skip list data structure is introduced.
In Section 3, maxplus list data structure and an efficient
algorithm to merge two maxplus lists are shown. In Sec-
tion 4, the method to find the optimal positions for buffer
insertion is shown. The experimental results are reported in
Section 5. The paper is concluded in Section 6.

2. PRELIMINARY
2.1 Maxplus problem

(max(dp,,d,),Cn+Cp),...

(max(hy,,hp),Wn+wWp),...

d+maX(dm,dn),a+Am+An)’ e

|(dm,Cm),... ||(dn,Cn),... | |(hm,wm),...| |(hn,wn),...

| |(dm,Am),...| | (dn,An),.._|

(a) buffer insertion
for maximal source
required departure
time

(b) cell orientation in
minimal area vertical
slicing floorplan

(c) time-driven tech-
nology mapping

Figure 2: The similar merge operations in three different problems

Given a routing tree as a distributed RC network, a dy-
namic programming approach to buffer insertion will build
non-inferior solutions bottom-up from the sinks to the root.
Each solution (d,,C,) at a node v represents a buffering
of the subtree at v having d, as the maximal delay to the
sinks and C), as the loading capacitance. When a tree at u
is composed of a wire (u,v) and a subtree at v, its solution
(du,Cy) can be computed as follows.

dy = dy+1r(u,v)(Cy+ c(u,v)/2)
Cw = Cy+c(u,v)

where 7(u,v) and c(u,v) are the resistance and capacitance
of (u,v), respectively. When a buffer is inserted at the node
v, the new solution can be computed similarly.

d{u = dv + db + Tbc'u
C, = o

where dp, 1, and ¢, are the delay, resistance and input ca-
pacitance of the buffer, respectively. The most interesting
case happens when two branches are combined at a node.
As is shown in Figure 2(a), assuming that (dm,Cn) is a so-
lution in one branch and (d», C») in the other, the combined
solution is given as follows.

d = max(dm,dn)
C = Cn+0Cn

The optimal structure of dynamic programming requires
that there is no solutions (di,C1) and (d2,C2) such that
dy < ds and C7 < C5 for the same subtree.

Given a slicing tree representing a floorplan, the problem
of area minimization is to select the size of each module such
that the chip area is minimized [13]. The dynamic program-
ming approach [13] builds up the solutions bottom up. As is
shown in Figure 2(b), given the solutions (hm, wm), (hn, ws)
of the two subtrees and a parent node with vertical cut, a
possible solution at the parent node can be constructed as
(max(hm, hn), Wm + wn).

Given a generic gate-level netlist, the technology mapping
needs to map the circuit into a netlist composed of cells
from a library. A popular heuristic [15] is to decompose the
circuit into trees and apply a dynamic programming on each
tree. When the objective is to minimize the area under a
delay constraint [16], the generation of solutions at a node
from those of its subtrees is shown in Figure 2(c), where
(dm, Am) and (dn, An) are the solutions at the fan-ins of a

possible mapping, and d and a are the delay and area of
the mapped cell. It can be decomposed into two steps: first
compute (max(dm,dn), Am + Ay) and then add d and a to
its elements.

A common operation in the above dynamic programming
approaches can be defined as follows.

PROBLEM 1 (MAXPLUS PROBLEM). Given two ordered
lists A= {(A1.m, A1.p), ..., (Aa.m, Aa.p)} and B = {(B1.m,
Bi.p),...,(By.m,By.p)}, that is, Aim > Ajm A A;.p <
Aj.p and B;.m > B;.mAB;.p < Bj.p for anyi < j, compute
another ordered list C = {(Ci.m,C1.p),...,(Ce.m,Ce.p)}
such that it is a maxplus merge of A and B, that is, for any
0<k<cthereare 0 <i<a and0 < j <b such that

Cr.m = max(A;.m, Bj.m) A Cr.p=A;.p+ B;.p

and for any 0 <i < a and 0 < j < b there is 0 < k < ¢ such
that

max(A;.m, Bj.m) > Cr.m A A;.p+ Bj.p > Ci.p.
2.2 Stockmeyer’s algorithm

A straight-forward approach to the maxplus problem is
to first compute (max(A;.m, B;.m), A;.p + Bj.p) for every
0 <i<aand 0 < j < b and then delete all inferior
solutions. However, it takes at least Q(ab) time. Stock-
meyer [13] proposed a O(a + b) time algorithm where infe-
rior solutions can be directly avoided. The idea is as fol-
lows. First, since A;.p + Bi.p is the smallest, the solution
(max(Ay.m, B1.m), A1.p + B1.p) must be assigned to Ci.
Then if A;.m = C1.m, any solution (max(A1.m,b;.m), A1.p+
B;.p) = (Ci.m, A1.p + B;.p) for any 1 < i < b is inferior to
C', thus should not be generated. Since all combinations
with A; have been considered (even though not generated),
we can proceed with As. This process can be iterated and
the pseudo-code is given in Figure 3.

2.3 Skip list

The advantage of a balanced binary search tree over a
linked list is its capability to quickly find an item ranked
around the middle. Skip list [14] is an alternative data struc-
ture to a balanced binary search tree. It can be viewed as a
combination of multiple linked lists, each on a different level.
The list on the lowest level includes all the items while that
on a higher level has fewer items. An example skip list is
illustrated in Figure 4. An item on k linked lists, that is,
with k£ forward pointers, is called a level k item. As we can

Algorithm STOCKMEYER(A, B, C)

C—9o
while A£APANB#®
do if Al.m Z Bl.m
then P «— A,
Q«— B
else P« B;1
Q«— A4
Pp—Pp+Qp
Append P to C
if Pm=Q.m
then delete @
return C

Figure 3: Stockmeyer’s Algorithm

head — . of | . NIL
rpt i B s e i
I Iy I I I; lg

i s

1

Figure 4: Skip list

see, if the level-k items are evenly distributed among the
level-(k — 1) items, a skip list can achieve the function of
a balanced binary search tree, that is, finding any item in
O(logn) time.

It is impractical to modify item levels during operations
to maintain the balance among levels. An effective way is to
randomly choose an item level during insertion and keep it
fixed thereafter. Therefore, a skip list has two parameters:
the maximal permitted level MaxLevel and the probability
p that a level-k item is also a level-(k + 1) item. Differ-
ent values of MaxLevel and p may lead to different costs
for operations. In [14], it is suggested that p = 0.25 and
MazLevel = logi (N), where N is the upper bound on the

p

number of items in the skip list. Each skip list has a head
that has forward pointers at levels one through MazxLevel.
The expected running time of search, insertion and deletion
of one item in a skip list with n items is O(logn).

3. MAXPLUS LIST

Even though Stockmeyer’s algorithm takes linear time to
combine two lists, when the merge tree is skewed, it may take
n? time to combine all the lists even though the total number
of items is n. For example, in such a case, a list A of size n
and a list B of size one may be combined in one step, which
may take O(n) time in Stockmeyer’s algorithm. However, if
we can quickly find 0 < i < n such that A;.m > By.m and
Air1.m < Bi.m, the new list will have the first ¢ items in A
with their p properties incremented by Bi.p. This is the idea
explored by Shi [12]. He proposed to use a balanced binary
search tree to represent each list so that the searching can be
done in O(logn) time. To avoid modifying the p properties
individually, the modification was annotated on an item for
the subtree rooted at it. Shi’s algorithm is faster when the
merge tree is skewed since it takes O(n log n) time comparing
with Stockmeyer’s O(n?) time. However, Shi’s algorithm is
complicated and also much slower than Stockmeyer’s when

the merge tree is balanced.

In stead of a balanced binary tree, we proposed the max-
plus list based on the skip list to hold the solutions for buffer
insertion etc. Since a maxplus list is close to a linked list, its
merge operation is just a simple extension of Stockmeyer’s
algorithm. As is shown in Figure 3, during each iteration
of Stockmeyer’s algorithm, the current item with the max-
imal m property in one list is finished and the new item is
equal to the finished item with its p property incremented
by the p property of the other current item. The idea of the
maxplus list is to finish a sub-list of more than one items at
one iteration. Assume that A;.m > Bj.m, we want to find
a ¢ < k < a such that Ax.m < Bj.m but Axt1.m < Bj.m.
These items A;,...,A; are finished and can be put into
the new list after their p properties is incremented by Bj.p.
Of course, the speed-up over Stockmeyer’s algorithm comes
from the fact that this sub-list is identified and updated not
item-by-item. The pointers in the skip list will be used to
“skip” items when searching for the sub-list, and an adjust
field will be associated with each forward pointer to record
the incremental amount on the skipped items.

3.1 Data structure

Maxplus list is a skip list with each item defined by the
following C code.

struct maxplus_item{
int level; /*the level*/
float m, p; /*two properties*/
float *adjust;
struct maxplus_item **forward; /*forward pointers*/

}

The size of adjust array is equal to the level of this item, and
adjust[i] means that p properties of all the items jumped over
by forward[i] should add adjust|i].

3.2 Merge operation

Algorithm ML-MERGE(A, B, C)

C—9
while A PAB#
do if Al.m 2 Bl.m
then list — A
item «— B1
else list — B
item — A,
cut «+— ML-SEARCHSUBLIST (list, item)
ML-CLEARADJUST(cut)
Append the sub-list before cut to C
if cut[1].m = item.m
then Clear the adjust array of item
Delete item from the maxplus list
return C

Figure 5: Merge of two maxplus lists

We define a cut after item I of a maxplus list L, denoted
by cut, as an array of size MaxLevel with the ith item being
the last item with its level larger or equal to i before item [
(including I). For example, in Figure 4, the cut after Ir is:

cut[l] = Iz, cut[2] = I, cut[3] = Is, cut[4] = Is. We can see
that the levels of items in a cut form a stair.

ML-MERGE, the algorithm to solve Maxplus problem, is
shown in Figure 5. It is very similar to Stockmeyer’s algo-
rithm. As we have said before, the basic idea is to find the
sub-list with A;.m > Bj.m very efficiently, and the sub-list
with B;j.m > A;.m very efficiently, then we can move ahead
much more on both lists in Stockmeyer’s algorithm.

Suppose in ML-MERGE initially maxplus list A and B are
both sorted in the decreasing order of m and increasing or-
der of p, and have no redundant items. The pseudocode of
procedure ML-SEARCHSUBLIST(list, item) is shown in Fig-
ure 6. It starts from the head of list to search for the longest
sub-list R satisfying

VI € R I1I.m > item.m.

During the search, the p property of each visited item is
increased by item.p, and adjust[i] of each visited item is in-
creased by item.p if the corresponding forward pointer is
used to jump over. It returns a cut after the last item in R.
The subprocedure ML-PROPAGATE increases the p proper-
ties and adjust[level] of items on the rising stairs before the
item with the highest level of the cut by item.p.

ML-SEARCHSUBLIST(list, item)

cut « list.head
iteml «— NIL
for i «— MaxLevel downto 1
do while cut[i].forward[i].m > item.m
do if item1 # NIL
then cut[i].adjust[i] —
cut[i).adjust[i] + item.p
else ML-PROPAGATE
(list.head.forward[1],
cut[t).forward[i], item.p)
cutli].forward[i].p —
cut[i].forward[i].p + item.p
item1 — cut[i] «— cut[i].forward|i]
cut[i] «— item1;
return cut;

Figure 6: Procedure ML-SEARCHSUBLIST

In order to simplify the move procedure, the following
condition is required to be satisfied before appending the
sub-list.

Condition!: adjust[i] of cut[i] is always 0 for i =
1, ... MazLevel.

Procedure ML-CLEARADJUST(cut) completes this task. As
is shown in Figure 7, we want to reset the adjust array of
the cut (Ng, N5, Ny, N1). We walk down along the left stair
from N;. Firstly, in order to satisfy Conditionl, the value
of Ni.adjust[7] is required to be 0, so we add its value to
N1. adjust[6] and Ny. adjust[6] and Ns.p. Then we can set
the value of Ni. adjust[7] to be 0. Now we have gone to the
level 6 stair, and we need to set the value of Ni. adjust[6]
to be zero, so similarly, we add its value to Nj. adjust[5].
Keep walking till we arrive at the downstairs, then the p
property of any item along the right stair is the actual value.
Now Conditionl is satisfied. The update of adjust arrays

in ML-PROPAGATE, and the clearance of adjust arrays in
ML-MERGE can be similarly accomplished by walking along
stairs.

Another important operation in Maxplus problem is the
evaluation of p properties of items. It has two step, firstly
we search for item I and simultaneously find the cut after
1, then

Ip=1Ip+ >

1. level<i< MaxLevel

cut[i]. adjust[q].

3.3 Determination of MazLevel

Our experiments show that the different values of MazLevel
can lead to much different running time. For example, when
MazLevel is equal to 1, the algorithm runs fastest in bal-
anced situations, while it becomes much worse in unbalanced
situations. As is shown in Figure 1, the method based on
linked-list is much faster in balanced situations, while the
method based on binary search tree is faster in unbalanced
situations. An important property of maxplus list is that it
is a very flexible data structure, that is, when MazLevel = 1,
it becomes a linked-list, while when MazLevel increases, it
becomes more like a binary search tree. In order to get the
best speedup, we cannot keep the same value of MazLevel in
all situations. Instead, here we presented a simple strategy
to determine the value of MazLevel. According to results of
the statistical experiments in [14], here we fix the value of p
at 0.25.

In the problems of buffer insertion, floorplan or technol-
ogy mapping related with Maxplus problem, the input is
always a tree. We define basic element as the buffer po-
sitions in buffer insertion, realizations of basic blocks in
floorplan and mappings in technology mapping. During the
read of input files, we can record the maximal and mini-
mal depth of leaves in the tree: Dyq, and Dyyin. Then if
(Dmin > Dmaz/2), we set MaxLevel = 1, otherwise we set
MazLevel = Llog%(n/8)J, where n is the number of basic

elements.

4. BUFFER INSERTION

For buffer insertion in a distributed RC-tree network, be-
sides the merging of candidate list, it is required to attach
wires and buffers, and the methods to do these tasks in-
troduced in [8] can be easily implemented using our data
structure. Another important task is to find the optimal
buffer positions after the optimal Tsource is calculated.

In order to record the composition of each item, we mod-
ify our data structure to include a pointer array comp of
size level in each item. During the bottom-up calculation
of non-redundant candidates, we maintain a configuration
graph to record the composition of each item. The pointers
in comp array point to the vertices representing composi-
tions in configuration graph. Similar to the adjust array,
compl[i] means that all the items between this item and the
next item with level larger or equal to i are composed partly
by the composition that it points.

Now we can update the comp array similar to the adjust
array in the merge operations, and at the same time con-
struct the configuration graph. For example, if the items
from item m to item n in a maxplus list are merged with
an item k, then when we update the value of adjust[i] of an
item in ML-MERGE, we simultaneously create a new ver-
tex v in the configuration graph, and add edges from v to

L

11T

oo e lalels
YYrT YT oYy

N1 N2 N3 N4 N5

i 18

Ng

=z
i

Z
©

Z
&
<
o

Figure 7: An example to show the flow of ML-LOWERING

compli] and all the vertices pointed by comp array of item
k, then let compl[i] point to v. Similarly, we also modified
ML-CLEARADJUST to keep an additional condition before
appending the sub-list in each iteration of ML-MERGE:

Condition2: compl[i] of cut[i] is always NIL for
i =2,...MaxLevel.

When we want to attach a buffer at the current location,
we create a new vertex v in the configuration graph, and add
edges from v to the vertex representing the buffer location
and the vertex pointed by comp[1], then make comp[1] point
to v.

We can see that the configuration graph is a directed
acyclic graph that is very similar to the well-known Binary
Decision Diagram(BDD) [17]. Traversing from any vertex v
in the configuration graph, the buffers visited represent part
of a buffering solution.

After the bottom-up calculation of non-redundant candi-
dates, we firstly evaluate the m and p properties of each
item and select an optimal item. At the same time, we
merge all the pointers in comp array for each item. So af-
ter evaluation, each item has a single pointer pointing to its
composition. We traversal the configuration graph starting
from the vertex that the composition pointer of the optimal
item points to, then we get all the inserted buffers in this
optimal solution.

5. EXPERIMENTAL RESULTS

Table 1: Comparison results for unbalanced trees

Name || Leaves || Alg 1 || Alg2 Our Alg.

time time time | T /T3 | T2 /T3

(Tvs) || (Tas) | (T s)

U100 100 || 0.083 || 0.033 || 0.033 2.52 1.00
U200 200 || 0.233 || 0.083 || 0.067 3.48 1.24
U300 300 || 0.567 || 0.150 || 0.100 5.67 1.50
U400 400 || 1.033 || 0.200 || 0.133 7.7 1.50
U500 500 || 1.530 || 0.250 || 0.180 8.50 1.39
U600 600 || 2.080 || 0.333 || 0.217 9.59 1.53
U700 700 || 2.900 || 0.485 || 0.267 | 10.86 1.82
U800 800 || 3.533 || 0.433 || 0.317 | 11.15 1.37
U900 900 || 4.500 || 0.500 || 0.333 | 13.51 1.50
U1000 1,000 || 5.633 || 0.767 || 0.383 | 14.71 2.00

Since merging of solution lists is the most costly step in
buffer insertion, we are focusing on testing the performance
of our maxplus list based merging method. We designed
many test cases with each case corresponding to a tree, and
every leaf in a tree has four basic options. We implement
a bottom-up algorithm based on our merge algorithm in C
to calculate the non-redundant candidate list at the root
of each tree. We implement Stockmeyer’s algorithm, and
download the code of Shi’s merge algorithm from Shi’s web-
page [18] for comparison. The running time is the total
time for executing each algorithm 100 times, and doesnot
include the time to read input files and to print final results.
All the experiments were run on a Linux PC with 2.4G Hz
Xeon CPU and 2.0GB memory.

For unbalanced trees, the comparison of our algorithm,
Stockmeyer’s algorithm and Shi’s algorithm is shown in Ta-
ble 1. Column 3 and Column 4 are the running time of
Stockmeyer’s algorithm and Shi’s algorithm respectively. We
use MazLevel = 4, and p = 0.25 in the maxplus list. The re-
sults indicate that our algorithm is much faster than Stock-
meyer’s algorithm, and with the increasing size of cases, it
can get more and more speed-up. Most importantly, our
algorithm is about 1.5 times faster than Shi’s algorithm on
average.

For balanced trees, the comparison of our algorithm, Stock-
meyer’s algorithm and Shi’s algorithm is shown in Table 2.
The 5th column is the running time of our method with
MaxLevel = 1, p = 0, and the 6th column is the run-
ning time of our method with MaxLevel = 4, p = 0.25.
The results shows that our algorithm with MaxLevel =1 is
even faster than Stockmeyer’s algorithm in some cases. It
is because when MaxLevel = 1, the skip list becomes an
ordinary linked-list, but our method moves a series of items
in each iteration while Stockmeyer’s algorithm moves one
by one. When MazLevel = 4, our algorithm is slower than
Stockmeyer’s algorithm but more than 2.5 times faster than
Shi’s algorithm.

For mixed trees that contain both balanced subtrees and
unbalanced subtrees, we use our strategy mentioned before
to determine the value of MaxLevel. The comparison of
our algorithm, Stockmeyer’s algorithm and Shi’s algorithm
is shown in Table 3. We can see that our algorithm is always
more than 2 times faster than Shi’s algorithm. Especially for
Mdatab case, our strategy to determine M ax Level improved
the speed much.

Table 2: Comparison results for balanced trees

Name Leaves# || Stockmeyer’s Alg. Shi’s Alg. Our Alg.
time(Ty sec.) || time(7% sec.) || (1,0) time(sec) | (4,0.25) time(75 sec.) | Th /15 | T2 /T3
B128 128 0.033 0.083 0.033 0.033 1.00 2.52
B256 256 0.100 0.317 0.133 0.100 1.00 3.17
B512 512 0.167 0.883 0.183 0.217 0.77 4.07
B1024 1,024 0.350 1.433 0.267 0.466 0.75 3.08
B2048 2,048 0.717 2.950 0.583 0.983 0.73 3.01
BLARGE 32,768 12.730 50.390 10.700 18.550 0.69 2.72
Table 3: Comparison results for mixed trees
Name Leaves# || Stockmeyer’s Alg. Shi’s Alg. Our Alg.
time(T sec.) || time(T% sec.) || MaxzLevel | time(T3 sec.) | T1/T5 | To/Ts
Mdatal 82 0.017 0.067 2 0.033 0.52 2.03
Mdata2 296 0.483 0.300 3 0.117 4.13 2.56
Mdata3 1236 0.633 1.750 4 0.616 1.03 2.84
Mdata4 2196 11.633 2.767 5 1.333 8.73 2.08
Mdatab 8046 3.317 11.383 5 4.550 0.73 2.50
Mdata6 21892 9.200 37.233 1 9.533 0.97 3.91
6. CONCLUSION [9] V. Khandelwal, A. Davoodi, A. Nanavati, and
We presented a flexible data structure, maxplus list, to A. Srivastava. A probabilistic approach to buffer
represent solution list, and designed an efficient buffer in- insertion. In Proc. Intl. Conf. on Computer-Aided
sertion algorithm based on maxplus list. With parameters Design, pages 560-567, 2003.
to adjust automatically, our algorithm works better than Shi (10] C. J. Alpert, M. Hrkic, and S. T. Quay. A fast
and Li [8] under all cases: unbalanced, balanced, and mix algorithm for identifying good buffer insertion
sizes. Our data structure is also simpler than theirs. candidate locations. In International Symposium on
Physical Design, pages 47-52, 2004.
[11] P. Saxena, N. Menezes, P. Cocchini, and Desmond A.
7. REFERENCES Kirkpatrick. The scaling challenge: Can

[1] C. Alpert and A. Devgan. Wire segmenting for correct-by-construction design help? In International
improved buffer insertion. In Proc. of the Design Sympositum on Physical Design, pages 51-58, 2003.
Automation Conf., pages 588-593, 1997. [12] Weiping Shi. A fast algorithm for area minimization of

[2] M. Kang, W. W.-M. Dai, T. Dillinger, and slicing floorplans. tcad, 15:550-557, 1996.

D. LaPotin. Delay bounded buffered tree construction [13] L. Stockmeyer. Optimal orientations of cells in slicing
for timing driven floorplanning. In Proc. Intl. Conf. on floorplan designs. Information and Control, 59:91-101,
Computer-Aided Design, pages 707712, 1997. 1983.

[3] J. Lillis, C. K. Cheng, and T. T. Y. Lin. Optimal wire [14] W. Pugh. Skip lists: A probabilistic alternative to
sizing and buffer insertion for low power and a balanced trees. Communications of the ACM, 33(6),
generalized delay model. I[EEE Trans. Solid-State 1990.

Circuits, 31:437-447, 1996. [15] K. Keutzer. Dagon: Technology binding and local

[4] J. Lillis et al. New performance driven routing optimization by dag matching. In Proc. of the Design
techniques with explicit area/delay tradeoff and Automation Conf., pages 617-623, June 1987.
simultaneous wire sizing. In Proc. of the Design [16] K. Chaudhary and M. Pedram. A near optimal
Automation Conf., pages 395-400, 1996. altorithm for technology mapping minimizing area

[5] T. Okamoto and J. Cong. Buffered Steiner tree under delay constraints. In Proc. of the Design
construction with wire sizing for interconnect layout Automation Conf., pages 492—498, July 1992.
optimization. In Proc. Intl. Conf. on Computer-Aided [17] R. Bryant. Graph-based Algorithms for Boolean
Design, pages 44-49, 1996. Function Manipulation. IEEE Transactions on

[6] L. P. P. P. van Ginneken. Buffer placement in Computers, C-35:677-691, August 1986.
distributed RC-tree networks for minimal Elmore [18] Weiping Shi. http://ece.tamu.edu/~wshi.
delay. In Proc. Intl. Symposium on Circuits and
Systems, pages 865868, 1990.

[7] Hai Zhou, D. F. Wong, I-Min Liu, and Adnan Aziz.

Simultaneous routing and buffer insertion with
restrictions on buffer locations. Proc. of the Design
Automation Conf., 1999.

[8] Weiping Shi and Zhuo Li. An O(nlogn) time algorithm

for optimal buffer insertion. In Proc. of the Design
Automation Conf., pages 580-585, 2003.

