
Fetch Halting on Critical Load Misses∗

Nikil Mehta,†Brian Singer,‡R. Iris Bahar
Division of Engineering, Brown University,

Providence, RI 02912

{mehta, bsinger iris}@lems.brown.edu

Michael Leuchtenburg,§Richard Weiss
Hampshire College, School of Cognitive

Science, Amherst, MA 01002

michael@slashhome.org,
rweiss@hampshire.edu

ABSTRACT
As the performance gap between processors and memory systems
increases, the CPU spends more time stalled waiting for data from
main memory. Critical long latency instructions, such as loads that
miss to main memory and floating point arithmetic operations, are
primarily responsible for these stalls. We present a technique, Fetch
Halting, that suspends instruction fetching when the processor is
stalled by a critical long latency instruction. This enables us to
save power in one of the primary sources of power dissipation, the
issue logic. By reducing the occupancy rates in the issue queue
and reorder buffer, we save power by disabling a large number of
unused queue entries.

In order to characterize critical instructions, our approach com-
bines software profiling and hardware monitoring techniques. Sta-
tistical profiling information obtained from sample runs is used to
identify critical instructions while hardware cache-miss prediction
is used to monitor these instructions. We show that, on average,
Fetch Halting can reduce issue queue and reorder buffer occupancy
rates by 17.2% and 23.4% respectively, with an average perfor-
mance loss of only 4.6%.

1. INTRODUCTION
During the execution of a program there are several instances

in which the processor is unable to issue new instructions. These
generally occur during the execution of certain long latency instruc-
tions, such as cache misses to main memory and floating point ALU
operations. If a certain long latency instruction has many output de-
pendencies then there is a high probability that the processor will
stall until the execution of that instruction is completed.

These stall cycles occur most frequently during accesses to main
memory. As processor clock frequencies continue to out pace mem-
ory speeds, CPUs are spending more and more cycles stalling idly
while waiting for information from main memory. Data prefetching
can be effective for minimizing stall time by predicting what data
will be needed and preemptively loading that data into the memory
caches. However, as memory latency increases, hardware or soft-
ware based predictors are less adept at hiding the full latency of a
cache miss. Mispredictions in highly aggressive prefetching also
have negative consequences in that they waste energy via superflu-
ous memory and cache transactions while potentially polluting the

∗This research was supported in part by NSF grant number CCR-
0311180 and an equipment grant from Sun Microsystems.
†Nikil Mehta is now with the California Institute of Technology,
Pasadena, CA.
‡Brian Singer is now with QLogic, Aliso Viejo, CA
§Michael Leuchtenburg is with the University of Massachusetts,
Amherst. This work was completed while at Hampshire College.

caches.
We explore Fetch Halting as a power saving technique by con-

serving resources during these stall cycles without affecting perfor-
mance. If the processor is completely stalled then there is no degra-
dation in performance if instruction fetch is halted. In fact, during
these stall cycles there is a significant potential for power savings as
stalled instructions merely sit in the instruction queue and consume
power every cycle via wake-up activity. Disabling these idle en-
tries in the instruction queue during stalls leads to significant power
savings by reducing the occupancy rates in the processor’s instruc-
tion queues. Instruction queues are a significant source of power
dissipation; Folegnani et al. showed that the issue queue consti-
tuted approximately one-fourth of the processor’s total power con-
sumption for his assumed architecture [12]. Wakeup activity repre-
sented 63% of the power in the issue queue or 16.3% of total power.
They then presented a technique to save much of that power by dy-
namically disabling wakeup for empty issue queue entries. Simi-
larly, [19] and [1] both presented techniques that disabled pipeline
queues (issue queue, reorder buffer, and/or load-store queue) ac-
cording to their occupancy. Fetch Halting takes advantage of these
previous approaches by further reducing the occupancy rates of the
issue queue and reorder buffer.

To determine when these stall cycles will occur it is necessary
to determine which static instructions cause execution to halt. In
order for Fetch Halting to be most effective, it is necessary that
these instructions be identified as soon as possible during program
execution. In this work, we measure the criticality of instructions
using a combination of software profiling and hardware monitor-
ing. Software profiling allows us to statically measure the execu-
tion penalty of long latency instructions with minimal hardware
cost, whereas hardware monitoring allows us to predict dynami-
cally changing load miss behavior. The goal is that this combined
monitoring approach will yield the optimum balance of maintained
performance and reduced power dissipation.

Fetch Halting is primarily aimed at load instructions that miss
to main memory, thereby yielding targets of opportunity with con-
sistently long latencies. By targeting only load misses that are de-
termined to be critical, we show that occupancy rates in the issue
queue and reorder buffer can be reduced by up to 31% and 49%
respectively while having little impact on performance for most
benchmarks. Fetch Halting can then be extended to all long-latency
stalling events.

To demonstrate the process of identifying critical static instruc-
tions, the software profiling flow is shown at the top of Figure 1.
Statistics are first collected for individual instructions from profil-
ing runs of applications using training input sets. Individual in-
structions are then marked as critical depending on the values of
these statistics. Finally, these instructions are annotated within the

Collect profile
stats using training
input set load instructions

software profiling flow

Analyze stats Annotate code with
Identify critical criticality bits

Load annoted program into
 instruction cache

COMMITWRITEBACK

deactivate fetch halting
When load completes,

after L2 access
Update Bloom Filter

ISSUEFETCH

Fetch instruction

pipeline flow

DECODE

Check for criticality

COMPUTE
ADDRESS

IF critical &
 predicted to miss

THEN activate fetch halting

IF critical THEN
access miss predictor

Figure 1: Fetch Halting flowchart

program code using annotation, then the program is re-compiled
and executed with the reference input set.

The annotated program is executed as shown in the bottom of
Figure 1. New instructions are checked for criticality during the
decode stage. Once the effective address of a load is computed,
the miss predictor is accessed to determine if the load is likely to
miss in the L2 cache. If a load instruction is both predicted to miss
(by hardware) and marked as critical (through software profiling),
then once the load begins accessing the L1 cache, a control signal is
sent to the fetch unit such that instruction fetch is suspended start-
ing on the next cycle. Fetching resumes when the load instruction
completes or is squashed if it is a wrong-path instruction.

The rest of the paper is organized as follows. Section 2 describes
our experimental setup. Section 3 describes our profile-driven tech-
nique used to determine a load instruction’s criticality. In Section 4
we provide an overview of the Bloom Filter and show how it is used
to improve the effectiveness of our criticality predictor. Results are
given in Section 5. Finally, prior work is discussed in Section 6 and
conclusions and future work are discussed in Section 7.

2. METHODOLOGY
All the experiments were run using a customized simulator de-

rived from the SimpleScalar suite [4]. The simulator was modified
to support software profiling of criticality (see Section 3), cache
miss prediction (see Section 4), Fetch Halting, and a split issue
queue and reorder buffer design. The simulated processor configu-
ration is presented in Table 1.

Table 1: Simulated processor configuration.
Inst. Window 64-entry IQ, 256-entry ROB, 128-entry LSQ
Machine Width 32-wide fetch, 8-wide issue, commit
Fetch Queue 16 instructions
Functional Units 6 ALUs + 2 mult/div

4 FP ALUs + 2 mult/div/sqrt
3 Load/Store units

L1 Icache 16kB 1-way; 16B lines; 1 cycle
L1 Dcache 16kB 1-way; 32B line; 1 cycle
L2 Cache 128kB 8-way; 32B line; 15/20 Icache/Dcache cycles
Memory 64-bit wide; 180 cycles first; 2 inter
Branch Pred. 2k 2-level + 2k bimodal + 2k meta

2 preds/cycle, 3-cycle mispredict penalty

For our simulations we selected a subset of the SPEC CPU2000
integer and floating-point benchmarks [13]. We chose a subset that
would demonstrate a range of effectiveness for Fetch Halting; the
benchmarks we omitted were either based on Fortran 90 code or
showed zero effect from the application of Fetch Halting, due to

negligible cache miss rates. 1

Software profiling was performed on the training input datasets
whereas actual results were attained with the reference datasets.
Each benchmark was simulated for 100M instructions after fast-
forwarding through some number of instructions to avoid simulat-
ing startup effects. These fast-forward counts were partially influ-
enced by [20] and [22] and were otherwise obtained by simulating
through both the train and ref datasets until some fixed breakpoint
in the benchmark. This ensured that both profiling and reference
runs were simulating the same part of the program.

We embed the information obtained from software profiling back
into the profiled application by annotating the program’s compiled
assembly instructions and then reassembling these modified source
files. Although it is also possible to directly annotate instructions
in the program executables, we took advantage of the source code
availability of the SPEC benchmarks. One possible shortcoming
of this method which will be addressed in the future is that the C
library is not annotated, thereby perhaps missing a large potential
source of instructions on which to halt.

With respect to an actual implementation rather than simulation,
there are a number of profiling tools that can record dynamic infor-
mation such as load misses and instruction dependency stalls (the
time between when an instruction is decoded and when it is ready
to execute). For example, the binary re-write tool Spike and the
DECC compiler [11] were successfully used to read profile data
and optimize the True64 kernel. In addition, Intel has a new set of
profiling tools based on Pin [8], which are ISA independent. What
we are proposing is even simpler since all that is needed is anno-
tation, which would require taking advantage of unused bits in the
instruction word. Aside from that and some counters that will be
discussed later, hardware support would not be necessary for pro-
filing and annotation.

3. PROFILING CRITICALITY
To be effective, Fetch Halting must determine if a particular in-

struction is critical enough that application performance will not
be impaired by suspending instruction fetching during its execu-
tion. Fetch Halting will only be applied to load instructions that are
first profiled as critical and then predicted to miss to main memory.
Determining criticality plays a key role in limiting performance
loss due to Fetch Halting. Without it, simply halting the fetch unit
whenever a load misses to main memory would be severely detri-
mental to performance.

1The single benchmark that does not fall into either of these cate-
gories is ammp, which because of its extremely low IPC and high
cache miss rates took an inordinate time to simulate and was there-
fore excluded.

Fetch Halting on Loads Without Criticality Predictors

0

10

20

30

40

50

60

70

80

90

100

ap
plu art

bz
ip2

eq
ua

ke gc
c

gz
ip

mgri
d

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

Benchmark

R
el

at
iv

e
V

al
u

e
to

 B
as

el
in

e
IPC
IQ Occupancy
ROB Occupancy

Figure 2: Fetch Halting without considering criticality. Criti-
cality is required to preserve performance with Fetch Halting.

An example of this performance loss is illustrated in Figure 2.
For these experiments we assumed perfect knowledge of load miss
behavior and only halted the fetch unit when an instruction missed
to main memory. The performance drop with this technique av-
erages out to a 20.2% drop in IPC. While we do see overall issue
queue and reorder buffer occupancy reductions of 42% and 50.4%
respectively, the associated performance loss (as high as 63% in the
case of art) does not justify the reduction in occupancy.

Fetch Halting uses a software profiling-based criticality predic-
tor. This work considers two profiling heuristics for measuring a
load instruction’s criticality: dead cycles and fetch-issue count. The
profiling phase collects statistics for these two heuristics for each
load instruction. Dead cycles are defined as cycles during which
the processor cannot issue any instructions due to unresolved de-
pendencies. The number of dead cycles is counted for each cache
miss; this simple count is proportional to the load instruction’s crit-
icality. Fetch-issue count is a more specific measurement of per-
formance and criticality. It counts the number of instructions that
are fetched and subsequently issued during a miss to memory. A
load instruction with a very low fetch-issue count is critical because
there is minimal instruction flow when the instruction misses. The
actual hardware cost of collecting these statistics would only be
trivial counters activated when the processor cannot issue any in-
structions, and would not impact the overall power savings of our
technique.

For each static instruction, the average and standard deviation
of dead cycles and fetch-issue count is calculated over all dynamic
occurrences of that instruction. Profiling simulations are run using
the train dataset in order to quickly obtain representative profiling
data that can be later tested using the reference dataset. If an in-
struction has either a high enough average dead cycle rate or low
enough fetch-issue count combined with low standard deviations
over a simulation, this instruction is marked as critical. Addition-
ally, in our current implementation Fetch Halting has two levels of
criticality: one that will halt the front end for the entire duration of
the cache miss (from issue to write-back), and one that will halt for
only half that time.

Choosing the thresholds for these metrics that determine if an
instruction is critical, half-critical, or non-critical is not an auto-
matic process and involves observing typical dead cycle and fetch-
issue counts for a specified processor configuration. Thresholds
can be chosen individually per benchmark to tune fetch halting to
each application. However, for this work, we chose a more gen-

eral approach and found that above an average of 165/140 dead
cycles or below 70/30 fetch-issue counts worked best for marking
critical/half-critical instructions across all benchmarks. Once a crit-
ical instruction is determined the actual method of marking an in-
struction critical, half-critical, or non-critical is performed by using
the instruction annotation ability of SimpleScalar. Each instruction
uses two annotation bits to indicate criticality.

Several other techniques and metrics are available through this
software profiling technique. First, the option of throttling instead
of halting is possible, as was used in [24] and [5]. However, we
observed that throttling does not have as strong of an impact as
halting in reducing queue occupancy. Second, it is also possible to
use other metrics for measuring the criticality of load instructions,
such as an instruction’s average number of dependencies. In our
simulations we kept counts of the number of direct and indirect
dependencies for each static load instruction; however, we have
not been able to fully explore these metrics as useful indicators of
criticality yet.

Software profiling can also be extended to long latency instruc-
tions such as mispredicted branches or long latency integer and
floating point arithmetic operations. For arithmetic instructions
the aforementioned metrics are sufficient; however, in the case of
branch instructions, several additional metrics are needed to char-
acterize criticality. Most important are measures of branch fre-
quency and misprediction rate. In addition, one may also consider
the wrong cycle count (the number of cycles taken down a wrong
path for a particular branch), and the wrong path instruction fetch-
issue count (the number of instructions fetched and subsequently
issued down a wrong path). A combination of these statistics gives
a fairly complete picture of what is happening during a specific
branch.

Preliminary testing has shown these methods to be promising.
The main problem is that some analog to a load miss predictor (such
as the Bloom Filter described in Section 4) is needed to improve the
dynamic handling of branch instructions. Thus, there is still non-
negligible performance loss when using these metrics as criticality
predictors. A potential candidate may be the use of a hardware
branch confidence predictor, as was used in the Pipeline Gating
approach proposed in [16].

4. CACHE MISS PREDICTION
A simple way of implementing Fetch Halting would be to wait

until an L2 miss is detected for a critical instruction and then halt
fetching until the data is returned from main memory. However, a
more effective approach would halt the fetch in anticipation of a
miss to main memory. Fetch Halting is most effective if it does not
have to wait until the L2 cache miss has been detected in order to
be activated.

Software profiling allows us to effectively identify which static
loads are critical; however, we still need assistance from hardware
to determine if a dynamic occurrence of a load will actually miss
to main memory. Peir et al. introduced an accurate and power-
efficient hardware cache miss predictor in [18]. Fetch Halting uses
Peir’s Partial-Address Bloom Filter (BF) cache miss predictor (see
Figure 3) to improve its effectiveness. This predictor uses the least-
significant p bits of the line address to index a small array of bits.
Each bit in the array indicates whether the partial address matches
any corresponding partial address of a line in the cache. A pre-
dictor bit is set when inserting a line into the cache. A bit is reset
when evicting a line and if the other ways in the set do not share
the same partial address (collision detection). Thus, the predictor
has a hardware cost of 2

p bits, and its accuracy increases with the
predictor’s size (i.e. the number of partial address bits used to index

Figure 3: Partial-address Bloom Filter cache miss predictor as
introduced in [18].

the predictor). Peir showed that this predictor successfully predicts
97% of all cache misses when it has four times as many entries as
are in the cache.

Fetch Halting uses a single BF cache miss predictor for the L2
cache. This should successfully predict nearly every cache miss
that results in a main memory access. In these simulations we used
a BF predictor with four times the number of entries (8k), which
will require 32k-bits or 4kB in hardware to predict a hit in a 128kB
L2 cache. While 4kB is not necessarily a negligible amount of
hardware, it is still a rather modest overhead — about 3% of the
L2 cache size — in exchange for a very high miss prediction ac-
curacy rate. In addition, this is not the only application for which
cache miss prediction is useful (see Section 6.4) and it is likely this
hardware could be amortized over multiple applications.

5. FETCH HALTING RESULTS
The goal of fetch halting is to reduce the occupancy of the is-

sue queue, which in turn will make the technique of turning off
unused queue entries (as proposed in [12] and [19]) more effec-
tive at saving power. Specifically, by turning off an unused entry,
we can effectively deactivate all logic associated with the wakeup
and select logic for that entry. This includes ready, bid, and grant
signals for the queue entry — this logic is typically implemented
using dynamic circuits, which are very power hungry due to ag-
gressive sizing and high switching activity. This represents a signif-
icant portion of issue queue power; however the exact distribution
of power consumed by this logic will vary depending on specific
design choices. We chose not to use architectural-level power esti-
mation tools such as Wattch [3] because of this variation of power
distribution due to design, and also due to Wattch’s oversimplifica-
tion in arbitration logic as discussed in [2] which leads to an under-
estimation of total chip power savings achieved by techniques tar-
geting issue logic.

The graph in Figure 4 shows the occupancy rates we were able to
achieve using either dead cycles or fetch-issue count as our measure
of criticality, whichever yielded the best results. Taking the aver-
age across 11 benchmarks, we see reductions in issue queue and
reorder buffer occupancy rates by 17.2% and 23.4% respectively,
with only a 4.6% drop in IPC. In addition, certain benchmarks per-
form particularly well. Using fetch-issue, gcc experienced IQ and
ROB occupancy reductions of 20% and 25% with only a 2% drop in
IPC. Similarly, we see IQ and ROB occupancy reductions of 29%
and 36% in perlbmk with a 1% drop in IPC. While both gcc and

Fetch Halting on Loads With Criticality

0

10

20

30

40

50

60

70

80

90

100

ap
plu

 (fi
)

art
 (d

ea
d)

bz
ip2

 (fi
)

eq
ua

ke
(de

ad
)

gc
c (fi)

gz
ip

(fi)

mgri
d (

de
ad

)

pa
rse

r (f
i)

pe
rlb

mk (fi)

tw
olf

 (d
ea

d)

vo
rte

x (fi)

vp
r (d

ea
d)

Benchmark

R
el

at
iv

e
V

al
u

e
to

 B
as

el
in

e

IPC

IQ Occupancy

ROB Occupancy

Figure 4: Fetch Halting performance across a range of bench-
marks. The words “fi” and “dead” next to each benchmark
name indicate whether the fetch-issue or dead cycle metric was
used.

perlbmk demonstrated large reductions in occupancy and negligible
reductions in performance without using criticality (Figure 2), we
see that criticality is needed to avoid severe drops in IPC for other
benchmarks while maintaining significant reductions in occupancy.
For example, without criticality twolf experienced a drop in IPC by
17%, but with criticality IPC only drops by 4.7% while occupan-
cies are reduced by 27% and 23.5%. Most benchmarks can project
to significant power savings at a negligible performance loss.

A few benchmarks demonstrated less impact. For instance, mgrid
experienced negligible occupancy reduction. We see similar behav-
ior for equake and parser For mgrid and equake, using fetch-issue
simply degrades performance too much for Fetch Halting to be use-
ful. We are looking into this issue further to determine if another
metric or thresholds customized for a specific benchmark can be
found to limit performance loss in these benchmarks while main-
taining gains in power reduction. It may also be the case that the
characteristic behavior of these benchmarks simply do not allow
Fetch Halting to be effective. Consider parser, which has an ex-
tremely low memory access rate and only a 6.1% L2 miss rate. In
comparison, mgrid has a 1.1% memory access rate, but while the
L2 miss rate is a much higher 53.5%, there are still few overall
memory accesses. These rates do not allow many opportunities to
halt, which limits the effectiveness of our method.

We believe these numbers can be improved upon, especially con-
sidering that we are only acting upon very few static and dynamic
instructions (less than 0.1%). Also, although loads are the primary
candidate for Fetch Halting, halting on other long latency instruc-
tions or branches should improve the performance and power sav-
ings of Fetch Halting even more, especially after fine tuning.

A preliminary test of applying Fetch Halting to loads and long
latency arithmetic operations is shown in Figure 5. We consider
all instructions with a latency of 4 cycles or greater to be “long
latency”. We see that applying Fetch Halting to long latency arith-
metic instructions as well further improves the occupancy rates of
benchmarks such as gcc and perlbmk (an extra 12% and 11% re-
spectively, for both the IQ and ROB) without reducing IPC further
(only an additional loss of 1% for both) . Additionally, benchmarks
such as mgrid that show little to no reduction in occupancy rates
(only 1%) for Fetch Halting on loads actually show some reduc-
tion in occupancy rates at a small cost in IPC. In this case, mgrid
achieves an additional reduction of IQ and ROB occupancy of 8%

Fetch Halting on Load and Long Latency Operations

0

10

20

30

40

50

60

70

80

90

100

ap
plu

 (fi
)

art
 (d

ea
d)

bz
ip2

 (fi
)

eq
ua

ke
(de

ad
)

gc
c (fi)

gz
ip

(de
ad

)

mgri
d (

de
ad

)

pa
rse

r (f
i)

pe
rlb

mk (
fi)

tw
olf

 (d
ea

d)

vo
rte

x (fi)

vp
r (d

ea
d)

Benchmark

R
el

at
iv

e
V

al
u

e
to

 B
as

el
in

e
IPC
IQ Occupancy
ROB Occupancy

Figure 5: Fetch Halting performance when applied to both
loads and long latency arithmetic operations.

and 5% with a cost of only 1% in IPC. On average we found 24.1%
and 28.5% reductions in issue queue and reorder buffer occupan-
cies with a 6.5% reduction in IPC. As these are preliminary tests,
we expect to further improve upon occupancy reductions while mit-
igating losses in IPC.

6. PRIOR WORK
6.1 Related Front-End Policies

Chi et al. presented methods for combining software and hard-
ware reconfiguration control policies in [7]. They introduced Fetch
Halting as a means of controlling the processor’s front end to save
power. However, their work was incomplete and dependent on an
oracle load miss predictor. We have presented a more in-depth
analysis of Fetch Halting and added a realistic implementation of a
cache miss predictor as well as a sophisticated criticality predictor
that yields greater accuracy and energy savings.

Buyuktosunoglu et al. introduce a hardware based fetch gating
scheme that relies upon hardware characterizations of issue queue
occupancy to selectively turn off unused queue entries [5]. Fetch
Gating saves power in a similar manner to Fetch Halting; however,
we influence the occupancy of the issue queue using indicators de-
termined in software rather than hardware. In addition, their work
has no notion of criticality, while Fetch Halting relies on measures
of criticality to minimize performance loss.

El-Moursy presented a fetch gating policy similar to Fetch Halt-
ing except targeted for simultaneous multi-threading (SMT) pro-
cessors [9]. Like Fetch Halting, El-Moursy’s Predictive Data Miss
Gating (PDG) aims to reduce issue queue occupancy to save power
and even improve performance due to more efficient use of the
shared issue queue by competing threads. PDG performs load-
miss prediction by looking up a 2k-entry table of two-bit saturating
counters indexed by the PC of the load. Unlike Fetch Halting, PDG
does not perform any criticality analysis on the load instructions
and is applied more generally to L1 cache misses.

The Pipeline Gating approach of Manne et al. proposed using
branch confidence predictors as a means of inhibiting speculative
execution when instructions are highly likely to be fetched along
a wrong path, thereby preventing wrong-path instructions from en-
tering the pipeline. As with our work, the ultimate goal of [16] is
to reduce energy consumption. However, their approach is guided
solely by hardware monitors and specifically targets wrong path
execution. Instead, our approach can target any critical instruction

that has been identified to cause the pipeline to stall.
Unsal et al. proposed a compiler-based approach to reducing

energy consumption called Cool-Fetch [24]. Their modified com-
piler estimated IPC by analyzing dependencies to guide a fetch-
throttling mechanism. Although Fetch Halting is also software-
based, it takes advantage of profiled execution statistics to better
predict critical stalling periods. The Cool-Fetch approach is more
limited because it is difficult at compile time to predict critical-
ity (which depends on the interplay of out-of-order instructions in
execution) and almost impossible to statically predict load misses.
Cool-Fetch is also less effective than Fetch Halting: it only reduces
issue queue occupancy by 2.0% on average.

6.2 Restricting the Instruction Window Size
The works of [1], [6], [12], and [19] presented methods that re-

sized the issue queue to dynamically reduce the number of active
entries in the instruction window according to the processor’s and
application’s needs. Fetch Halting shares the goal of reducing the
instruction window size. However, Fetch Halting accomplishes this
task by proactively limiting instruction flow rather than by directly
constraining the queue sizes. In a sense, our approach could be
used in combination with these techniques to make resizing more
effective.

Karkhanis et al. also studied directly restricting the number
of in-flight instructions, except with a coarser granularity (100k-
instruction sampling intervals) hardware scheme [14]. They used
a tuning method that alternated between the most extreme con-
figurations to determine performance boundaries, and would then
make finer adjustments to the configuration until the sampled per-
formance fell within some threshold of the maximum attained per-
formance. Our approach eliminates this need for sampling intervals
and provides for a finer level of granularity, which in turn allows us
to better tune performance and power.

6.3 Criticality
Tune et al. proposed hardware critical path prediction in [23].

Their approach utilizes a large lookup table of 6-bit saturating coun-
ters indexed by PC. The counters are incremented when an in-
struction has been identified as critical according to one of several
heuristics. Their most effective heuristics tracked the oldest unis-
sued instructions or the oldest uncommitted instructions. Seng et
al. showed that these hardware criticality predictors were effec-
tive in power-saving schemes that routed instructions through ei-
ther in-order or out-of-order issue queues and through fast or slow
execution units [21].

Fields et al. presented an accurate dynamic dependence-graph-
based model of critical paths [10]. This weighted graph model re-
flects the execution of each instruction including the dispatch, exe-
cution, and commit stages. Software profiling is used to build this
graph, and the critical path is the longest weighted path through
the graph. From this model, they designed a hardware predictor
that uses a token-passing algorithm to trace the critical path with-
out actually building the graph model. While this approach is more
accurate than [23], it also adds another level of complexity that our
approach does not require.

A down-FSM monitor was employed in [15] to track instruction-
issue rate for a small sample period after an L2 miss is detected. An
issue rate below a certain threshold triggers the supply voltage to
be scaled down. Since they must wait until the L2 miss is actually
detected, some lost opportunity in saving power may occur.

6.4 Cache Miss Prediction
Cache miss prediction has proven to be a source of many po-

tential applications in addition to prefetching. The hardware cache

miss predictor used in this paper was introduced in [18], which used
the predictor to accurately schedule instructions dependent on load
instructions. The authors were able to achieve 99.7% of the perfor-
mance potential of the oracle processor with perfect scheduling.

Memik, et al. presented five hardware cache miss predictors and
used them to bypass cache layers in a simulated processor with five
cache levels [17]. Like the Bloom Filter predictor, Memik’s cache
miss predictors also focuses on the line address of the cache entries.
His techniques include storing evicted addresses, address hashes,
or the partial address bits in a table. Applying these cache miss
prediction techniques yielded an average application performance
increase of 5.4% and average cache power savings of 3.8%.

7. CONCLUSION AND FUTURE WORK
Software profiling is ultimately a tradeoff between additional

time and effort for the software developer and increased hardware
complexity and cost. We have shown that it is an effective and prac-
tical approach for controlling power-efficient reconfigurations. It is
also effective because of the opportunity to optimally tune reconfig-
urations on a per-application basis without adding to the hardware
budget.

Dynamic reconfiguration has traditionally focused more on the
hardware approach, and for good reason. Utilizing a hardware ap-
proach is the best way to take advantage of identifying dynamic
behavior that is unpredictable prior to runtime (e.g. cache miss pre-
diction). The downside to the hardware approach is the additional
hardware cost for control logic and tables.

Combining the complementary strengths of software and hard-
ware monitoring approaches can lead to a best-of-both-worlds so-
lution. This paper has shown that such a combination can yield very
promising results for Fetch Halting. While focusing on L2 cache
misses to main memory, which only constitute less than 0.1% of
total static and dynamic instructions on average, Fetch Halting can
efficiently reduce the average instruction queue and reorder buffer
sizes by up to 31% and 49% respectively (17.2% and 23.4% on
average) with very little performance loss.

While Fetch Halting is effective when targeting L2 cache misses
to main memory, since it only targets a very small percentage of
total static and dynamic instructions there is still potential in tar-
geting and tuning for other critical instructions such as long latency
arithmetic and branch instructions. We have seen the performance
impact of not using criticality metrics on both performance and is-
sue queue and reorder buffer occupancy rates, and in expanding our
focus we are using similar metrics to determine criticality. Thus far
our results have been promising and after subsequent tuning we ex-
pect to achieve similar power savings and negligible performance
losses that parallel the success of targeting L2 misses.

Acknowledgment
The authors would like to thank Eric Chi, A. Michael Salem, and
Emiliano Bergamaschini for their work with the initial profiling
code and simulations.

8. REFERENCES
[1] J. Abella and A. Gonzalez. On reducgin register pressure and energy

in multiple-banked register files. In International Comference on
Computer Design, pages 14–20, San Jose, CA, October 2003.

[2] Y. Bai and R. I. Bahar. A low power in-order/out-of-order issue
queue. ACM Transactions on Architecture and Code Optimization,
1(2), June 2004.

[3] D. Brooks, V. Tiwari, , and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings
of International Symposium on Computer Architecture, Vancouver,
British Columbia, Canada, June 2000.

[4] D. Burger and T. Austin. The simplescalar tool set. Technical report,
University of Wisconsin, Madison, 1999. Version 3.0.

[5] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose.
Energy efficient co-adaptive instruction fetch and issue. In 30th
International Symposium on Computer Architecture (ISCA ’03, San
Diego, CA, June 2003.

[6] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and
D. Albonesi. An adaptive issue queue for reduced power at high
performance. In Workshop on Power-Aware Computer Systems,
Cambridge, MA, November 2000.

[7] E. Chi, M. Salem, R. Weiss, and R. I. Bahar. Combining software and
hardware monitoring for improved power and performance tuning. In
7th Annual Workshop on Interaction Between Compilers and
Computer Architecture (INTERACT-7), Anaheim, CA, February
2003.

[8] R. Cohn and R. Muth. Pin user guide.
http://rogue.colorado.edu/Pin/docs/pin-2.0/html/.

[9] A. El-Moursy and D. H. Albonesi. Front-end policies for improved
issue efficiency in smt processors. In Ninth International Symposium
on High-Performance Computer Architecture, Anaheim, CA,
February 2003.

[10] B. Fields, S. Rubin, and R. Bodik. Focusing processor policies via
critical-path prediction. In 28th International Symposium on
Computer Architecture (ISCA ’01, Göteborg, Sweden, July 2001.

[11] R. Flower, C.-K. Luk, R. Muth, H. Patil, J. Shakshober, R. Cohn, and
P. G. Lowney. Kernel optimization and prefetches with the spike
executable optimizer. In Proceeding of 4th Workshop on
Feedback-Directed and Dynamic Optimization, December 2001.

[12] D. Folegnani and A. González. Energy-effective issue logic. In
Proceedings of International Symposium on Computer Architecture,
Göteborg, Sweden, July 2001.

[13] J. L. Henning. SPEC CPU2000: Measuring cpu performance in the
new millennium. IEEE Computer, 33(7):28–35, July 2000.

[14] T. Karkhanis, J. E. Smith, and P. Bose. Saving energy with just in
time instruction delivery. In International Symposium on Low Power
Electronics and Design (ISLPED, August 2002.

[15] H. Li, C. Cher, T. Vijaykumar, and K. Roy. Vsv: L2-miss-driven
variable supply-voltage scaling for low power. In Proceedings of
International Symposium on Microarchitecture, San Diego, CA,
December 2003.

[16] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation
control for energy reduction. In Proceedings of International
Symposium on Computer Architecture, Barcelona, Spain, June 1998.

[17] G. Memik, G. Reinman, and W. H. Mangione-Smith. Just say no:
Benefits of early cache miss determination. In Ninth International
Symposium on High-Performance Computer Architecture, Anaheim,
CA, February 2003.

[18] J.-K. Peir, S.-C. Lai, and S.-L. Lu. Bloom filtering cache misses for
accurate data speculation and prefetching. In Proceedings of
International Conference on Supercomputing, June 2002.

[19] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power
requirements of instruction scheduling through dynamic allocation of
multiple datapath resources. In Proceedings of International
Symposium on Microarchitecture, Austin, TX, December 2001.

[20] S. Sair and M. Charney. Memory behavior of the SPEC2000
benchmark suite. Technical Report RC-21852, IBM Thomas J.
Watson Research Center, October 2000.

[21] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power with
dynamic critical path information. In Proceedings of International
Symposium on Microarchitecture, Austin, TX, December 2001.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of
International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, October 2002.

[23] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic prediction
of critical path instructions. In Proceedings of the 7th International
Symposium on High Performance Computer Architecture, January
2001.

[24] O. S. Unsal, I. Koren, C. M. Krishnan, and C. A. Moritz. Cool-fetch:
Compiler-enabled power-aware fetch throttling. In Computer
Architecture News, April 2002.

