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Abstract 

In this paper we present a clustered, multiple-clock 
domain (CMCD) microarchitecture that combines the 
benefits of both clustering and Globally Asynchronous 
Locally Synchronous (GALS) designs. We also present 
a mechanism for dynamically adapting the frequency 
and voltage of the frontend of the CMCD with the goal 
to optimize the energy-delay2 product (ED2P). Our 
mechanism has minimal hardware cost, is entirely self-
adjustable, does not depend on any thresholds, and 
achieves results close to optimal. We evaluate it on 16 
SPEC 2000 applications and report 17.5% ED2P 
reduction on average (80% of the upper bound). 

 
1. Introduction 
The scalability of current superscalar processors is 
impeded by the impact of wire delays, by the 
increasing complexity of processor components and by 
excessive power dissipation. Microprocessor designers 
find it increasingly harder to sustain the growth rate of 
clock frequency, or to construct wider pipelines for 
high-performance processors. 

It has been shown that clustering is an effective 
approach to overcome some of these issues [1][10]. 
The impact of wire delays is reduced by keeping intra-
cluster communication fast and minimizing inter-
cluster communication. Clustering also reduces the 
effective complexity of large structures, such as 
caches, allowing for faster clock frequency and 
reduced power dissipation. Moreover, clustering allows 
for finer-grained adaptation of resources. 

On the other hand, Globally Asynchronous Locally 
Synchronous designs are a very effective way to 
address the problem of clock distribution in large 
microprocessors, including clustered ones. Earlier 
proposals have shown that a GALS design style can be 
successfully applied to monolithic, wide-issue, out-of-
order processors [7][15]. Moreover, it was also shown 
that the fine-grained dynamic voltage scaling 
capabilities of the MCD allow for significant power 
reduction while at the same time keep performance 
close to maximum [9][13][15]. 

In this study we propose (a) a Clustered Multiple 
Clock Domain microprocessor, and (b) a mechanism 
for dynamically adapting the frequency and voltage of 
the frontend of the CMCD to optimize the energy-
delay2 product of applications. In the proposed 
microarchitecture, the division into clock domains 
follows naturally the separation into clusters. Our 
design combines the benefits of the clustered and 
GALS paradigms. By clustering the various resources 
we can achieve better power efficiency and higher 
clock frequency. By dividing the processor into 
separate clock domains, both the complexity and the 
power dissipation of the clock network are reduced, 
running at higher frequency is possible, and a more 
modular design is allowed. 

In our architecture the frontend still follows a 
monolithic design. This results in disproportionate 
power dissipation on the frontend compared to the 
other parts of the processor. In our case it dissipates 
about 39% of the total power, while each backend only 
about 11%, and the L2 cache 16%. 

Apart from the definition of the microarchitecture, 
the main contribution of this paper is a novel 
mechanism for reducing the power dissipation of the 
frontend of the processor through dynamic voltage and 
frequency scaling. We have designed a control system 
based that can accurately predict the runtime of the 
application based on the frequency of the frontend, the 
branch misprediction rate and the occupancy of the 
instruction fetch queue. Our performance predictor is 
derived from the principles of queuing theory and has 
several benefits: it is easy to calculate, it has no 
thresholds, and is self-adjustable. Most importantly it 
can predict the performance of the application at any 
frequency, given statistics at any other frequency. 

The rest of the paper is organized as follows: 
Section 2 introduces the CMCD architecture in more 
detail. Section 3 explains our frontend control system. 
In Section 4 we present our experimental analysis and 
compare our system with an optimal one. In Section 5 
we discuss related work, and finally in Section 6 we 
conclude the paper and point out areas for future work. 



 
Figure 1. CMCD high-level block diagram 

 

 
Figure 2. Synchronization timing 

 
2. Architecture 
A diagram of our proposed architecture can bee seen  
in Figure 1. The frontend is responsible for fetching 
and dispatching instructions. The fetch mechanism is 
similar to that of the Intel® Pentium® 4, utilizing a 
branch predictor, a trace cache, and an IA32 decoder. 
The instruction dispatch consists of the register 
renaming and the steering of micro-ops to the various 
backends. The frontend also includes the re-order 
buffer and the commit logic of the processor. 

The backends follow the structure of typical 
clustered microarchitectures. Each one includes the 
issue window, register file and execution units for the 
integer and floating-point micro-ops, as well as the 
memory order buffer, disambiguation logic and a first-
level data cache. Register values are communicated 
among the backends using special copy micro-ops via 
a crossbar network [1][4]. 

Communication between domains happens through 
special synchronizing FIFO queues. Figure 1 shows all 
the communication paths between domains and the 
associated queues (in dark color). In our design, these 
queues already existed in the architecture. The queues’ 
read and write interfaces are in different domains and 
there is special circuitry to make sure that the data is 
always stable when it is read, and that both domains 
have a coherent view of the full/empty status. 

In this study we assume the circuits and timing 
analysis of Semeraro et al. [14]. Figure 2 shows the 
timing of the synchronization circuit. Assume a queue 

between two domains with clocks CLKW and CLKR, 
and data written into the queue at the rising edge 1. If 
the time difference between edge 1 and edge 2 is 
smaller than some fixed threshold then the data will be 
visible (and stable) at the read interface of the queue at 
time 2, otherwise at time 4. In our simulation this 
threshold is set to 30% of CLKR. 

We also propose that each domain has its own 
independent voltage regulator and frequency controller 
We assume a discrete range of frequency-voltage 
levels. Changes in voltage and frequency can be done 
without stopping the domain provided that they are 
between adjacent levels. The available frequency-
voltage levels that we assume for our architecture are 
shown in Table 1. The time to go from level 0 to level 
20 is 1�sec. 

 
Table 1. Frequency-voltage levels 

# MHz Volts # MHz Volts # MHz Volts 
0 10000 1.100 7 8348 0.832 14 6696 0.632 
1 9764 1.057 8 8112 0.800 15 6460 0.608 
2 9528 1.016 9 7876 0.769 16 6224 0.584 
3 9292 0.976 10 7640 0.739 17 5988 0.562 
4 9056 0.938 11 7404 0.711 18 5752 0.541 
5 8820 0.901 12 7168 0.683 19 5516 0.521 
6 8584 0.866 13 6932 0.657 20 5280 0.501 

 
3. Frontend Adaptation 
The goal of our frontend adaptation mechanism is to 
reduce the ED2P  for any given application. To achieve 
this we split the execution into fixed intervals 
(measured in micro-ops) and we try to minimize the 
ED2P of each interval. In order to minimize ED2P, we 
first calculate the execution time and energy 
consumption of an interval. The assumption we make 
is that the behavior of the program for some interval 
can be predicted by observing the behavior of the 
previous interval. 

 
3.1. Dynamic Energy Estimation 
Assuming that the amount of work will be the same, 
the energy consumption of  interval n+1 in which the 
frontend runs at frequency-voltage (fn+1, Vn+1) can be 
estimated from the energy of interval n with the 
frontend at frequency-voltage (fn, Vn) using the 
following equation: 

��
�

�
��
�

�
−×+= +

+ 12

2
1

,1
n

n
nFEnn V

V
EEE  

In this equation EFE is the energy of the frontend 
domain, which is the only part subject to frequency-
voltage scaling. To measure the energy of the different 
processor components at runtime, we use the technique 
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proposed in [6]. Performance counters are used to 
measure the activity of the various blocks during an 
interval. Each block has also associated with it a 
register, the Energy per Access Register (EAR) that 
holds the average energy per access. The value of the 
EAR is fixed, and set by the designer. At the end of the 
interval each performance counter is multiplied with its 
respective EAR to calculate the energy. 

 

 

Figure 3. Frontend details 
 

3.2. Dynamic Execution Time Estimation 
Our frontend is somewhat similar to that of the Intel® 
Pentium® 4 processor (see Figure 3). In essence, what 
we want is to find a relationship between the frequency 
of the frontend and the speed at which we fetch 
instructions and the speed at which we feed micro-ops 
to the rest of the pipeline. It is very convenient for us 
that we can measure both the fetch and the dispatch 
bandwidth at the two ends of the fetch queue (dark 
shaded queue in Figure 3). 

For our execution time estimator we used the 
principles of queuing theory to find the relationship 
between performance (dispatch bandwidth), frontend 
frequency, fetch queue utilization and fetch bandwidth: 
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In this equation pn is the average number of entries 
in the frontend queue for the n-th interval and b is the 
branch misprediction rate since the beginning of the 
execution. The first term of the product involves the 
expected speed-up or slowdown due to the change in  
frequency. This just says that any change in frequency 
should yield a similar change in execution time. 

The more interesting part is the second term. 
According to Little’s Law the average delay T of a 
client in a queuing system is equal to T=N/�, where N 
is the average number of entries in the queue and � is 
the rate of arrivals in the queue. In our case, � signifies 
how fast we can feed the fetch queue and depends on 
the branch misprediction rate, N is the number of 
unused entries in the queue, and T is an indication of 
the dispatch speed. 

 

3.3. Dynamic Frequency Adaptation 
Our control system at the end of each interval uses the 
energy and execution time estimators to calculate the 
ED2P for the upcoming interval for each frequency-
voltage level. We only consider the cases where the 
frequency and voltage are at the same level; we could 
for example run at high voltage and low frequency but 
this is not interesting for energy reduction. 

After the ED2P for each level is estimated, we pick 
the level that has the minimum value. More formally, 
we solve the system: 
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Where Tn+1 and En+1 are calculated as before, and 
L is the set of all 21 possible frequency-voltage pairs. 

 
Table 2. Architectural parameter summary 

Frontend 
Trace Cache 32K mops, 4-way, 4 cycles to dispatch 
Dispatch 8 mops/cycle, 8 cycles latency 
2nd Level Unified Cache 
UL2 2 MB, 8-way, 12 / 500+ cycles 
Each of 4 Backends 
Integer 20-entry FIFO, 40-entry IQ, 1mop/cycle 
Floating-point 20-entry FIFO, 40-entry IQ, 1mop/cycle 
Memory 20-entry FIFO, 96-entry MOB, 1mop/cycle 
Copy 20-entry FIFO, 20-entry IQ, 1mop/cycle 

 

 
Figure 4. Power distribution before (top) and 
after (bottom) adaptation 
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4. Results 
For the evaluation of our system we use a trace-driven 
simulator that executes traces of IA32 binaries, 
including OS code. The simulator also includes a 
power estimation module, based on an enhanced 
version of Cacti [16], utilizing activity counters in a 
fashion similar to  Wattch [3]. The assumed technology 
is 65nm. Table 2 shows the main architectural 
parameters of the microprocessor. For our experiments 
we use sixteen applications of the SPEC CPU2000 
benchmark suite—nine integer and seven floating-
point. For all cases we simulate one hundred million 
IA32 instructions from the middle of the application. 

Figure 5 shows the slowdown and power reduction 
of the CMCD microprocessor running at maximum 
frequency, compared to an identical, fully synchronous 
one. All of the performance loss shown in this figure is 
because of inter-domain synchronization penalties. The 
worst case slowdown is 6.7% for eon with an average 
of 2.8% over all benchmarks. This is because every 
time register values must be communicated between 
clusters the data transfer between the source and 
destination domains needs to be synchronized which 
increases communication latency by 7%-9% for all 
programs. As shown elsewhere [11], the performance 
in clustered microprocessors is quite sensitive to inter-
cluster communication latency. 

Our CMCD processor dissipates less power than a 
fully synchronous design—between 10%15% for all 
benchmarks, with an average of 12.5%. This reduction 
is due to the simplification of the clock distribution 
network: for the fully synchronous microprocessor a 4-
level H-tree over a regular grid is assumed, following 
the method presented by Restle et al. [12]. For the 
CMCD, each domain has its own separate clock 
network. Using the same method for distributing the 
clock, and using the area calculated by Cacti, we have 
four 2-level H-trees for the backends, a 3-level H-tree 
for the frontend, and 3-level H-tree for the L2 cache. 
The total average dynamic power of the six smaller 
clock trees is about 30% less than the 4-level one. 

Figure 6 shows the same results when dynamically 
adapting the frontend. The first thing to note here is 
that application performance is virtually unchanged, 
even though we slow down the frontend (average 3.7% 
slowdown vs. 2.8% for CMCD at maximum 
frequency). This is because our method tries to 
minimize ED2P, which gives higher priority to 
performance over power. An interesting phenomenon 
is the speed-up we observe for swim. Intuitively we 
would expect performance to get worse when slowing 
down parts of the processor. What happens in this case 
is that the scheduling of loads changes significantly 
(not the number of loads though), which results in a 

notable reduction in the DL1 miss rate. By slowing 
down the frontend, micro-ops in the backends are 
executed more in-order than before. In swim the highly 
out-of-order scheduling of loads results in conflicts in 
the DL1 (i.e. a future load displaces the data of a 
previous one). This effect is significantly reduced 
when slowing down the frontend: the average latency 
of load instructions goes down from 37 to 21 cycles, 
which of course results in higher performance. 

It is also evident that the power dissipation is 
reduced significantly. This is, as expected, entirely due 
to the dynamic adaptation of the frontend. Figure 4 
shows the average power distribution for the CMCD at 
full frequency and for the dynamically adaptive 
frontend. We can see that we reduce power dissipation 
by about 15% on average over the whole processor. 

Figure 7 shows the ED2P improvement of the 
baseline CMCD (“CMCD”), of the CMCD with 
dynamic frontend adaptation (“FEDVS”), and of the 
CMCD with optimal frontend adaptation (“OPT”). The 
optimal scenario represents an upper bound calculated 
off-line, by collecting energy and time statistics at 
intervals identical to FEDVS (100K micro-ops), for all 
available frequency levels. Then we chose for each 
interval the frequency with minimum ED2P. This 
method—apart from using exact runtime information 
instead of having to predict it—also assumes that the 
frequency-voltage change is instantaneous, which of 
course is not true in our FEDVS scheme. 

As expected, the ED2P of the baseline CMCD is 
improved compared to the fully synchronous design, 
but not significantly (less than 5% on average). Our 
frontend adaptation on the other hand achieves 17.5% 
improvement of the energy-delay2 product, which is 
very close to the upper bound (22% on average). The 
difference between FEDVS and OPT can be attributed 
to three factors: (a) the fact that frequency-voltage 
changes in OPT are instantaneous, (b) rapid changes in 
the behavior of the application that produce errors in 
our performance predictor, and (c) side-effects that are 
not modeled by our predictor (such as the cache 
behavior discussed above for swim). 

 
5. Related Work 
The benefits of clustering have been known for a long 
time [5][8], and there have been many studies on how 
to best distribute instructions among clusters [2][4], 
and how to efficiently communicate values between 
backends [11]. Our CMCD is based on a state-of-the-
art clustered design that borrows main concepts from 
previous studies in this area. 

GALS microprocessors have been proposed 
before [7][15]. In previous studies the division of the 
pipeline into domains was vertical: one domain for 



integer, one for floating-point, and one for memory 
operations. We propose a horizontal division (fetch, 
execute, L2) combined with a vertical one (one domain 
for each cluster) that more closely follows the physical 
layout of the processor. 

Dynamic voltage and frequency scaling for MCD 
processors has also been studied before [7][9][13][15], 
but not for clustered microarchitectures. Moreover, 
there is not—as far as we know—any previous study 
that dynamically adapts the frontend frequency of a 
MCD microarchitecture. Finally, it is worth noting that 
our control system, unlike previous ones [13], has no 
thresholds, is self-tuning, and can directly jump to the 
desired frequency-voltage level instead of approaching 
it through many small trial-and-error steps. 

 
6. Conclusions 
We have presented and evaluated a Clustered Multiple 
Clock Domain microprocessor, as well as a mechanism 
for dynamically adapting the frequency and voltage of 
the frontend domain of the CMCD. The design is based 
on a conventional clustered architecture where the 
frontend, the L2, and each backend operate at different 
clock domains. Our simulations show that the baseline 
CMCD architecture has acceptable IPC degradation 
(less than 3% on average) and an average power 
reduction of  about 12.5% just due to the simplification 
of the clock distribution network. 

Our dynamic frontend adaptation mechanism, based 
on queuing theory, has minimal hardware overhead 
and no dependence on thresholds, so it needs no fine-
tuning. It automatically adapts to the characteristics of 
each application. Our simulations show that it can 
achieve energy-delay2 improvement of about 17.5% on 
average, which is at least 80% of the improvement that 
could be achieved with optimal adaptation. 
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Figure 5. CMCD compared to a fully-synchronous design 
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Figure 6. Adaptive CMCD compared to a fully-synchronous, non-adaptive design 
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Figure 7. CMCD, adaptive CMCD, and optimal adaptation 
 


