
Frontend Frequency-Voltage Adaptation for Optimal Energy-Delay2

Grigorios Magklis, José González, Antonio González
Intel Barcelona Research Center, Intel Labs—UPC

{grigoriosx.magklis, pepe.gonzalez, antoniox.gonzalez}@intel.com

Abstract

In this paper we present a clustered, multiple-clock
domain (CMCD) microarchitecture that combines the
benefits of both clustering and Globally Asynchronous
Locally Synchronous (GALS) designs. We also present
a mechanism for dynamically adapting the frequency
and voltage of the frontend of the CMCD with the goal
to optimize the energy-delay2 product (ED2P). Our
mechanism has minimal hardware cost, is entirely self-
adjustable, does not depend on any thresholds, and
achieves results close to optimal. We evaluate it on 16
SPEC 2000 applications and report 17.5% ED2P
reduction on average (80% of the upper bound).

1. Introduction
The scalability of current superscalar processors is
impeded by the impact of wire delays, by the
increasing complexity of processor components and by
excessive power dissipation. Microprocessor designers
find it increasingly harder to sustain the growth rate of
clock frequency, or to construct wider pipelines for
high-performance processors.

It has been shown that clustering is an effective
approach to overcome some of these issues [1][10].
The impact of wire delays is reduced by keeping intra-
cluster communication fast and minimizing inter-
cluster communication. Clustering also reduces the
effective complexity of large structures, such as
caches, allowing for faster clock frequency and
reduced power dissipation. Moreover, clustering allows
for finer-grained adaptation of resources.

On the other hand, Globally Asynchronous Locally
Synchronous designs are a very effective way to
address the problem of clock distribution in large
microprocessors, including clustered ones. Earlier
proposals have shown that a GALS design style can be
successfully applied to monolithic, wide-issue, out-of-
order processors [7][15]. Moreover, it was also shown
that the fine-grained dynamic voltage scaling
capabilities of the MCD allow for significant power
reduction while at the same time keep performance
close to maximum [9][13][15].

In this study we propose (a) a Clustered Multiple
Clock Domain microprocessor, and (b) a mechanism
for dynamically adapting the frequency and voltage of
the frontend of the CMCD to optimize the energy-
delay2 product of applications. In the proposed
microarchitecture, the division into clock domains
follows naturally the separation into clusters. Our
design combines the benefits of the clustered and
GALS paradigms. By clustering the various resources
we can achieve better power efficiency and higher
clock frequency. By dividing the processor into
separate clock domains, both the complexity and the
power dissipation of the clock network are reduced,
running at higher frequency is possible, and a more
modular design is allowed.

In our architecture the frontend still follows a
monolithic design. This results in disproportionate
power dissipation on the frontend compared to the
other parts of the processor. In our case it dissipates
about 39% of the total power, while each backend only
about 11%, and the L2 cache 16%.

Apart from the definition of the microarchitecture,
the main contribution of this paper is a novel
mechanism for reducing the power dissipation of the
frontend of the processor through dynamic voltage and
frequency scaling. We have designed a control system
based that can accurately predict the runtime of the
application based on the frequency of the frontend, the
branch misprediction rate and the occupancy of the
instruction fetch queue. Our performance predictor is
derived from the principles of queuing theory and has
several benefits: it is easy to calculate, it has no
thresholds, and is self-adjustable. Most importantly it
can predict the performance of the application at any
frequency, given statistics at any other frequency.

The rest of the paper is organized as follows:
Section 2 introduces the CMCD architecture in more
detail. Section 3 explains our frontend control system.
In Section 4 we present our experimental analysis and
compare our system with an optimal one. In Section 5
we discuss related work, and finally in Section 6 we
conclude the paper and point out areas for future work.

Figure 1. CMCD high-level block diagram

Figure 2. Synchronization timing

2. Architecture
A diagram of our proposed architecture can bee seen
in Figure 1. The frontend is responsible for fetching
and dispatching instructions. The fetch mechanism is
similar to that of the Intel® Pentium® 4, utilizing a
branch predictor, a trace cache, and an IA32 decoder.
The instruction dispatch consists of the register
renaming and the steering of micro-ops to the various
backends. The frontend also includes the re-order
buffer and the commit logic of the processor.

The backends follow the structure of typical
clustered microarchitectures. Each one includes the
issue window, register file and execution units for the
integer and floating-point micro-ops, as well as the
memory order buffer, disambiguation logic and a first-
level data cache. Register values are communicated
among the backends using special copy micro-ops via
a crossbar network [1][4].

Communication between domains happens through
special synchronizing FIFO queues. Figure 1 shows all
the communication paths between domains and the
associated queues (in dark color). In our design, these
queues already existed in the architecture. The queues’
read and write interfaces are in different domains and
there is special circuitry to make sure that the data is
always stable when it is read, and that both domains
have a coherent view of the full/empty status.

In this study we assume the circuits and timing
analysis of Semeraro et al. [14]. Figure 2 shows the
timing of the synchronization circuit. Assume a queue

between two domains with clocks CLKW and CLKR,
and data written into the queue at the rising edge 1. If
the time difference between edge 1 and edge 2 is
smaller than some fixed threshold then the data will be
visible (and stable) at the read interface of the queue at
time 2, otherwise at time 4. In our simulation this
threshold is set to 30% of CLKR.

We also propose that each domain has its own
independent voltage regulator and frequency controller
We assume a discrete range of frequency-voltage
levels. Changes in voltage and frequency can be done
without stopping the domain provided that they are
between adjacent levels. The available frequency-
voltage levels that we assume for our architecture are
shown in Table 1. The time to go from level 0 to level
20 is 1�sec.

Table 1. Frequency-voltage levels

MHz Volts # MHz Volts # MHz Volts
0 10000 1.100 7 8348 0.832 14 6696 0.632
1 9764 1.057 8 8112 0.800 15 6460 0.608
2 9528 1.016 9 7876 0.769 16 6224 0.584
3 9292 0.976 10 7640 0.739 17 5988 0.562
4 9056 0.938 11 7404 0.711 18 5752 0.541
5 8820 0.901 12 7168 0.683 19 5516 0.521
6 8584 0.866 13 6932 0.657 20 5280 0.501

3. Frontend Adaptation
The goal of our frontend adaptation mechanism is to
reduce the ED2P for any given application. To achieve
this we split the execution into fixed intervals
(measured in micro-ops) and we try to minimize the
ED2P of each interval. In order to minimize ED2P, we
first calculate the execution time and energy
consumption of an interval. The assumption we make
is that the behavior of the program for some interval
can be predicted by observing the behavior of the
previous interval.

3.1. Dynamic Energy Estimation
Assuming that the amount of work will be the same,
the energy consumption of interval n+1 in which the
frontend runs at frequency-voltage (fn+1, Vn+1) can be
estimated from the energy of interval n with the
frontend at frequency-voltage (fn, Vn) using the
following equation:

��
�

�
��
�

�
−×+= +

+ 12

2
1

,1
n

n
nFEnn V

V
EEE

In this equation EFE is the energy of the frontend
domain, which is the only part subject to frequency-
voltage scaling. To measure the energy of the different
processor components at runtime, we use the technique

1 3

CLKW

2 4

CLKR

IQ

DL1

E
xec

Dispatch

BPred

Fetch

U
L2

IQ

DL1

E
xec

IQ

DL1

E
xec

proposed in [6]. Performance counters are used to
measure the activity of the various blocks during an
interval. Each block has also associated with it a
register, the Energy per Access Register (EAR) that
holds the average energy per access. The value of the
EAR is fixed, and set by the designer. At the end of the
interval each performance counter is multiplied with its
respective EAR to calculate the energy.

Figure 3. Frontend details

3.2. Dynamic Execution Time Estimation
Our frontend is somewhat similar to that of the Intel®
Pentium® 4 processor (see Figure 3). In essence, what
we want is to find a relationship between the frequency
of the frontend and the speed at which we fetch
instructions and the speed at which we feed micro-ops
to the rest of the pipeline. It is very convenient for us
that we can measure both the fetch and the dispatch
bandwidth at the two ends of the fetch queue (dark
shaded queue in Figure 3).

For our execution time estimator we used the
principles of queuing theory to find the relationship
between performance (dispatch bandwidth), frontend
frequency, fetch queue utilization and fetch bandwidth:

b
p

f
f

T
TT n

n

n

n

nn

+
−

×��
�

�
��
�

�
−=

−

+

+

1
1

1
1

1

In this equation pn is the average number of entries
in the frontend queue for the n-th interval and b is the
branch misprediction rate since the beginning of the
execution. The first term of the product involves the
expected speed-up or slowdown due to the change in
frequency. This just says that any change in frequency
should yield a similar change in execution time.

The more interesting part is the second term.
According to Little’s Law the average delay T of a
client in a queuing system is equal to T=N/�, where N
is the average number of entries in the queue and � is
the rate of arrivals in the queue. In our case, � signifies
how fast we can feed the fetch queue and depends on
the branch misprediction rate, N is the number of
unused entries in the queue, and T is an indication of
the dispatch speed.

3.3. Dynamic Frequency Adaptation
Our control system at the end of each interval uses the
energy and execution time estimators to calculate the
ED2P for the upcoming interval for each frequency-
voltage level. We only consider the cases where the
frequency and voltage are at the same level; we could
for example run at high voltage and low frequency but
this is not interesting for energy reduction.

After the ED2P for each level is estimated, we pick
the level that has the minimum value. More formally,
we solve the system:

()111
),(

min
11

+++
∈

××
++

nnn
LVf

ETT
nn

Where Tn+1 and En+1 are calculated as before, and
L is the set of all 21 possible frequency-voltage pairs.

Table 2. Architectural parameter summary

Frontend
Trace Cache 32K mops, 4-way, 4 cycles to dispatch
Dispatch 8 mops/cycle, 8 cycles latency
2nd Level Unified Cache
UL2 2 MB, 8-way, 12 / 500+ cycles
Each of 4 Backends
Integer 20-entry FIFO, 40-entry IQ, 1mop/cycle
Floating-point 20-entry FIFO, 40-entry IQ, 1mop/cycle
Memory 20-entry FIFO, 96-entry MOB, 1mop/cycle
Copy 20-entry FIFO, 20-entry IQ, 1mop/cycle

Figure 4. Power distribution before (top) and
after (bottom) adaptation

B
ackend 3

B
ackend 2

B
ackend 1

B
ackend 0

Frontend

UL2

 BPred

IA32 decoder

TC
ache

micro-op dispatch

Free
List

Ren
Table

FE, 39%

UL2, 16%
BE0, 12%

BE1, 11%

BE2, 11%

BE3, 11%

SAVED,
15%

FE, 24%

UL2, 16%
BE0, 12%

BE1, 11%

BE2, 11%

BE3, 11%

4. Results
For the evaluation of our system we use a trace-driven
simulator that executes traces of IA32 binaries,
including OS code. The simulator also includes a
power estimation module, based on an enhanced
version of Cacti [16], utilizing activity counters in a
fashion similar to Wattch [3]. The assumed technology
is 65nm. Table 2 shows the main architectural
parameters of the microprocessor. For our experiments
we use sixteen applications of the SPEC CPU2000
benchmark suite—nine integer and seven floating-
point. For all cases we simulate one hundred million
IA32 instructions from the middle of the application.

Figure 5 shows the slowdown and power reduction
of the CMCD microprocessor running at maximum
frequency, compared to an identical, fully synchronous
one. All of the performance loss shown in this figure is
because of inter-domain synchronization penalties. The
worst case slowdown is 6.7% for eon with an average
of 2.8% over all benchmarks. This is because every
time register values must be communicated between
clusters the data transfer between the source and
destination domains needs to be synchronized which
increases communication latency by 7%-9% for all
programs. As shown elsewhere [11], the performance
in clustered microprocessors is quite sensitive to inter-
cluster communication latency.

Our CMCD processor dissipates less power than a
fully synchronous design—between 10%15% for all
benchmarks, with an average of 12.5%. This reduction
is due to the simplification of the clock distribution
network: for the fully synchronous microprocessor a 4-
level H-tree over a regular grid is assumed, following
the method presented by Restle et al. [12]. For the
CMCD, each domain has its own separate clock
network. Using the same method for distributing the
clock, and using the area calculated by Cacti, we have
four 2-level H-trees for the backends, a 3-level H-tree
for the frontend, and 3-level H-tree for the L2 cache.
The total average dynamic power of the six smaller
clock trees is about 30% less than the 4-level one.

Figure 6 shows the same results when dynamically
adapting the frontend. The first thing to note here is
that application performance is virtually unchanged,
even though we slow down the frontend (average 3.7%
slowdown vs. 2.8% for CMCD at maximum
frequency). This is because our method tries to
minimize ED2P, which gives higher priority to
performance over power. An interesting phenomenon
is the speed-up we observe for swim. Intuitively we
would expect performance to get worse when slowing
down parts of the processor. What happens in this case
is that the scheduling of loads changes significantly
(not the number of loads though), which results in a

notable reduction in the DL1 miss rate. By slowing
down the frontend, micro-ops in the backends are
executed more in-order than before. In swim the highly
out-of-order scheduling of loads results in conflicts in
the DL1 (i.e. a future load displaces the data of a
previous one). This effect is significantly reduced
when slowing down the frontend: the average latency
of load instructions goes down from 37 to 21 cycles,
which of course results in higher performance.

It is also evident that the power dissipation is
reduced significantly. This is, as expected, entirely due
to the dynamic adaptation of the frontend. Figure 4
shows the average power distribution for the CMCD at
full frequency and for the dynamically adaptive
frontend. We can see that we reduce power dissipation
by about 15% on average over the whole processor.

Figure 7 shows the ED2P improvement of the
baseline CMCD (“CMCD”), of the CMCD with
dynamic frontend adaptation (“FEDVS”), and of the
CMCD with optimal frontend adaptation (“OPT”). The
optimal scenario represents an upper bound calculated
off-line, by collecting energy and time statistics at
intervals identical to FEDVS (100K micro-ops), for all
available frequency levels. Then we chose for each
interval the frequency with minimum ED2P. This
method—apart from using exact runtime information
instead of having to predict it—also assumes that the
frequency-voltage change is instantaneous, which of
course is not true in our FEDVS scheme.

As expected, the ED2P of the baseline CMCD is
improved compared to the fully synchronous design,
but not significantly (less than 5% on average). Our
frontend adaptation on the other hand achieves 17.5%
improvement of the energy-delay2 product, which is
very close to the upper bound (22% on average). The
difference between FEDVS and OPT can be attributed
to three factors: (a) the fact that frequency-voltage
changes in OPT are instantaneous, (b) rapid changes in
the behavior of the application that produce errors in
our performance predictor, and (c) side-effects that are
not modeled by our predictor (such as the cache
behavior discussed above for swim).

5. Related Work
The benefits of clustering have been known for a long
time [5][8], and there have been many studies on how
to best distribute instructions among clusters [2][4],
and how to efficiently communicate values between
backends [11]. Our CMCD is based on a state-of-the-
art clustered design that borrows main concepts from
previous studies in this area.

GALS microprocessors have been proposed
before [7][15]. In previous studies the division of the
pipeline into domains was vertical: one domain for

integer, one for floating-point, and one for memory
operations. We propose a horizontal division (fetch,
execute, L2) combined with a vertical one (one domain
for each cluster) that more closely follows the physical
layout of the processor.

Dynamic voltage and frequency scaling for MCD
processors has also been studied before [7][9][13][15],
but not for clustered microarchitectures. Moreover,
there is not—as far as we know—any previous study
that dynamically adapts the frontend frequency of a
MCD microarchitecture. Finally, it is worth noting that
our control system, unlike previous ones [13], has no
thresholds, is self-tuning, and can directly jump to the
desired frequency-voltage level instead of approaching
it through many small trial-and-error steps.

6. Conclusions
We have presented and evaluated a Clustered Multiple
Clock Domain microprocessor, as well as a mechanism
for dynamically adapting the frequency and voltage of
the frontend domain of the CMCD. The design is based
on a conventional clustered architecture where the
frontend, the L2, and each backend operate at different
clock domains. Our simulations show that the baseline
CMCD architecture has acceptable IPC degradation
(less than 3% on average) and an average power
reduction of about 12.5% just due to the simplification
of the clock distribution network.

Our dynamic frontend adaptation mechanism, based
on queuing theory, has minimal hardware overhead
and no dependence on thresholds, so it needs no fine-
tuning. It automatically adapts to the characteristics of
each application. Our simulations show that it can
achieve energy-delay2 improvement of about 17.5% on
average, which is at least 80% of the improvement that
could be achieved with optimal adaptation.

References
[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D.

Burger. Clock Rate versus IPC: The End of the Road
for Conventional Architectures. In 27th Annual Intl.
Symp. on Computer Architecture, June 2000.

[2] A. Baniasadi and A. Moshovos. Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled,
Superscalar Processors. In 33rd Annual Intl. Symp. On
Microarchitecture, Dec. 2000.

[3] D. Brooks, V. Tiwari and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimization. In 27th Annual Intl. Symp. on Computer
Architecture, June 2000.

[4] R. Canal, J.M. Parcerisa and A. González. Dynamic
Cluster Assignment Mechanisms. In 6th Intl. Symp. on
High-Performance Computer Architecture, Jan. 2000.

[5] K.I. Farkas, P. Chow, N.P. Jouppi and Z. Vranesic. The
Multicluster Architecture: Reducing Cycle Time

Through Partitioning. In 30th Annual Intl. Symp. on
Microarchitecture, Dec. 1997.

[6] J. González and A. González. Dynamic Cluster
Resizing. In 21st Intl. Conf. on Computer Design, Oct.
2003.

[7] A. Iyer and D. Marculescu. Power and Performance
Evaluation of Globally Asynchronous Locally
Synchronous Processors. In 29th Annual Intl. Symp. on
Computer Architecture, May 2002.

[8] R.E. Kessler. The Alpha 21264 Microprocessor. IEEE
Micro, 19(2), March/April 1999.

[9] G. Magklis, M.L. Scott, G. Semeraro, D.H. Albonesi
and S. Dropsho. Profile-based Dynamic Voltage and
Frequency Scaling for a Multiple Clock Domain
Processor. In 30th Annual Intl. Symp. on Computer
Architecture, June 2003.

[10] S. Palacharla. Complexity-Effective Superscalar
Processors. Ph.D. Thesis, University of Madison, 1998.

[11] J-M. Parcerisa, J. Sahuquillo, A. González and J.
Duato. Efficient Interconnects for Clustered
Microarchitectures. In 11th Intl. Conf. on Parallel
Architectures and Compilation Techniques, Sep. 2002.

[12] P.J. Restle et al. A Clock Distribution Network for
Microprocessors. IEEE Journal of Solid-State Circuits,
36(5), May 2001.

[13] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G.
Magklis, S. Dwarkadas and M.L. Scott. Dynamic
Frequency and Voltage Control for a Multiple Clock
Domain Microarchitecture In 35th Annual Intl. Symp.
on Microarchitecture, Nov. 2002.

[14] G. Semeraro, D.H. Albonesi, G. Magklis, M.L. Scott S.
Dropsho and S. Dwarkadas. Hiding Synchronization
Delays in a GALS Processor Microarchitecture. In 10th
Intl. Symp. on Asynchronous Circuits and Systems,
April 2004.

[15] G. Semeraro, G. Magklis, R. Balasubramonian, D.H.
Albonesi, S. Dwarkadas and M.L Scott. Energy
Efficient Processor Design Using Multiple Clock
Domains with Dynamic Voltage and Frequency
Scaling. In 8th Intl. Symp. on High-Performance
Computer Architecture, Feb. 2002.

[16] P. Shivakumar and N.P. Jouppi. CACTI 3.0: An
Integrated Cache Timing, Power, and Area Model.
WRL Research Report 2001/2, Aug. 2001.

-10%

0%

10%

20%

30%

40%

am
m

p

ap
pl

u

ar
t

bz
ip

2

cr
af

ty

eo
n

gc
c

gz
ip

m
es

a

m
gr

id

pa
rs

er

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e

M
E

A
N

Slowdown Power

Figure 5. CMCD compared to a fully-synchronous design

-10%

0%

10%

20%

30%

40%

am
m

p

ap
pl

u

ar
t

bz
ip

2

cr
af

ty

eo
n

gc
c

gz
ip

m
es

a

m
gr

id

pa
rs

er

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

M
E

A
N

Slowdown Power

Figure 6. Adaptive CMCD compared to a fully-synchronous, non-adaptive design

-10%

0%

10%

20%

30%

40%

50%

60%

am
m

p

ap
pl

u

ar
t

bz
ip

2

cr
af

ty

eo
n

gc
c

gz
ip

m
es

a

m
gr

id

pa
rs

er

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e

M
E

A
N

CMCD FEDVS OPT

Figure 7. CMCD, adaptive CMCD, and optimal adaptation

