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ABSTRACT
Leakage current is a key factor in IC power consumption
even in the active operating mode. We investigate the
simultaneous optimization of gate size and threshold
voltage to reduce leakage power. We assume a standard-
cell-based design flow where the available cell sizes and
threshold voltages (Vt’s) are given, and model the
optimization as a mixed-integer linear programming (MLP)
problem. In addition to the exact model, two faster
approximate MLP models are proposed, along with CAD
tools that generate the models automatically. We present
experimental results which show that optimal designs
derived from the exact MLP model can achieve the same
performance as all-low-Vt unit-size designs, but with only
one third the leakage power. The approximate MLP models
can be solved about 25 times faster than the optimal model
with negligible errors. All the proposed models can be
extended to take dynamic power and multiple supply
voltages into consideration.

1. INTRODUCTION
The continuous shrinkage of IC feature size is enabling
the integration of more and more devices on a single
chip. The chip supply voltage is also being scaled down
to reduce dynamic power consumption, which
necessitates a decrease in the threshold voltage Vt to
ensure that performance targets can be reached. Smaller
Vt can cause an exponential increase in leakage power
consumption, which may soon become the dominant
factor in overall power consumption [10]. Dual
threshold voltage assignment and gate sizing are two
important gate-level techniques to reduce leakage power
in both the standby [7], [11] and active [9], [12]
operating modes.

Various sensitivity-based heuristic methods to
minimize leakage or total power consumption have been
proposed for adjusting design parameters such as cell
size, threshold voltage and supply voltage [9] [11] [13].
The heuristic approaches, although showing good power
reduction in some benchmark circuits, easily fall into

local minima and cannot take full advantage of their design
parameters.

Nguyen et al. [8] consider the minmization of total
power consumption, given two Vt’s. Their method first
selects the low Vt for all gates and runs a heuristic
algorithm to size the gates. Then it uses a linear
programming (LP) model to distribute slacks among the
gates. Gate sizing and Vt selection are performed to
account for the slack distribution. This process is
iterated until no further power reduction is possible. The
heuristic nature of the sizing process makes the overall
design approach of [8] non-optimal. In [12], Srivastava
considers tuning Vt’s only. Threshold voltage
assignment under delay constraints is modeled as an LP
problem. It can hence assign Vt’s optimally in terms of
leakage power consumption, assuming that each gate
can have a different threshold voltage. However, the
available Vt’s are usually determined by the process
technology, and it is costly to use many Vt levels.

In our work, we focus on sub-threshold leakage
power optimization and take both threshold voltage and
gate size into consideration during the optimization
process. Furthermore, we accommodate a typical
standard-cell-based design flow, where the available
Vt’s and gate sizes are pre-determined by a cell library.
In the sequel, we assume two Vt’s are available, namely,

 and . Unlike [8] and [12], we directly model the
leakage optimization problem under given delay
constraints and construct an MLP model [4], which
considers both gate sizing and Vt selection. If gate sizes
are adjustable, the delay of a gate G depends on G’s size
and the sizes of gates driven by G. This complicates the
modeling problem which, nevertheless, we can solve
very efficiently. We present experiments with this model
which show that the optimal designs have performance
comparable to all-  designs1, but with about one-third
the latter’s leakage currents. In fact, the leakage power
consumption is just a few percent higher than the lower
bounds on leakage power, which are determined by the
all-  designs. Furthermore, the optimal designs
achieve about 14% higher performance with just half the
1 In the sequel, the cells referred to as all-low-Vt and all-high-Vt

designs are assumed to be of unit size.
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leakage current of the all-  ones. In addition,
approximate MLP models are also proposed, which show
significant speedup (25x) over the original MLP model,
with minor increase in leakage current or delay. Our
models can also be easily extended to consider total
power consumption and multiple supply voltages [13]
[1].

The remainder of this paper is as follows. We define
our system model in Section 2. The exact and
approximate MLP models for simultaneous selection of
threshold voltages and gate sizes are described in
Section 3. We present our experimental results in
Section 4, and Section 5 concludes this paper.

2. SYSTEM MODEL
We start by describing the assumptions underlying our
system model. We assume that there is a basic unit cell
for each cell type in the given cell library, and use G to
denote the unit cell with the same type as G. If U(G)
represents the physical size of gate G, then we define the
size S(G) of G to be U(G)/U(G). 

Let R(G), Il(G), Cg(G), Cp(G) and D(G) denote the
resistance, leakage current, gate capacitance, source/
drain capacitance, and gate delay of G, respectively.
Neglecting high-order effects, we assume the following.

R(G) = R(G)/S(G)
Il(G) = Il(G)*S(G)
Cg(G) = Cg(G)*S(G)
Cp(G) = Cp(G)*S(G) 

We further assume an RC delay model where the gate
delay D(G) is linear in the load capacitance CL [14].
Therefore, viewing a logic gate in terms of resistors and
capacitors at the transistor level, as illustrated by
Figure 1, we have 

D(G) = R(G)(Cp(G) + CL)
         = R(G)/S(G) (Cp(G)*S(G) + CL) 

         = R(G)*Cp(G) + R(G)*CL/S(G) 

         = Dp(G) + R(G)/S(G)*CL (1)

where Dp(G) is independent of cell size, and is called the
parasitic delay of G. The second term of Equation (1) is
linear in the load capacitance CL, and is referred to as
load delay. To simplify the MLP model, we represent CL
as a multiple of C0 = Cg(INV1), the gate capacitance of a
unit inverter. Consequently, the delay D(G) can be
expressed as

D(G) = Dp(G) + R(G)/S(G)*CL 

         = Dp(G) + (R(G) * C0) * (CL/C0)/S(G) 

         = Dp(G) + Dl(G) * (CL/C0)/S(G) (2)

where Dl(G) = R(G)*C0, is the load delay when a unit
cell of the same type as G drives a unit inverter. 

Although they are independent of G’s size, Dp(G)
and Dl(G), change with G’s threshold voltage. If two
different threshold voltages are available, we can use a
binary variable Vt(G) to represent G’s Vt selection, with
Vt(G) = 1 for  and Vt(G) = 0 for . Consequently,
we use Dp(G, Vt(G)) and Dl(G, Vt(G)) to explicitly
denote dependency on G’s threshold voltage. Let 
=Dp(G, 0) and  = Dp(G, 1) − Dp(G, 0). Then, we
can rewrite Dp(G, Vt(G)) as
     Dp(G, 0) + (Dp(G,1) Vt(G)

= Dp(G, 0) + (Dp(G, 1) − Dp(G, 0)) Vt(G)                       

=  +  Vt(G) (3)

Similarly, let  = Dl(G,0) and  = Dl(G,1) −
Dl(G, 0). We then have

Dl(G, Vt(G)) =  +  Vt(G) (4)

Adding Vt(G) as a new parameter for D(G) yields
D(G,Vt(G)) = + Vt(G)
                     + (CL/C0)/S(G) 

                +  Vt(G) (CL/C0)/S(G) (5)

The parasitic delay Dp(G, Vt(G)) is a constant for a
given cell type and Vt selection, and so is the load delay
Dl(G, Vt(G)) with CL = C0. Hence, we can measure them
both in advance. We run Hspice with different sizes and
load capacitances, and average the measured delay
values. Hence we can view D(G, Vt(G)) as a linear
function of Vt(G), CL/S(G), and Vt(G)CL/S(G).

Because the switching time of a gate is just a small
portion of a clock cycle, the gates stay in stable states
and keep leaking for most of a cycle, even if they switch
during the cycle. Hence we assume that leakage currents
always exist in an active mode of operation. Let Il(G, I)
be gate G’s leakage current under input pattern I, and let
P(G, I) be the probability that input pattern I is applied
to G; this is usually referred to as the signal probability.
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Figure 1.  RC gate model used for delay calculation
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The average leakage current Il(G) of G can be expressed
as follows. 

Il(G) = =( ) S(G)

Taking threshold voltage Vt(G) into consideration, we
transform the above equation to

Il(G,Vt(G)) =  S(G) 

                     + {

                           − }S(G)Vt(G)

                  =  S(G) + S(G) Vt(G) (6)

where  = , and

  = − 

P(G, I) can be calculated using BDD-based [5] or
simulation-based [2] approaches. We resort to the latter
approach because of its simplicity. Il(G, I, i), where i = 0
or 1, can also be measured by running Hspice. Therefore,
Il(G, Vt(G)) is linear in S(G) and S(G) Vt(G).

We now consider linearizing the multiplication and
division functions C = B * A and C = B / A, where A, B,
and C are non-negative variables. This linearization is
key to the performance of our approach. Note that
popular methods like piece-wise linear approximation
cannot be directly used to linearize multiplication or
division. 

To tackle this problem, we propose a very efficient
technique, which is similar to that used in [3] to
formulate floorplan minimization as a convex
programming problem. Here our goal is to approximate
C with linear functions. Consider C = B / A. We define
two variables a and b such that A = 2a and B = 2b.
Equation C = B / A is thus transformed to C = 2b-a.
Piece-wise linearization can then be applied to this
exponential function. We use the lines determined by
points (k, 2k) and (k + 1, 2k+1) for this purpose:

C ≥ 2k (b − a) + 2k(1− k) (7)

where k = Β1, Β1 +1, ..., Β2, and Β1 ≤ b − a ≤ Β2. These
constraints are not exactly equivalent to C = B / A, as
Figure 2 illustrates. However, we will show that the
approximation is quite accurate, when we develop our
MLP models in the next section. The same general
approach can be used to linearize multiplication.

3. PROBLEM MODELING
Using the assumptions and the linearization techniques
discussed in the preceding section, we now derive an
exact MLP model for simultaneous Vt selection and gate
sizing. Several faster but approximate MLP models are
then described. 

We assume that two threshold voltages are available, and
that the sizes of the library cells are powers of two,
namely, 1, 2, 4, 8,..., . Note that this assumption on
cell sizes is only used to simplify the discussion. We will
generalize the cell sizes later.
Objective Function. We have derived the leakage
current for a single gate in Equation (6). Since our goal
is to reduce the leakage current of a given circuit, we use
the sum of all gate leakage currents as the objective
function to be minimized:

(8)
Let SV(G) = S(G)Vt(G). As noted earlier, the leakage

function is linear in S(G) and SV(G). We will generate a
set of linear constraints for S(G) and SV(G), respectively. 
Constraints. The constraints of the MLP model fall into
two classes: performance and linearization. The
performance constraints guarantee that the size and
threshold voltage for all gates meet the performance
target. We replace any non-linear terms such as SV(G) =
S(G)Vt(G) appearing in the objective function and
performance constraints with linear inequalities, which
constitute the linearization constraints. 

First consider the performance constraints. Let real
variable Ta(G) be the arrival time of G’s output signal.
For convenience, we insert a virtual gate in each primary
input. To satisfy the overall circuit delay Dmax, we use
constraints Ta(Go) ≤ Dmax, where Go is any gate driving
a primary output, and Ta(GI) = 0 for all primary inputs
GI. We then derive constraints to relate the arrival times
of G’s input signals to G’s output signal. Consider the
circuit fragment in Figure 3, where G1 has two inputs
driven by G2 and G3, and one output, which drives G4.
The arrival time of G1’s output signal satisfies 

Ta(G’) + D(G1, Vt(G1)) ≤ Ta(G1)
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∑ P G I,( )Il G I,( )

I
∑

P G I,( )Il G I 0, ,( )
I
∑

P G I,( )Il G I 1, ,( )
I
∑
P G I,( )Il G I 0, ,( )
I
∑
Il
0
G( ) Il

10
G( )

Il
0
G( ) P G I,( )L G Il 0, ,( )

I
∑

Il
10
G( ) P G I,( )Il G I 1, ,( )

I
∑ P G I,( )Il G I 0, ,( )

I
∑

2
pmax

Il
0
G( )S G( ) Il

10
G( )S G( )Vt G( )+( )

G
∑

0
2
4
6
8

10
12
14
16
18

-4 -3 -2 -1 0 1 2 3 4

Figure 2. Piecewise linear approximation of an 
exponential function
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where G’ is any gate driving G1’s inputs. 
We calculate D(G1, Vt(G1)) as follows. Since G1 only

drives G4, the load capacitance CL of G1 is Cg(G4) =
Cg(G4) S(G4). The delay D(G1, Vt(G1)) of G1 is hence 

D(G1, Vt(G1)) =  + Vt(G1)

                              + (Cg(G4)/C0) S(G4)/S(G1)

                         +  (Cg(G4)/C0) 

                         * Vt(G1) S(G4)/S(G1) (9)

To make Equation (9) linear, we define new variables
SR(Gi, Gj) = S(Gi)/S(Gj) and SRV(Gi, Gj) = SR(Gi, Gj) *
Vt(Gi). Note that Cg(G4)/C0 only depends on the type of
gate, and so can be calculated beforehand for all gate
types in the library. Therefore, we can view Equation (9)
as a linear expression with respect to SR(G4, G1) and
SRV(G4, G1). 

To confirm the accuracy of the substitutions we made
to linearize the objective function and performance
constraints, we now analyze the linearization constraints. 

We use the technique described in Section 2 to
linearize SR(Gi, Gj) = S(Gi)/S(Gj). We define variable
p(G) for each gate, where S(G) = 2p(G), and p(G) ∈ [0,
pmax]. Therefore, we obtain 

SR(Gi, Gj) = S(Gi)/S(Gj) =  (10)

and approximate SR(Gi, Gj) with the inequality
SR(Gi, Gj) ≥ 2k (p(Gi) − p(Gj)) + (1− k)2k, 

where k = −pmax, −pmax + 2, ..., pmax + 1

Note that SR(Gi, Gj) will never be underestimated by the
above linearization scheme when p(Gi) − p(Gj) is an
integer; neither will Gi’s delay. Consequently, the
original performance target is still guaranteed after the
linearization.

We also apply the foregoing linearization technique
to calculating S(G) = 2p(G). Specifically, we use the
inequalities

S(G)≥ 2k p(G) + (1− k)2k, where k = 0, 2, 4, ... (11)

Similarly, S(G) is at least 2p(G) when p(G) is an integer.
Furthermore, since we are trying to minimize the
objective function (8), S(G) will be assigned the
minimum possible value. We can hence conclude that
S(G) = 2p(G) in any valid solution. Consequently, we do

not sacrifice any optimality by linearizing the objective
function and performance constraints, provided the
p(G)’s are integers. 

The other set of equations to be linearized is 

SV(Gi) = S(Gi) * Vt(Gi) 
SRV(Gi, Gj) = SR(Gi, Gj) * Vt(Gi)

where S(Gi) and SR(Gi, Gj) are real variables while
Vt(Gi) is binary. Generally, C = B * A, where A is a
binary variable and M is an upper bound of B, are
linearized as follows:

0 ≤ C ≤ B (12)
C ≤ M * A (13)
C ≥ B − M (1 − A) (14)

With the additional constraints that the p(G)’s are
integers in the range [0, pmax] and the Vt(G)’s are binary,
we end up with an MLP model for leakage minimization.
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Figure 3. A circuit fragment
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Minimize

Subject to
{Performance constraints}
Ta(Go) ≤ Dmax, Go is gate driving a primary output
Ta(GI) = 0, GI is any virtual gate of a primary input
(We use G1 as an example for constraints relating 
gates’ inputs and outputs)
Ta(G2) + D(G1, Vt(G1) ≤ Ta(G1)

     Ta(G3) + D(G1, Vt(G1) ≤ Ta(G1)
     D(G1, Vt(G1))=  + Vt(G1)
                             + (Cg(G4)/C0) S(G4, G1)
                             + (Cg(G4)/C0)*SRV(G4, G1)

{Linearization constraints for performance 
constraints}
SR(G4,G1) ≥ 2k (p(G4) − p(G1)) + (1− k)2k, 
for k = −pmax, −pmax + 2, ... pmax + 1
0 ≤ SRV(G4, G1) ≤ 
SR(G4,G1) −  (1 − Vt(G1)) ≤ SRV(G4, G1)
SRV(G4, G1) ≤ SR(G4,G1)
{Linearization constraints for objective function}
SV(G) ≥ 2k p(G) + (1− k)2k, k = 0, 2, ..., pmax
0 ≤ SV(G4, G) ≤ 
S(G) −  (1 − Vt(G)) ≤ SV(G)
SV(G) ≤ S(G)

Bounds
 0 ≤ p(G) ≤ pmax, for all gate G

      p(G)’s are integers and Vt(G)’s are binary variables
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The general form of this exact MLP model, referred to as
MLP-0, is summarized in Figure 4.

It turns out that if we are willing to accept slight
inaccuracies in the results, we can remove the restriction
that the cell sizes are powers of two. To do this, we
eliminate the constraints that the p(G)’s are integers and
leave only the Vt(G)’s as integer variables, which are
binary in this specific case. Changing the variable types
from integer to real significantly speeds up the solution of
the MLP formulation. The resulting errors are very minor,
as we will see from the experimental results. 

Solving the modified MLP model, we obtain the
Vt(G)’s as binary numbers which are 1 for  and 0 for

, and the p(G)’s as real numbers. We then determine
S(G) using various approximation approaches according
to the cell sizes provided by the library. We consider two
particular cell sizing scenarios here. In scenario one, we
assume that the library supports cell sizes of any real
number, and set cell size S(G) = 2P(G). The circuit
produced by this scenario provides a lower bound on all
possible gate sizes and Vt assignments for the given
circuit and delay constraints. We call this MLP model
with unrestricted cell sizes the MLP-1 model. In scenario
two, we assume that cell sizes are powers of two, and
call the result the MLP-2 model. The cell size of gate G
is chosen as S(G) = . The MLP-2 model turns out
to be a very good approximation to the original MLP-0
model with the assumption that the library cell sizes are
powers of two.

4. EXPERIMENTAL RESULTS
We have developed a CAD tool to automatically
generate our various MLP models, which are then solved

using the commercial LP solver cplex [6]. The program
first reads the circuit netlist and calculates signal
probabilities by random simulation. Next, it traverses the
netlist to generate the MLP models, using the cell library
data we have measured beforehand. The automatically
generated MLP models are written to a file that can be
directly imported into cplex. 

We have applied the proposed methods to a set of
representative ISCAS and MCNC benchmark circuits.
The circuits were synthesized using the Synopsys Design
Compiler tool and a TSMC 0.18µm standard cell library.
We assume the high Vt’s for PMOS and NMOS are
0.44V and 0.50V, respectively. The low Vt’s are 0.1V
less than their high-Vt counterparts. In addition, we ran
1,000 random patterns to calculate signal probabilities
for the given circuits. 

Vt
L

Vt
H

Figure 5.  Leakage currents and delays for three versions of the benchmark circuits

Circuit 
Gate 
count

A (All-  design) B (All-  design) C (MLP-0-based design)

Leakage 
current 
(pA) LA 

Delay DA
(ps) 

Leakage 
current 
(pA) LB LB/LA

Delay 
(ps) DB DB/DA

Leakage 
current 
(pA) LC LC/LA

Delay 
(ps) DC DC/DA

C432 121 1257 2857 434 0.345 3287 1.151 665 0.525 2855 1.000

C880 345 3439 2017 1144 0.332 2271 1.126 1310 0.381 1944 0.964

C1908 435 4262 3145 1367 0.320 3587 1.141 1524 0.358 3145 1.000

C2670 746 7218 1946 2398 0.332 2227 1.144 2503 0.346 1942 0.998

C3540 892 8903 3323 2987 0.336 3770 1.135 3084 0.364 3322 1.000

C7552 2066 20638 2789 6279 0.304 3143 1.127 6626 0.321 2798 1.000

Pair 1299 12715 3094 4311 0.339 3475 1.123 4895 0.386 3093 1.000

Apex6 615 5927 1064 1899 0.320 1198 1.126 2070 0.354 1061 0.997

Ave. 0.329 1.134 0.379 0.995
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Figure 6.  Leakage-performance curve for C1908 
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Since different cell libraries, threshold voltages and
baseline circuits are used by different authors, it is hard
to make direct comparisons with previous experimental
results. We therefore generate a small set of design variants
for comparison purposes. Here, we use three variants of
each benchmark circuit, denoted A, B, and C. Circuit A is
the all-  unit-size version. Circuit B is the all-
unit-size design. Circuit C is the case where the solution
of the MLP-0 model determines the sizes and threshold
voltages of the gates, whose overall delays are set to the
same values as in form A. 

The results of the experiments are presented in
Figure 5. For each circuit, we measure the leakage
currents and delays occurring in all three circuit variants.
The leakage current and delay ratios with respect to
those of case A are also given. 

The performance of the circuits generated by the
MLP-0-based approach is quite similar to that of the A
designs. However, their leakage currents are just one
third of their A counterparts. The only exception is
C432, whose leakage current is more than half of that of
the corresponding A design. The reason is that this
circuit is small, and we would need to enlarge the circuit
or assign low Vt’s to more of its gates to obtain the same
speedup. Note that the B designs give lower bounds on
the leakage currents of the given circuits. Therefore, the
leakage currents of the MLP-0-based designs are very
close to the minimum values.

We also applied the exact MLP-0 model to analyze
leakage power vs. performance tradeoffs using C1908 as
an example. We first calculated the delays of C1908 in
forms A and B, denoted DA and DB, respectively. We
then applied our MLP-0 model by setting the circuit

delay to DB − k(DB − DA)/3, where k ∈ [1, 6]. We solved
these MLP models using cplex, and calculated the
leakage current for each design variant with the
calculated gate size and Vt. The resulting leakage vs.
performance curve is given in Figure 6, where delays are
normalized to DA. Note that the circuit with the longest
delay is of form B. The data show that the optimal design
can achieve the same performance as form A with far
less leakage current. In fact, we can reduce the delay by
another 14% with just half the leakage current of form A.

Finally, we constructed circuits using the approximate
MLP models discussed in Section 3. For brevity, we refer
to a circuit obtained using the MLP-1 model as variant D,
while a circuit obtained using the MLP-2 model is denoted
by E. The leakage currents and delays for the examined
circuits in variants C, D, and E are presented in Figure 7.
The ratios of leakage currents and delays of the D and E
designs to those of the C designs are also listed. In
addition, the runtimes to solve the exact and approximate

Vt
L Vt

H

Figure 7.  Comparison of designs based on the exact MLP model MLP-0 and two approximate MLP 
models: MLP-1 (unrestricted cell sizes) and MLP-2 (power-of-two cell sizes)

Circuit 

C (MLP-0-based design) D (MLP-1-based design) E (MLP-2-based design)

Leakage 
current 
(pA) LC 

Delay 
(ps) DC 

Runtime
(s) TC 

Leakage 
current 
(pA) LD LD/LC

Delay 
(ps) DD DD/DC

Leakage 
current 
(pA) LE LE/LC

Delay 
(ps) DE DE/DC

Runtime
(s) TE TC/TE

C432 665 2855 390.89 659 0.991 2855 1.000 704 1.059 2835 0.993 19.51 20.0

C880 1310 1944 144.19 1307 0.998 1943 0.999 1314 1.003 1948 1.002 7.87 18.3

C1908 1524 3145 48.41 1523 0.999 3145 1.000 1524 1.000 3145 1.000 14.39 3.4

C2670 2503 1942 186.57 2488 0.994 1938 0.998 2503 1.000 1942 1.000 12.11 15.4

C3540 3084 3322 9463.50 3071 0.996 3319 0.999 3084 1.000 3335 1.004 94.20 100.5

C7552 6626 2798 9359.20 6626 1.000 2793 0.998 6628 1.001 2794 0.999 862.00 10.9

Pair 4895 3093 992.96 4886 0.998 3093 1.000 4902 1.001 3094 1.000 38.91 25.5

Apex6 2070 1061 155.22 2070 1.000 1061 1.000 2079 1.004 1061 1.000 11.34 13.7

Ave. 0.997 0.999 1.008 1.000 26.0

A and B C D E

C432 550.6 636.8 615.61 653.90

C880 1442.23 1524.17 1533.47 1543.61

C1908 1618.62 1678.46 1677.03 1678.46

C2670 2820.47 2840.55 2839.74 2847.75

C3540 3812.85 3907.20 3891.48 3906.84

C7552 7537.2 7601.28 7581.18 7600.56

Pair 5405.76 5443.60 5426.47 5438.76

Apex6 2394.71 2464.50 2452.77 2474.22

Figure 8.  Area Comparison
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MLP models and the corresponding speedups are given.
We also calculated the areas of all design variants,
including the unit-size designs A and B, optimized
designs C, D, and E. The area is given by the total
transistor width (in microns). The results are shown in
Figure 8. Except for circuit C432, the overheads of all
circuits in forms C, D, and E are within a few percent of
one another. As argued previously, C432 is a small
design, and we have to size up more of its gates to obtain
the same speedup. 

As discussed in the previous section, design variant D
provides a lower bound for the circuits with all possible
gate sizes and Vt assignments under the given delay
constraints. On the other hand, design variant C is the
optimal solution if the library cell sizes are powers of
two. Comparison between these two design types will
hence disclose the effectiveness of supporting a library
with relatively few cell sizes such as powers of two. In
fact, compared with the D designs, the errors in both
leakage current and delay of the C designs are less than
1%.We conclude that libraries with power-of-two cell
sizes usually suffice for good performance-leakage
tradeoffs. Moreover, comparison of the leakage currents
and delays of the E and C designs shows that the E design
produced by the MLP-2 model is a very good
approximation to the C case, since the differences in both
leakage current and delay are within 1%, except for the
smallest circuit C432. In addition, solving the
approximate MLP models is about 25 times faster than
solving the original, exact MLP model. We therefore
conclude that the MLP-2 model is an efficient and
accurate replacement for the exact MPL-0 model, and is
able to handle much larger circuits.

5. CONCLUSIONS

We have presented a mixed linear programming
method to simultaneously choose threshold voltages and
gate sizes optimally in order to minimize leakage power.
The exact MLP model is made possible by a novel way
of linearizing gate delay functions. Approximate MLP
models are also proposed, which are much easier to
solve. Two particular approximate MLP models with
different gate sizing scenarios have been investigated. The
MLP-1 model places no restrictions on library cell sizes
and provides a lower bound for all possible gate sizes
and Vt assignments under the given delay constraints.
On the other hand, the simplified MLP-2 model
approximates the exact MLP-0 model very well. 

Our experimental results show that optimal MLP-0-
based designs have the same performance as the all-
designs, with around one third the latter’s leakage power.
Furthermore, the leakage of the MLP-0 designs is only a few

percent higher than that of the all-  designs, which have
the smallest leakage of all possible designs. The
performance of the optimal designs can be pushed even
higher without incurring significant leakage current penalty.
As illustrated by our experiments, the optimal design of
C1908 has 14% higher performance than the all-  one,
with only half the leakage current. The bounds provided
by the MLP-1 model indicate the sufficiency of employing
the MLP approach with power-of-two cell sizes only. In
addition, use of the MLP-2 model leads to significant
speedup (25x), with negligible loss of optimality. 

Both the exact and approximate MLP models can be
easily extended to consider both total power
consumption and multiple supply voltages. Furthermore,
the approximate MLP models scale well and can be used
with much larger circuits. 
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