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Abstract— In this paper, we approach the gate sizing problem
in VLSI circuits in the context of increasing variability of process
and circuit parameters as technology scales into the nanometer
regime. We present a statistical sizing approach that takes into
account randomness in gate delays by formulating a robust
linear program that can be solved efficiently. We demonstrate
the efficiency and computational tractability of the proposed
algorithm on the various ISCAS’85 benchmark circuits. Across
the benchmarks, compared to the deterministic approach, the
power savings range from 23 − 30% for the same timing target
and the yield level, the average power saving being 28%. The
runtime is reasonable, ranging from a few seconds to around 10

mins, and grows linearly.

I. INTRODUCTION

With the aggressive scaling of VLSI technology in the past
decade, process variations are starting to play a significant role
in the design and optimization of deep-submicron circuits [1]
and can no longer be ignored. This trend can be attributed
to several important factors. First, process control in the
manufacturing phase is not improving at a rate comparable to
scaling, causing the variability in physical dimensions, such as
the effective gate length of the transistor, to proportionally in-
crease. New systematic variation-generating mechanisms have
appeared, such as the spatial channel length variation due to
proximity effects and lens aberrations [2]. Second, there is an
emergence of fundamental atomic-scale randomness, such as
the variation in the number of dopants in the transistor channel
[3]. As a result, identically designed chips are exhibiting
a large spread in performance metrics severely impacting
parametric yield.

The growing variability of process and circuit parameters
calls for the introduction of a new statistical (stochastic) design
paradigm. Much attention has been recently given to statistical
timing analysis methods, specifically, statistical STA [4][5].
Optimization techniques used in the computer-aided design of
VLSI circuits also need to be revamped. Indeed, the existing
“deterministic” techniques rely on selecting a single number
to represent the properties of a circuit under the specific condi-
tions, for example, the gate delay for a fixed size. The options
are to set the values either to the mean or the worst-case values
of the varying parameters. While setting the parameters to
their worst case values ensures high yield, it leads to over-
conservatism in design (higher total area and power). Setting
these parameters to their nominal values, however, produces
unacceptable timing yield. It is clear that new methodologies

are needed to tackle the problem of variability efficiently
to ensure a high yield while remaining within the specified
design budget for area and power. Deterministic optimization
schemes, by definition, lack the explicit notion of parametric
yield, preventing design for yield as an active design strategy.

Gate sizing is one of the most potent optimization tech-
niques used in automated VLSI design. It involves making the
near-critical paths faster by sizing up the gates on these paths,
and sizing down gates on non-critical paths while satisfying
certain constraints. The sizing problem has been formulated in
several ways including unconstrained delay minimization [6],
and area and power minimization under delay constraints [7].
Multiple solution methods have also been explored: TILOS
[8] uses a posynomial delay model and a sensitivity-based
optimization. A linear programming algorithm was used in
[9], and an approach based on Lagrangian relaxation was
used in [10]. Among other approaches are those based on
genetic and polytope algorithms [11]. However, none of these
approaches take variability into account, treating gate delays
as fixed quantities. While this might have been justified in
earlier technologies, it is no longer sufficient for design of
high-yielding and high-performance deep-submicron circuits
where the impact of variability is high.

Several previous attempts to introduce statistical considera-
tions into circuit sizing are known to the authors [12][13]. In
[12], a non-linear gate sizing problem based on a statistical
gate delay model is proposed. The approach requires a num-
ber of complicated and computationally expensive maximum
operations to be performed iteratively at each node. The
major shortcoming of this approach is its prohibitive run-
time resulting from a need to evaluate first and second order
derivatives of functions that capture the dependence of delay
mean and variance. An approach based on the concepts from
utility theory [13] identifies the paths that are most likely to
violate the timing requirements, considering both the mean
delay and the variance, and tries to limit the yield loss due
to these paths by sizing them appropriately. The approach
is path-based, and requires a lot of pre-processing to extract
the top few paths to work on, making it infeasible for large
circuits. We are also aware of other current efforts to formulate
a statistical circuit sizing problem [19].

In this paper, we present a new approach to statistical
gate sizing. This is the first approach that is based on a
completely rigorous formulation and derived from the general



principles of stochastic optimization. The original formulation
is cast into a robust linear program, which is then reformulated
as a Second Order Conic Program to analytically capture
the dependence of the objective function on the variance of
gate delays in closed form. The structure of this program
allows us to achieve significantly better run-time compared to
the known approaches. The algorithm has been validated on
several ISCAS’85 circuits, and the results indicate that large
(up to 30%) power savings are possible at the same frequency
target.

The rest of the paper is organized as follows. Section
II presents our model formulation. We analyze the results
obtained by applying our approach to various ISCAS’85
benchmark circuits in Section III. Section IV presents the
conclusions.

II. STATISTICAL GATE SIZING: MODELS AND
OPTIMIZATION

In this section we describe our formulation of the statistical
gate sizing problem as it is one of the most widely used
VLSI circuit optimization techniques. A variety of sizing
problem formulations have appeared over the years. We con-
sider the use of sizing for dynamic power minimization.
We rely on a straightforward relationship between the total
dynamic (switching) power consumption of a circuit and its
total gate capacitance, and, thus, area: Pdyn = CV 2f and
C ∼ CoxLWtot where C is the total switching capacitance,
Cox is the oxide capacitance, f is the frequency of operation
and V is the supply voltage. Wtot is the sum of the widths
of all the transistors in the circuit, which, corresponds to the
sum of sizes of the gates in the circuit. Though power and
area scale by the same factor, this ignores the fact that the
switching factor changes with change in circuit timing due to
sizing [12].

This allows us to use a simple formulation for the power
minimization problem in which the objective of gate sizing
is to find an assignment of gates sizes to minimize total gate
area while ensuring that the delay of the critical path is lesser
than a pre-specified constraint:

min
∑

i

si

s.t. Tmax ≤ T (1)

where, si is the size of gate i, T is the specified timing target
and Tmax is the delay of the critical path through the circuit.
This is the traditional gate sizing formulation, however, in our
approach, area minimization is a proxy for switching power
minimization.

A. Statistical Gate Sizing

Using the deterministic formulation of the sizing problem
above, we can pose the sizing problem under uncertainty as:

min
∑

i

si

s.t. P (Tmax ≤ T ) ≥ η (2)

Tmax = max(To) ∀ o ∈ PO

l ≤ si ≤ u ∀ i ∈ gates (3)

where, l and u are lower and upper bounds respectively on the
size of the gates, To is the arrival time at output o and T is
the timing target. This is a chance constrained linear program.
This kind of formulation has roots in stochastic programming
in which the constraint only has to be met with probability of
η. In the context of circuit sizing, the parameter η corresponds
to the timing yield of the circuit sized to meet the timing
requirement T . It has been shown [16] that this problem is
convex under the assumption of normality and for η > 0.5,
and hence has a unique global minimum.

We begin the derivation by considering a single path. For
a path p ∈ P , where P is the set of all paths in the circuit,
delay along the path is given by:

dp =
∑

i

di ∀ i ∈ path p (4)

For random normal gate delays, we can re-write the constraint
of (2) as:

p

(

dp − dp

σp

≤
T − dp

σp

)

≥ η (5)

Recognizing that dp−dp

σp
is a zero mean unit variance standard

normal variable, (5) can be written as:

T − dp

σp

≥ φ−1(η) (6)

or, equivalently as:

dp + φ−1(η) σp ≤ T (7)

where dp is the nominal delay of the path p, σp is the standard
deviation of the delay of the path, and φ is the cdf of N(0, 1)
[14].

What makes the statistical sizing problem qualitatively
different from the deterministic one is that not only the mean
path delay value but also the variance of path delay is a
function of decision variables of the optimization problem
(gate sizes). Capturing this dependence while keeping the op-
timization problem computationally tractable is the challenge
of statistical gate sizing.

B. Gate Delay Modeling

An approach taken in this work is to formulate the problem as
a robust linear programming problem. This is because a well-
developed theory is available for solving such problems. The
price that has to be paid is a linearized model of gate delay.
Traditionally, a posynomial gate delay model, for example, the
Elmore delay model, has been used to describe the gate delay
dependence on the size of the gate [8][17]. The posynomial
model describes the delay of a gate i as:

di = dinti
+ c

∑

j sj

si

j ∈ fanout(i) (8)

where dinti
is the intrinsic delay of gate i when it is not

driving any load and c is a constant. In order to exploit



the advantages of linear optimization techniques, such as the
ability to find a global optimum and the existence of fast
optimization algorithms (e.g. simplex), a linear gate delay
model has been proposed in [9]. We adopt such a model in
this work. The gate delay is given by:

di = ai − bisi + ci

∑

j∈fo(i)

sj (9)

Here, (ai, bi, ci) are fitting coefficients that can be empirically
determined via SPICE-based circuit simulation for each gate
in the library.

C. Computationally Efficient Formulation

In translating the problem from a conceptual problem to a
computationally tractable one, we need to address the two
concerns of explicitly and analytically encoding the depen-
dence of variance on the decision variables, and translating a
path-based formulation into a node-based formulation.

Using the linear delay model defined above and (4), the
deterministic sizing problem of (1) can be rewritten as a linear
programming (LP) problem:

min
∑

i

si

dp =
∑

i∈p

(

ai − bisi + ci

∑

j∈fo(i)

sj

)

s.t. dp ≤ T ∀ p ∈ P (10)

We now pose a statistical (robust) counter-part of the above
LP, which allows us to bring uncertainty into the problem. We
define the coefficients of the linear delay model to be uncertain
(random) variables. Specifically, we model the variability
in gate delay by assuming that bi, ci are normal random
variables. Then, the robust LP is:

min
∑

i

si

dp =
∑

i∈p

(

ai − bisi + ci

∑

j∈fo(i)

sj

)

s.t. p(dp ≤ T ) ≥ η ∀ p ∈ P (11)

In order to make the formulation above computationally
efficient, under the assumption of node delay independence
and for node delays which are Gaussian random variables,
we can re-express the probabilistic constraint as (12). This
specific formulation can then be efficiently solved [14][15].
While the assumption of independence appears to be essential
to this problem formulation, the node distributions do not have
to be Gaussian. Any other arbitrary distribution can be used
by appropriately selecting the inverse cdf function φ−1(η).

min
∑

i

si

1

2

3 s

Fig. 1. Example to illustrate statistical sizing algorithm

dp =
∑

i∈p

(

ai − bisi + ci

∑

j∈fo(i)

sj

+ φ−1(η)

√

σ2
bi

s2
i + σ2

ci
(
∑

j∈fo(i)

sj)2

)

s.t. dp ≤ T ∀ p ∈ P (12)

where σbi
and σci

are the variances of bi and ci respectively.
Still another problem to address is translating a path-based

formulation into a node-based formulation for large circuits,
with the number of paths growing exponentially. As it is
not feasible to enumerate them, we transform the path based
constraints into node-based constraints. The delay of a gate is
now given by:

d̂i =

(

ai − bisi + ci

∑

j∈fo(i)

sj

+ φ−1(η)

√

σb
2
i s

2
i + σc

2
i (
∑

j∈fo(i)

sj)2

)

(13)

We propagate d̂i through the circuit using the conventional
arrival time equations of static timing analysis. This is illus-
trated using the simple circuit shown in Fig. 1. Nodes 1 and
2 are the primary inputs and 3 is the primary output. Node
s is the dummy sink node. The node-based statistical sizing
formulation for this circuit is:

min

3
∑

i=1

si

s.t. d̂1 ≤ t3

d̂2 ≤ t3

t3 + d̂3 ≤ T (14)

where, t3 is the arrival time at node 3 and the d̂is are
given by (13). Though this transformation introduces some
sub-optimality, we found it to be of the order of 1 − 2%
for smaller circuits, consisting of up to 20 levels of logic.
Sub-optimality here refers to the decrease in dynamic power
achieved by the path-based formulation compared to the node-
based implementation for the same timing constraint and
yield level. In general, a simple analysis shows that the sub-
optimality increases as O(l), where l is the logic depth of the
circuit. However, given the trend towards shallower circuits,
we believe that the overall impact is not going to be significant.
In any case, we believe that the computational benefits in terms
of run-time justify such a transformation.



TABLE I
MINIMUM POWER OBTAINED BY DETERMINISTIC AND STATISTICAL ALGORITHMS AT DIFFERENT YIELD LEVELS

Circuit No. of gates Ttarget Det. sizing Stat. sizing VSS
Pdet P99.7% P96.4% P84%

C432 160 1034.4 348.1 266.53 202.54 177.63 23.5
C499 202 850.9 544.1 391.34 309.2 268.2 28.1
C880 383 1002.39 740.3 490.3 456.8 438.4 33.7
C1355 880 1049.7 1575.0 1099.5 822.2 730.3 30.22
C1908 1193 1466.4 1460 1137.59 1052.98 1004.45 22.1

Another important issue is the selection of margin coeffi-
cients (the value of φ−1(η)) for each of the gates. We adapt a
simple approach and set the margin coefficients to φ−1(η) for
each node, where η is the required yield. This is an ad hoc
procedure, but it seems to approximate the actual yield of the
circuit quite well (Fig. 2). However, it is possible to adopt a
much more sophisticated line search technique, at the expense
of computational complexity. This will involve iterating over
the solution space and progressively refining the values of the
coefficients subject to the yield obtained from the particular
sized configuration [19].

III. RESULTS AND ANALYSIS

We implemented our optimization using the General Algebraic
Modeling Software (GAMS) [18]. The statistical sizing model
was solved using the CPLEX Successive Linear Program
(CPLEXSLP) solver and the deterministic model using the
CPLEX LP solver. Both the deterministic and statistical op-
timization problems are convex and hence we are assured
of a globally optimal solution. We obtained delay equation
coefficients for all the gates that appear in the ISCAS85
benchmark circuits by characterizing the delay values for the
various gate sizes and fanouts for a 0.13µm CMOS process.
The overall variation in gate delay is assumed to be 25%
(in the sense of 3σ/mean). This is translated into the specific
variability of b and c. Though (ai, bi, ci) are fitting coefficients
and the actual physical variability they map to is not clear, we
choose a lower level of variation for ci because we feel that the
coefficient bi maps to a larger underlying physical variability
(largely corresponding to the variation in the channel length,
Leff ) than ci (largely corresponding to the variation in oxide
thickness). We assume a standard deviation of 8% and 5%
of nominal values respectively for bi and ci. The empirical
fitting of the coefficients is done using SysStat [20]. To ensure
accuracy within a working range, we restrict the sizes to 1x

to 4x of the minumum size. We believe that the constraint
imposed on the gate size range is reasonable, and would not
lead to significant sub-optimality of the solution. The accuracy
of the fit can be improved by adopting a piecewise linear
function similar to [9]. In our case, within this restricted range
of gate size values, the linear model is reasonably accurate,
the rms error of the fit being 5 − 7%.

We validate the performance and run-time behavior of our
optimization algorithm on several of the ISCAS’85 benchmark
circuits. (Because of the memory limitations on the servers

that we ran our optimizations on, we weren’t able to apply
our algorithm to the larger benchmark circuits. However, this
is purely a logistical issue that can be resolved and is not a
fundamental limitation to our algorithm with regards to the
run-time or the optimality of the solution). The power savings
that our approach can enable without the loss of performance
or yield are documented in Table I. The way to interpret
the results is as follows. We perform a linear optimization
for the circuits where the random parameters are set to their
worst case values. Ttarget corresponds to the minimum delay
through the circuit obtained by unconstrained optimization in
this deterministic setting and Pdet is the corresponding power.
P99.7% is the power from the statistical sizing algorithm when
the timing constraint is Ttarget for the 99.7% yield level. The
value of stochastic solution (VSS) is defined as

V SS =
Pdet − P99.7%

Pdet

100. (15)

As can be seen, we obtain a sizable saving in power by
applying our approach.

Table II presents a comparison of execution times for our
optimization scheme with those for the deterministic scheme.
For all circuits, the run time is on the order of a few minutes
or lesser. Fig. 3 serves to demonstrate the fact that the run-
time is roughly linear in the number of nodes. Comparing
our run-time with those reported in [12], for circuits with
comparable number of nodes, the run-time of our statistical
sizing algorithm is an order of magnitude better.

As mentioned in Section II, we used a simple approach to
achieve the varying levels of parametric yield: the same value
of the margin coefficient was used for all the nodes. In order to
validate this strategy we carried out the following experiment.
Fig. 2 shows the result of performing a Monte - Carlo analysis
on the nominal configuration. 1000 simulations were used.
It depicts that the actual yield very closely approximates the
yield predicted by our optimization. This justifies choosing the
same value of the margin coefficients for all the nodes in the
circuit.

Figures 4-6 show a set of Pareto curves for the C432
benchmark. Fig. 4 plots the objective function (power) vs. the
required arrival time at the output for various timing yield
levels. In the represented power-delay space, the difference in
power between the circuits sized at different yield levels is
much greater for tighter timing constraints. Specifically, when
a deterministic sizing is performed by setting the parameters
to their worst case values, the sub-optimality is very large for



Fig. 2. The predicted yield reasonably well approximates the actual yield.

Fig. 3. A Comparison between the run-time of statistical and deterministic
sizing algorithms. Both grow approximately linearly.

tight timing constraints. However, the overhead in terms of
power is low for lax timing constraints. Fig. 4 also points to
the fact that in the presence of variability, certain timing targets
are unachievable for a particular yield level, and designing
for the nominal values of the varying parameters will lead to
an unacceptably low yield. Again, this penalty grows as we
approach the maximum frequency of operation of the circuit.
Variability also shifts this maximum frequency towards smaller
values.

Fig. 5 shows the plot of circuit yield and power for the C432
benchmark circuit. As expected, for relaxed timing constraints
the circuit power is very insensitive to the yield requirement.
However, the curve gets steeper for tighter timing requirements
and the power overhead, to hit a certain yield target, grows
drastically.

To study how the magnitude of variability affects the rela-
tionships between yield, timing and circuit power, we changed
the standard deviation (σ) of the parameter values from 5% to
12% of the nominal value. Fig. 6 shows the results of plotting

TABLE II
COMPARISON OF EXECUTION TIMES

Circuit Deterministic Sizing Statistical Sizing
C432 5.72s 9.33s
C499 18.7s 19.1s
C880 42.5s 1m29s
C1355 1m13s 8m32s
C1908 3m02s 10m50s

Fig. 4. The power-delay Pareto curves at different yield levels. Statistical
optimization does uniformly better than the deterministic optimization at the
same yield level.

Fig. 5. The sensitivity of power to yield level. The power-delay trade-off
becomes extremely unfavorable at tighter Treq and higher yield levels.



Fig. 6. The minimum achievable power goes up for higher magnitude of
parameter variation (σ/mean), especially, for tight timing constraints.

the magnitude of standard deviation against circuit power for
different required times. This graph underscores the fact that
the impact of process variations is strongly dependent on the
timing specification required of the circuit and the overhead
is most significant at tighter timing constraints.

IV. CONCLUSION

In this paper we have taken a step in the direction of true
statistical gate sizing. A statistical solution performs uniformly
better than the non-statistical solutions in terms of the achiev-
able power and delay values. We show that significant power
savings (up to 30%) are possible by applying our approach.
The runtime of our algorithm is significantly better than that
of the known alternative schemes.
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