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Abstract

This paper presents a general system architecture tai-
lored to performing searching, filtering, compression,
encryption, and other operations on unstructured data
streaming from a disk system. The system achieves high
performance on such applications by providing for par-
allelism, hardware-application specialization and recon-
figuration, and hardware placement near the disk sys-
tems. A limited prototype of a single compute node has
been implemented and is described. The prototype is tai-
lored to applications involving complex searching and its
performance is compared to a pure software implemen-
tation having the same search capabilities. Performance
is considered in terms of data set size, query string hit
rate and query complexity. Performance results as a
function of these parameters are presented and the re-
sults indicate that, for data set sizes above 1.4 MB, the
prototype compute node is between one and two orders
of magnitude faster than a pure software implementa-
tion. At high data set sizes, on an individual node,
speedups of about 200 and a sustained throughput of
300 MB/sec have been achieved.

1 Introduction

Over the past thirty-five years both semiconductor and
magnetic technologies have advanced rapidy resulting
in large increases in the bit densities available in both
technology domains. In the semiconductor domain this
increase has been expressed (in part) with the well pub-
licized Moore’s Law. The results have been dramatic in-
creases in the number of transistors, memory and logic
gates available on a chip, and a large decrease in the
costs associated with processors. A similar even more
dramatic increase in magnetic bit densities has resulted
in a dramatic decrease in the costs associated with disk-
based mass storage.

Starting in the early 1990s, magnetic storage densi-
ties have been increasing at a significantly faster rate
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Figure 1: Semiconductor and magnetic bit densities

than semiconductor densities (see Figure 1). Over the
past several years, the rate has increased further to
more than twice that of semiconductor densities, and
the costs of disk-based mass storage have plummeted.

This, along with other factors discussed below, has
led to a large and growing gap between the amount of
information being stored and our abilities to retrieve
and process that information effectively. While this
gap has been pointed out by others [1, 2], we con-
sider its importance for the special domain of large
unstructured data sets that are present in both the
commercial and scientific communities. In the scientific
disciplines of physics (e.g., astrophysics, astronomy &
particle physics), biology (e.g., genomics & computa-
tional biology), and environmental science (e.g., satel-
lite remote earth sensing) very large data sets, often in
the tens of terabytes range, are being established that
cannot be processed effectively with today’s computer
systems architectures. In the commercial environment,
the growth of stored data sets (e.g., emails, documents,
etc.), the legal requirements for preserving information,
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and the increased use (e.g., mining) of large databases
to aid in planning and marketing has led to data stor-
age systems and associated processing being a key sys-
tems performance bottleneck. Unless new paradigms
for computer systems architecture and associated ap-
plications implementation are developed, this trend is
likely to continue [3].

This paper presents a new computer architecture
that has been tailored to deal with this problem. The
design goal is to achieve a performance improvement
two orders of magnitude over current systems. The
proposed architecture achieves higher performance by
employing a set of techniques including: (a) exploit-
ing access and processing parallelism at the level of the
disks and disk groups, (b) using processor and FPGA-
based pipelines to speed computation on data stream-
ing from the disk, (c) utilizing hardware specialization
and reconfiguration (via FPGAs) to provide fast com-
putational capabilities, and (d) providing for the tailor-
ing of the architecture (e.g., number of processors in a
pipeline, tasks associated with the pipeline stages and
reconfigurable logic) to the specific application being
considered.

The remainder of this paper is divided into four sec-
tions. Section 2 expands on the needs and motivation
for this new architecture and reviews other efforts in
this area. Section 3 presents the architecture, an imple-
mented prototype and some selected performance mea-
surements. Section 4 considers a set of experiments that
demonstrate the effectiveness of the approach when op-
erating on fast complex search queries. The final section
summarizes the work and discusses our future plans in
this area.

2 Background and Motivation

2.1 The Storage-Processing Gap

The growing gap between the size of data sets and our
ability to effectively process this data has its origin in
a number of technological advances:

• Availability of Inexpensive Mass Storage:
This is a result of the rapid advances in magnetic tech-
nology and the corresponding rapid decrease in the cost
per bit of magnetic storage.

• Availability of Inexpensive Sensors: In scien-
tific domains, new sensor and associated systems tech-
nologies (e.g., wide area sensor arrays) have signifi-
cantly reduced the cost of gathering data, and the cor-
responding data set sizes have increased.

• New and Broader Scientific Research Modal-
ities: Scientific disciplines have been both broaden-
ing their fields of inquiry to encompass larger physi-
cal domains while at the same time seeking to gather
more data at higher resolutions and across additional
dimensions (e.g., not just statistical means, but distri-
butions). Additionally, entirely new fields are gener-
ating enormous data sets (e.g., genomics). Associated
with this is the trend towards developing more compre-
hensive computer models that require large data sets
for parameterization and verification.

• The Computer System Bottleneck:
A– The Processor Bottleneck: In recent years, sin-
gle processor performance has not tracked the growing
requirements of large data sets. In both the scientific
and commercial domains, more complex model and pro-
cessing requirements have led to an increase in the num-
ber of operations that must be performed per byte of
data retrieved from the disk.
B– The Bus I/O Bottleneck: The interconnect
bandwidth between the disk system and the processor
has not kept pace with either the increase in disk ca-
pacities or the performance of processors. This trend is
shown in Figure 2 where a best fit line associated with
typical bus system bandwidths (e.g., PC, XT, ISA, PCI,
PCI-X, PCI-Express, Fibre Channel, IDE/Ultra ATA,
SATA, etc.) is shown. The growth rate in bandwidth
is under 30% per year, significantly lower than that of
either processor performance or disk densities. This, in
conjunction with increased storage capacities and re-
quirements, has resulted in the I/O bus often being
a significant performance bottleneck. This bottleneck
is often less of a problem with structured databases,
where disk seek times may limit effective data rates.
However, this is not the case with many scientific data
sets and, increasingly, with many commercial and secu-
rity/intelligence derived data sets.



C– Data Access Patterns: Unstructured data is typ-
ically generated and stored sequentially in long records
and processing is performed across streaming data.
This often results in data streaming off the disk at
the disk rotational speeds. This is in contrast to re-
lational and structured databases that have many rel-
atively short data records with multiple distinct fields
where accesses are often limited by seek times. How-
ever, the architecture proposed is also appropriate when
large RAID-based disk techniques are employed and re-
sult effectively in high speed streaming data from the
storage system.

2.2 Prior and Related Work

Work concerning methods for improving the access,
processing, and performance of large databases has a
long history. A large body of research and develop-
ment work occurred during the 1970s and 1980s. These
efforts were generally unsuccessful and the approaches
taken were largely abandoned. As the problems with
very large data sets increased, new efforts began in the
mid 1990s and continue to this day. These efforts are
briefly reviewed below.

Early Database Machines
In the 1970s and early 1980s, a good deal of research
was done on “Database Machines”[4, 5, 6, 7]. Gen-
erally these machines provided special purpose scan,
search, or associative memory capabilities oriented to-
wards structured databases. Some machines had provi-
sions for detecting and operating on individual records
and record sub-fields. The focus of this work was on
commercial applications whose operations were limited
both in functionality (e.g., matching) and in the data
types considered (e.g., text). The hardware developed
was often coupled to one or more lower level disk ob-
jects (e.g., the individual disk head, track or entire
disk). While some database machines demonstrated
significant performance improvement on selected appli-
cations, they did not achieve long term success. The
reasons for this include the high cost of the special
purpose hardware and (at that time) its limited use
in the database/disk environment. Additionally, the
hardware operations tended to be less helpful when
dealing with complex queries associated with the newer
query languages and associated complex database ap-
plications.

Intelligent/Active Disk Systems
Over the past ten years there has been a surge of re-
search in new types of database machines referred to
as “Active Disks” (also “Intelligent” or “Smart” disks).
There are several groups that have worked or are work-

ing in this area (Univ. of Cal. at Berkeley, Univ. of
Cal. at Santa Barbara, Univ. of Maryland, Carnegie-
Mellon Univ., Northwestern Univ.) [1, 8, 9, 10, 11, 12]
with some overlap in their activities. In most cases,
the idea is to place one or more commodity processors
at the level of the disk and have these processors un-
dertake a variety of disk operations (e.g., search, sort,
group by, etc.). Operation results are fed back to the
main processor. Thus, certain basic disk operations are
off-loaded to the disk processors. Since these processors
are fast, simple, commodity processors with standard
I/O interfaces, overall application performance may be
improved at relatively low cost. Additionally, since the
processors are intended to be bundled together with the
disks, as the size of a disk farm increases, the associated
disk processing power scales directly.

This research has been successful in developing an
important approach to dealing with large databases.
Performance gains of greater than 50 to 100% on se-
lected applications have been reported (with small sys-
tems) with the performance scaling as the number of
disk processors employed increases. These results are
principally based on the development, integration and
use of specialized simulation models. Our architecture
builds on this work but seeks to achieve significantly
higher performance through use of additional levels of
parallelism and functional specialization. Additionally,
unlike much of this prior work, our focus is principally
on unstructured data sets.

COTS (Commercial Off-The-Shelf) Clusters
A popular and cost-effective approach to dealing with
large data sets is to use clusters of off-the-shelf comput-
ers (e.g., Linux Clusters) that are networked together.
Separate disk(s) are associated with each of the com-
puters, and the database is distributed across the disks.
This architecture achieves many of the objectives asso-
ciated with active disks. Uysal et al. [9] have shown (us-
ing simulation models) that over a benchmark of eight
applications, when sufficient cluster bandwidth is avail-
able, there is little difference between the performance
of such clusters and a proposed active disk system. We
are aiming at achieving significantly greater computa-
tional performance by having increased parallelism and
hardware specialization available at disk and disk group
levels.

3 Architecture

The hardware architecture being developed will employ
arrays of parallel compute engines containing reconfig-
urable components. The overall system is illustrated in
Figure 3.



.
.
. In
te

rc
o
n
n
e
c
ti
o
n

N
e
tw

o
rk

compute
node..

.

FPGA

CMP mem

compute
node..

.

FPGA

CMP mem

compute
node..

.

FPGA

CMP mem

compute
node..

.

FPGA

CMP mem

H
o

s
t
P

ro
c
e

s
s
o

r
Figure 3: System architecture

Compute nodes are constructed with Field
Programmable Gate Arrays (FPGAs) and chip-
multiprocessors (CMPs). Currently available CMPs
include network processors from Intel as well as the
Xilinx Virtex-II Pro series. These compute nodes
enable both functional specialization and pipelining of
computational resources. Each node is assigned to a
disk subsystem (comprising one or more drives) and
operates in parallel on data streaming from the disks.

The block diagram of an operational prototype com-
pute node is shown in Figure 4. In the prototype1,
the processor is a 2.4 GHz Intel Xeon with 2 GB of
memory and the reconfigurable logic is a Xilinx Virtex-
II FPGA. The disk subsystem is constructed using a
set of 15,000 RPM Ultra320 SCSI drives organized in
a RAID-0 configuration. On this prototype, we have
demonstrated sustained read performance of greater
than 800 MB/sec for continuous 500 GB file reads. We
have also demonstrated sustained data throughput of
greater than 400 MB/sec from the disk array into the
FPGA.
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Figure 4: Prototype node architecture

1A product similar to this is being developed by
Data Search Systems, Inc., of St. Louis, Missouri,
http://www.datasearchsystems.com

With this configuration, various tasks can be per-
formed on data streaming from the disk including such
items as data filtering, both exact and approximate
searching, compression, encryption, etc. For example,
we have previously demonstrated [13] an operational
Smith-Waterman algorithm [14] that is used extensively
in computational genomics. In [15] we describe the de-
ployment of the BLAST [16] biosequence search appli-
cation on this system.

Deploying an application on the FPGA requires three
steps: (1) designing the reconfigurable hardware com-
ponent (e.g., using Verilog or VHDL); (2) loading the
configuration information (i.e., bitfile) onto the FPGA;
and (3) performing any required initialization and/or
startup required by the design. We address the first
step by making available a set of library designs (e.g.,
those listed in the above paragraph) for use by appli-
cation developers, limiting the need for hardware-level
design to take place for each new application. Using
best practices for configuration loading and initializa-
tion [17], the second and third steps can be accom-
plished quickly (10s of ms). This time is comparable to
seek times and rotational latencies associated with the
disk subsystem.

A key element in effectively utilizing the above ar-
chitecture is in partitioning the algorithm across the
available FPGA and processor resources. A thorough
understanding of the application and algorithm gener-
ally results in an implementation where the most time
consuming portions of the algorithm are placed in the
FPGA (sometimes in a pipelined fashion), while less
time-critical portions are placed in the processor. Addi-
tionally, the proper placement of temporary data within
the available memories is important. For the applica-
tions cited above, we have been able to arrive at imple-
mentations that can keep up with the data as it streams
off the disk.

A key application that is considered in the remain-
der of this paper concerns the problem of performing
complex approximate searching on large data sets. Say
that we have a set of Ns text words or byte strings
(e.g., ”Bush”, ”Baseball”, ”Blair”, ”Soccer”), and we
are interested in finding where logical combinations of
these strings are present in the data store. For exam-
ple, say that we are interested in scanning all English
speaking newspapers published in a given day (assume
these have been stored on our disk drives) that contain
a general logical expression over the set of Ns = 4 words
given above. One possible query is as follows:

((Bush NEAR[200] Baseball) AND
(Blair NEAR[200] Soccer))

This query expresses the following conditions: (1)



the string ”Bush” is found within 200 characters of the
string ”Baseball”; (2) the string ”Blair” is found within
200 characters of the string ”Soccer”; and (3) both con-
ditions (1) AND (2) hold. Note that in this expres-
sion, the number of logical operators, Nl, is equal to 3
(AND is included once, NEAR is included twice). The
current set of combining operators supported include
AND, OR, NOT, NEAR, and ANDTHEN. The oper-
ators AND, OR, and NOT perform their traditional
Boolean logic functions at the file level. The operator
NEAR is equivalent to AND with the additional con-
straint that the matching strings must be within a given
distance of one another in the file (default distance =
10 characters). The operator ANDTHEN is equivalent
to NEAR with the additional constraint that the first
term must occur earlier in the file than the second term
(i.e., x ANDTHEN y imposes a precedence constraint
on x and y). For example:

((Bush ANDTHEN[200] Baseball) AND
(Blair ANDTHEN[200] Soccer))

requires that ”Bush” preceed ”Baseball” and that
”Blair” preceed ”Soccer”, retaining the 200 character
distance constraint. Note that in the current implemen-
tation, the individual strings are limited to 32 charac-
ters.

An important capability built into the system relates
to approximate matching. In many instances, informa-
tion is corrupted due to noise, to misspellings, or to
misdirection. Additionally, sometimes characters are
capitalized and sometimes not. Our system supports
approximate matches of three forms. First, charac-
ter matches can be case insensitive; second, individ-
ual characters can be designated as wildcards in which
case any database character will be a match; and third,
a count, k, of allowed mismatched characters can be
present. Thus, up to k characters in the string can be
wrong and the string will still be considered a match.

Note that the logical expression may be represented
as a tree with the strings located at the leaves of the
tree and the logical operators located at the interior
nodes. Given this view, a simple partitioning of the
algorithm leads to the FPGA performing the search-
ing/matching operation for each of the tree leaves (un-
der k-misses). On finding a hit (i.e., a match between
the query word and a string obtained from the data
store), the FPGA reports this information (along with
its position in the file) to the processor. The processor
then performs the logical operations and determines if
the overall expression is valid. Implementation details
of this FPGA design are described in [18].

In addition to the three parameters, Ns, Nl, and k,
the data set size, Fn, and the string hit rate (i.e., num-

ber of matches on the individual words normalized by
the file size), Hs, together can be viewed as indicators
of overall query complexity. Naturally, one would ex-
pect as complexity increases performance decreases, as
measured by an increase in the time required to service
a query. The next section considers the performance of
this system for different levels of complexity and com-
pares its performance to that of a software implemen-
tation.

4 Performance Evaluation

The approximate searching described earlier was im-
plemented and a series of experiments were undertaken
to quantify performance. The objective was to com-
pare performance of the FPGA/processor system with
a pure software implementation over a set of queries
that spanned significant portions of the query complex-
ity space.

A set of sixteen Ultra320 drives were used to store
unstructured data sets of varying sizes. Table 1 below
indicates the range of experiments that were conducted.

Parameter Range
Data set size, F 0.5 MB - 1.8 GB

Num. strings/query, Ns 1 - 4
Query string size, S 6 - 28 char

Num. logical operators, Nl 0 - 3
Num. misses/string, k 0 - 10

String hit rate, Hs 6 - 400 hits/MB

Table 1: Query and data set characteristics

The data itself consisted of synthetically generated
text designed to provide the ability for controlled ex-
perimentation. A series of experiments were performed
over two query sets, a low complexity set and a high
complexity set. Low and high complexity corresponds
to the left and right entries in the above table for Ns, S,
Nl, and k. Each experiment consisted of the execution
of ten searches for each data set size. Each point on the
plots represents an individual search run.

The results of performing these searches are shown in
Figures 5 to 8. Figures 5 and 6 show the time required
for searches over a range of data set sizes for low and
high complexity queries. Each of these searches is with
a relatively low hit rate (under 100 hits/MB). As ex-
pected, the time increases as the data set size increases,
and also increases as we move from low to high complex-
ity queries. For example, in general for the software-
based system, high complexity searches are an order of
magnitude more time consuming than low complexity
searches. For the FPGA-based implementation, while
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Figure 5: Search time vs. data set size for low complex-
ity queries

the time increases with data set size and complexity, the
increase is small since the major task of string matching
occurs within the FPGA at the same rate that the disk
provides the data. Only the relatively small computa-
tion associated with performing the logical functions is
done in software.
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Figure 6: Search time vs. data set size for high com-
plexity queries

These figures and Table 2 also show the enormous
gain associated with this design over a strictly software
implementation. For low complexity queries on data
sets above about 1.4 MB the FPGA system is about
an order of magnitude faster than the software system.
For high complexity systems the gain is even more im-
pressive and is over two orders of magnitude.

As the data set size becomes very small, the pure soft-

Data Set Low High
Size Complexity Complexity

Time(sec) Time(sec)
60 MB
Software 4.5 48.5
FPGA 0.25 0.25
960 MB
Software 72.8 823
FPGA 3.1 3.2

Table 2: Search times for different query and data set
sizes
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Figure 7: Search time vs. small data set size for low
complexity queries

ware approach does better than the FPGA approach.
This is shown in Figure 7, which expands the small file
region of the low complexity plot of Figure 5. Below a
data set size of 1.2 MB, the pure software approach is
faster than the FPGA approach. In this region, there
is relatively little gain associated with the hardware
matching when compared with the logical operations.
Additionally, there is some extra overhead associated
with movement of data between the FPGA and the
processor. Thus, for sufficiently small data sets we can
expect a pure software approach to be superior.

One final issue of note relates to the effects of hit
rate on the relative performance of the two approaches.
This is shown in Figure 8 for a low complexity set of
queries operating on a relatively small file (100 MB).
Each point on this plot is the mean of four runs. For rel-
atively low hit rates, the order of magnitude gain from
using the FPGA-based system is shown. As the hit rate
increases, both the pure software and FPGA-based sys-
tem take more time. With more hits, the logical func-



tions, implemented in software on the FPGA-based sys-
tem, effect the performance in the same manner as the
pure software system. Thus, with increasing hit rates,
the percentage performance difference between the two
systems narrows.
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5 Summary and Conclusions

In this paper we have presented a general system archi-
tecture tailored to performing searching, filtering, com-
pression, encryption, and other operations on unstruc-
tured data streaming from a disk system. The system
achieves high performance on such applications by pro-
viding for parallelism, hardware-application specializa-
tion and hardware placement near the disk systems.

A limited prototype of a single compute node has
been implemented and an approximate text search ap-
plication has been deployed on it. Performance of this
system has been compared with that of a pure software
implementation of the same search capabilities. Perfor-
mance results as a function of data set size, query com-
plexity and string hit rates have been presented. These
results indicate that for data set sizes above 1.4 MB, the
FPGA-based system is between one and two orders of
magnitude faster than a pure software implementation.
At high data set sizes, on a system containing a single
compute node, speedups of about 200 and a sustained
throughput of 300 MB/sec have been achieved. As the
size of the data set increases along with the number of
disks, multiple compute nodes can be employed in par-
allel and, for this application, performance will increase
proportionately.

While the general system architecture is an effective
one for the application class targeted, the node archi-

tecture is rapidly evolving. For example, although the
use of FPGAs for fast string matching is very effec-
tive, there are certain drawbacks. In the future we will
require the ability to dynamically change the FPGA
structure in response to incoming queries and appli-
cation changes. Unless the FPGA is sufficiently large
to hold multiple functions, downloading new configu-
rations is currently time consuming and does not pro-
vide suitable responsiveness in a dynamic system en-
vironment. Additionally, certain applications are bet-
ter implemented on parallel or pipelined sets of gen-
eral purpose processing engines. Chip multiprocessors
(CMPs) are now available in a number of forms. Net-
work processors having sixteen or more compute en-
gines are commercially available. Intel has also re-
cently announced that they will be providing (as a first
step) dual processor Pentium-like chips in the future.
Our future research will be focused on developing node
level architectures that combine the use of CMP-based
pipelines with FPGA-based coprocessors. Such systems
will combine high performance, fast reconfigurability,
and relative ease of programming.
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