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Abstract 

We describe an effort to prototype an Itanium mi-

croarchitecture using an FPGA.  The microarchitecture 

model is written in the Bluespec hardware description 

language (HDL) and supports a subset of the Itanium 

instruction set architecture.  The microarchitecture model 

includes details such as multi-bundle instruction fetch, 

decode and issue; parallel pipelined execution units with 

scoreboarding and predicated bypassing; and multiple 

levels of cache hierarchies.  The microarchitecture model 

is synthesized and prototyped on a special FPGA card 

that allows the processor model to interface directly to 

the memory bus of a host PC.  This is an effort toward 

developing a flexible microprocessor prototyping 

framework for rapid design exploration. 

1. Introduction 

Until recently, only relatively simple microprocessor 

designs have been prototyped using FPGAs [5, 6, 7, 11, 

12, 14].  This can be attributed to the limited capacity of 

older FPGAs and the high level of effort associated with 

conventional hardware design flows.  In this paper, we 

describe an FPGA processor prototyping effort that 

leverages both high-level hardware design technologies 

and the growing capacity of new FPGAs.  In this effort, 

we used the Bluespec HDL [2] to prototype a subset of 

the Merced Itanium microarchitecture.  The prototyped 

microarchitecture is mapped onto a special FPGA 

hardware that permits the processor model to execute in a 

real PC system environment. 

Our case study illustrates the costs and capabilities of 

hardware prototyping as compliments to existing 

microarchitecture design techniques.  While simulation-

based studies are effective tools, they are not capable of 

predicting all microarchitectural issues related to final 

physical design.  We were able to evaluate relative circuit 

area and cycle time metrics for design alternatives using 

our implementation of a functioning Itanium processor.  

The processor model was developed with tractable design 

effort, and its primary components were calibrated for 

effective performance modeling. 

We present the details of this work in the following 

sections.  Section 2 describes the Bluespec HDL used for 

microarchitecture modeling.  Section 3 presents the 

Itanium microarchitecture model in detail.  Section 4 

describes our FPGA prototyping platform and its 

operation.  Finally, Section 5 presents an assessment of 

the prototyped processor model and the results from a 

microarchitecture design study.  We offer our conclusions 

in Section 6. 

2. Bluespec HDL 

Bluespec is a synthesizable high-level HDL for rapid 

ASIC development [2].  A key advantage of Bluespec is 

the ability to describe hardware designs clearly and 

concisely, leading to fewer errors and faster design 

capture.  Despite the language’s use of high-level 

synthesis, Bluespec produces high quality output 

comparable with hand coded RTL [1].  Two important 

features of Bluespec are its operation-centric semantics 

and functional programming constructs. 

2.1. Operation-centric semantics 

In a Bluespec hardware description, state elements 

such as registers, arrays, and FIFOs, are declared 

explicitly.  Unlike standard synchronous RTL languages, 

however, operation-centric state transitions are abstractly 

represented as a collection of atomic predicated actions 

known as “rules.”  Each Bluespec rule is comprised of a 

guarding predicate condition and a set of actions that 

update affected state elements.  When a rule’s predicate is 

satisfied, all of the rule’s actions are carried out simulta-

neously and instantaneously; if multiple rules’ predicates 

are simultaneously satisfied only one (nondeterministic-

cally chosen) rule’s actions are carried out.  Thus, an 

execution of a Bluespec description corresponds to 

discrete steps of atomic rule applications, where each rule 

produces a state that satisfies the next rule’s predicate 

condition. 



A simple example below shows how the operation-

centric semantics can be helpful in our description of the 

Itanium pipeline.  A rule can specify far-reaching actions 

that logically pertain to the same event but are physically 

distributed over the datapath.  In a pipelined processor 

design, actions associated with a branch misprediction 

recovery entail state modifications to numerous portions 

of the pipeline.  In Bluespec, all such actions can be 

gathered and stated in a single rule guarded to take place 

only when encountering a branch misprediction.  Given 

the atomic semantics of rule execution, the consequences 

of this rule are easy to understand, even in the context of 

other rules with conflicting actions. 

2.2. Language features 

Bluespec’s original syntax
1
 was derived from the 

Haskell functional programming language [10].  Bluespec 

applies object-oriented programming concepts to support 

clean and composible modular design partitioning.  

Functional programming constructs in Bluespec further 

allow concise specifications of combinational logic in a 

rule’s predicate condition and state update expressions.  

For example, the use of list structures and lambda 

expressions allow more flexible and powerful combina-

tional logic descriptions than the simple loops provided 

by standard HDLs.  Moreover, Bluespec offers an 

extensive type system that is significantly more compre-

hensive than conventional HDLs.  This type system 

enables the declaration of elaborate state-storage ele-

ments.  Static type checking during compilation helps to 

eliminate a large class of errors at compile time. 

2.3. Bluespec compiler 

The Bluespec Compiler (BSC) produces the RTL-

level Verilog description of an optimized synchronous 

implementation.  Bluespec’s atomic and sequential 

abstract semantics do not preclude a correct implementa-

tion from executing multiple rules per cycle.  During 

compilation, the Bluespec compiler identifies “conflict-

free” rule pairs (i.e. rules that can be safely executed in 

the same clock cycle to produce a combined state 

transition that is correct with respect to Bluespec’s atomic 

and sequential semantics) [9].  The Bluespec compiler 

then synthesizes a synchronous implementation that 

executes as many conflict-free rules as possible each 

cycle.  BSC Verilog output can be integrated with other 

components described by conventional HDLs for 

simulation and synthesis.  BSC can also generate a cycle-

accurate C simulator of the design. 

                                                
1 The current Bluespec revision [3] extends support to SystemVerilog. 

3. Itanium model development 

The goal of this project is to model a realistic proces-

sor microarchitecture for FPGA prototyping and design 

explorations.  One of the key challenges is maintaining a 

balance between the level of modeling detail and the 

implementation effort.  Below, we first give an overview 

of the Itanium microarchitecture and then describe the 

details of our Bluespec model. 

3.1. Overview of the Intel Itanium architecture 

The Intel Itanium Architecture is a 64-bit “EPIC” 

(explicitly parallel instruction-set computing) architecture 

[8].  Reminiscent of Very Long Instruction Word (VLIW) 

architectures, Itanium instructions are formatted as 128-

bit bundles of three RISC-like instructions.  The Itanium 

instruction set architecture (ISA) supports explicit 

demarcation of data-independent groups (ranging from 

one instruction to several bundles in length) in the 

instruction sequence.  This explicit data-dependence 

encoding allows the Itanium ISA to be efficiently 

supported by straightforward VLIW-like microarchitec-

tures.  The Itanium ISA also incorporates other distinc-

tively VLIW-like features such as a large rotating register 

file and predicated instructions.  The first generation Intel 

Itanium  processors (code named Merced) ran at 733 and 

800 MHz and use an 8-stage core pipeline [16].  This 

first-generation microarchitecture are based on a “2-

bundle” wide datapath; that is, the datapath can decode 

and issue up to two bundles, or six instructions, per cycle. 

3.2. Modeled ISA subset 

Presently, we support only a subset of the Itanium 

ISA in our Bluespec microarchitecture model.  The 

chosen subset constitutes approximately one-third of the 

instruction encodings in the Itanium ISA (not including 

IA-32 compatibility modes).  This subset concentrates on 

user-level integer, memory, and control flow instructions, 

which constitute the vast majority of integer instructions 

generated by the Intel Itanium C++ compiler.  For 

example, the subset is sufficient to execute the Dhrystone 

integer benchmark [17].  Examples of omitted user-level 

integer instructions include vector operations, multiproc-

essor related operations, speculative and advanced loads, 

etc.  Floating-point instructions, multimedia instructions, 

and privileged instructions are also not currently sup-

ported.  The model obeys the true bit-encodings defined 

by the Itanium ISA.  This requirement introduces some 

complexity in the decoding stages of the microarchitec-

ture model, but we deem this necessary for a faithful 

prototype.  This also allows us to use stock Itanium 

assemblers to produce executable binaries. 



3.3. Modeled microarchitecture details 

The Itanium microarchitecture captured in our 

Bluespec model is primarily based on published descrip-

tions of the first-generation Itanium microarchitecture 

[16].  A block diagram of the modeled microarchitecture 

is shown in Figure 1.  Certain stages in the front of the 

pipeline differ from the published details to permit a more 

straightforward description under the Bluespec frame-

work.  For example, our model utilizes a single decoding 

stage, rather than distributing the decoding functionality 

across expand and rename stages.  Below, we briefly 

describe the microarchitectural details included in our 

Bluespec model. 

The fetch stage uses a two-level adaptive branch pre-

dictor to generate instruction fetch addresses to the 

instruction cache.  This predictor has a 512-entry, 4-way 

associative per address BHT of 4-bit entries, 128 16-entry 

per address PHTs of 2-bit saturating counters, and a 64-

entry branch target buffer.  An instruction cache hit 

returns up to two bundles (depending on alignment) to the 

decoding stage.  The decoding stage passes partially 

decoded instructions in the same instruction group to the 

dispersal stage.  The dispersal stage attempts to issue as 

many instructions from the same instruction group as 

possible.  The decode and dispersal stages can process up 

to 2 bundles per cycle, but only 1 instruction group per 

cycle.  Like in a real Itanium, there is no out-of-order 

instruction issue. 

The stack stage renames the effective register name 

to a real register name according to a simple offset in the 

circularly indexed rotating register file.  We implement a 

simple register stack engine that blocks the pipeline to 

service compulsory stack spills and fills.  Next, the 

register read stage fetches operand values from the 

register files.  Instructions are stalled in the register fetch 

stage if non-bypassable read-after-write hazards are 

detected between instructions in different instruction 

groups. 

The execution stages comprise of three types of exe-

cution pipelines: branch, integer, and memory/integer.  

The branch units determine the outcome of a branch 

instruction based on a predicate register value, possibly 

forwarded from the integer execution units.  The branch 

outcome is compared to the predicted outcome, and 

mispredictions cause the pipeline control module to be 

notified.  The resulting control module action flushes the 

wrong-path instructions, and corrects branch predictor 

entries and the current instruction pointer.  The integer 

execution units (including the memory/integer units) are 

fully bypassed and support 64-bit arithmetic and logical 

operations as well as fixed-point multiply.  The bypass 

control is predicated allowing speculative execution and 

forwarding of predicated results.  The memory units 

perform reads and writes against the L1 data cache.  

Finally, the write-back stage commits register updates to 

the appropriate register file. 

The cache hierarchy consists of three levels, separate 

16 KB L1 instruction and data caches, a 96 KB L2 unified 

cache, and a 4 MB L3 cache.  The L1 caches are both 

4-way set associative with 32-byte lines and 2 cycle load 

latencies.  The L2 is 6-way set associative, has 64-byte 

lines, and a 6-cycle load latency.  The L3 is 4-way set 

associative with 64-byte lines and a 21-cycle load latency.  

Main memory latency is implemented to be 100 cycles. 

3.4. Model development 

The behavior of the microarchitecture model is de-

scribed as 90 rules in about 9,500 lines of Bluespec code.  

Approximately one-third of the description is devoted to 

the decode and execution stages.  Both stages are 

conceptually simple, but require extensive descriptions 

due to the elaborateness of the Itanium ISA encodings. 

The operation-centric semantics and functional lan-

guage syntax of Bluespec are very effective in reducing 

the development time of the Itanium microarchitecture 

model.  Language features such as static type checking 

and terse functional language descriptions of combina-

tional logic lead to fewer bugs.  The atomic descriptions 

of control operations, as well as the ability to compose 

operations easily, made the Bluespec description simpler 

and clearer for corner case behaviors. 

In return for the convenience of Bluespec’s high-

level design abstraction, we give up some control over the 

exact implementation details.  This presents a number of 

problems in prototype development.  First, a hidden 

 
 

Figure 1. Bluespec Itanium microarchitecture model 



danger in (all) high-level synthesis is the ability to imply 

huge combinational logic blocks unintentionally from 

seemingly short and simple expressions.  This is particu-

larly problematic when several valid coding options lead 

to drastically different circuit sizes (revealed only after 

synthesis).  Similarly, since the description’s high-level 

constructs are further removed from the final synthesized 

physical designs, it is more difficult to trace timing and 

space problems from the synthesized circuit back to a 

particular site in the Bluespec source code.  Finally, 

Bluespec’s abstract timing model improves operation 

composibility within the language environment but 

demands special care when attempting to interface with 

synchronously-timed external systems. 

4. FPGA prototyping 

Our FPGA prototyping platform enabled rapid devel-

opment of a functional Itanium model with low latency 

and high bandwidth access to large memory resources.  

Figure 2 gives an overview of the key components and 

workflow of our FPGA prototyping system. 

4.1. FPGA prototyping hardware 

Our Itanium model is prototyped on a custom FPGA 

board provided by Intel for research use.  The FPGA 

board connects a Xilinx Virtex-II XC2V6000-5 to the 

front-side bus (FSB) of a Pentium III motherboard via a 

Slot 1 edge connector [13].  Through the FSB, the FPGA 

can directly reference the main memory of a host PC.  

Operating at 100 MHz, the FSB interface provides the 

FPGA with a peak memory bandwidth of 800 MB/sec and 

a typical round-trip time of less than 150 ns. 

The FPGA board has two banks of 256K 4 byte syn-

chronous SRAM modules.  The two-cycle pipelined 

SRAM modules operate at up to 166 MHz, for a sustained 

bandwidth of 667 MB/sec. 

In our current setup, the FPGA board replaces one of 

the Pentium III processors in a dual-processor PC host.  

The remaining Pentium III processor runs a uniprocessor 

Linux operating system out of the lower half of the 

physical memory (1 GB).  The upper 512 MB of physical 

memory is used by the FPGA-prototyped processor.  The 

host Pentium III can read and write the upper 512 MB 

region through a special /dev/mem file handle.  Thus, the 

Pentium III can communicate with the FPGA-prototyped 

processor via uncached shared-memory operations.  The 

Pentium III can also issue low-level control messages to 

the FPGA by writing to special physical addresses 

snooped by the FPGA’s FSB interface logic. 

4.2. FPGA design instantiation 

To instantiate a Bluespec microarchitecture model on 

the FPGA, the BSC-generated Verilog source code is 

combined with a VHDL wrapper code that implements 

the FSB interface.  The FSB interface code enables the 

FPGA to participate as a master in uncached read and 

write bus transactions and as a passive snoop agent. 

The combined Verilog and VHDL source files are 

compiled using Synplify Pro 7.3 to produce EDIF files 

required by Xilinx’s Integrated Software Environment 

(ISE) 5.2.  Xilinx ISE is used to map, place-and-route, 

and generate the FPGA configuration bit stream.  We 

configure the FPGA using the ACE CompactFlash 

interface.  By providing standalone power and configura-

tion clocking to the FPGA board, we are able to program 

the FPGA prior to powering up the PC-host; this greatly 

simplifies the host boot-up processes. 

In addition to the raw read-write FSB interface de-

scribed in VHDL, we implement a three-level cache 

hierarchy model in Bluespec.  The L1 caches are imple-

mented using the Xilinx Virtex’s internal block select 

RAMs.  To achieve a dual-ported 4-way set associative 

L1 data cache we implemented the cache logic in a 

separate clock domain that ran at double the speed of the 

rest of the processor model.  The 100 MHz FSB clock 

drove the cache clock domain directly, and a clock divider 

fed the remainder of the processor model with a 50 MHz 

clock signal. 

The two lower levels of the cache hierarchy were too 

large to be implemented onboard the FPGA.  Thus, we 

used the external SRAM to provide tag and data storage 

for the L2 cache, and tag storage for the L3 cache.  The 

L3 cache model consults this SRAM tag storage to 

determine hit or miss status, but always fetches cache 

lines directly out of main memory.  On a L3 hit, the cache 

line is be available to the core within 8 processor cycles 

 
 

Figure 2. FPGA prototype system and workflow 



(at 50 MHz), thus the request is artificially delayed to 

mimic the desired 21 cycle load latency.  Main memory 

requests are also delayed before being placed on the FSB 

to allow modeling of the correct relative speed between 

the processor core and main memory. 

Our current Itanium microarchitecture model utilizes 

approximately 40% of the resources available on the 

Xilinx XC2V6000, while the FSB interface wrapper 

consumes an addition 4% of available resources.  The 

current Itanium microarchitecture model and FSB 

interface synthesizes to 50 MHz. 

4.3. Prototyped processor execution 

The FPGA prototyped processor executes Itanium 

binary executables out of the reserved upper 512 MB 

region of the host-PC’s main memory.  We use the Intel 

Itanium C++ Compiler 7.0 to generate object files from 

C++, C, and Itanium assembly programs.  The object files 

are decoded using the objdump utility software and 

reformatted by a Python script to produce executables for 

the FPGA prototyped processor. 

Prior to execution, the memory space for the FPGA 

prototyped processor is initialized by the Pentium III host 

processor.  The host processor uses uncached writes to 

load the executable binary and program data to a known 

location in the FPGA processor’s address space.  The host 

processor initiates the FPGA prototyped processor’s 

execution by writing to a memory-mapped address 

snooped by the FPGA’s FSB controller.  The FPGA 

prototyped processor terminates execution by writing out 

relevant processor state (register file contents, program 

counter, and performance counters) to physical memory 

where they can be examined by monitoring software 

running on the host processor. 

5. Model calibration & experimental results 

Our FPGA prototype is designed to realistically 

model the details of an Itanium processor and to support 

microarchitectural design explorations.  We evaluate 

these two goals by first calibrating our model’s IPC 

performance to a real Itanium processor.  Next, we apply 

the calibrated model to investigate the performance and 

implementation tradeoffs from reducing the data bypass 

network. 

5.1. Performance calibration 

We used two types of software benchmarks to com-

pare and tune the performance of our FPGA model to an 

Itanium processor.  First, we specifically designed 

microbenchmarks to exercise various features of the 

processor pipeline (as in [3]).  We also measured overall 

performance using the Dhrystone benchmark as an 

inclusive integer workload. 

 

Execution pipeline.  We first focused on the execution 

portion of the pipeline, verifying that the dispersal 

through write-back stages performed correctly for general 

ALU instructions.  We generated Itanium assembly 

comprised of ALU instructions with random register 

operands.  We varied the average size of the generated 

instruction groups (dependence free instructions) to 

exercise the different behaviors of the dispersal stage.  

Specifically, we tested how the dispersal stage handles 

split-issues when an insufficient number of execution 

pipelines are available.  The results of executing this 

microbenchmark on our model and an Itanium processor 

are shown in Figure 3 as a plot of IPC vs. mean group 

size.  Since this portion of the prototype model was based 

on detailed documentation of the Itanium processor, our 

model performed almost identically to the actual proces-

sor. 

It is clear from Figure 3 that neither the Itanium nor 

our prototype model ever exceeds three instructions per 

cycle, regardless the of mean group size.  This is a real 

phenomenon caused by Itanium’s issue policy, which 

does not permit instructions decoded in different cycles to 

be issued in the same cycle.  When presented with the 

first two decoded bundles of an infinitely long instruction 

group, a 2-bundle wide microarchitecture with four 

integer execution units can issue four independent integer 

instructions in one cycle.  In the next cycle, however, only 

the remaining two instructions from the two decoded 

bundles are issued because the issue policy does not 

further consider subsequent bundles.  This caps the peak 

IPC at 3.0 for program segments of purely integer 

instructions (unless carefully padded with NOP instruc-

tions).  Our prototype model reflects this performance 

characteristic accurately. 

 

Memory system.  The second portion of our model that 

we calibrated was the memory system.  We tested the 
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Figure 3. ALU microbenchmark performance 



prototype model using a microbenchmark that performs 

loads and stores to memory regions of varying size for a 

spectrum of strides [15].  This benchmark produces a 

characteristic graph that reveals the details of the cache 

hierarchy when access latency is plotted as a function of 

stride and region size.  Using this microbenchmark, we 

were able to verify that the basic caching behavior of our 

prototype model closely matches the Itanium processor. 

 

System performance.  To establish overall performance 

we compared the IPC of the Dhrystone benchmark on the 

Itanium processor with our prototype model.  Initially, we 

had only implemented a single-ported L1 data cache to 

avoided introducing a second clock domain (see Section 

3.3).  For the Dhrystone benchmark, even with the 

calibrated execution pipeline, our prototype model with 

only a single-ported L1 data cache had a 34% error in 

IPC, relative to the real Itanium processor (0.94 vs. 1.43).  

Introducing the dual-ported L1 data cache reduces the IPC 

error to 11%. 

There remain several aspects of the Itanium microar-

chitecture that we do not implement fully, which contrib-

utes to the remaining IPC error.  For example, our 

prototype model currently only implements the primary 

branch predictors, but not other supporting mechanisms 

such as the target address registers, the multi-way branch 

prediction table, branch correction for modulo-scheduled 

loops and static prediction hints.  To reduce the absolute 

IPC error further would require increasingly more details 

to be modeled precisely in the prototype, at which point 

the prototyping effort approaches that of a production 

development effort.  Given the desire to reduce develop-

ment effort, it is unrealistic to expect a prototype model to 

agree absolutely with a production design.  What the 

prototype enables us to do is to quickly explore different 

design options and measure the effects in not only 

performance but also implementation metrics. 

5.2. Microarchitecture exploration 

In this study, we use the prototype model to investi-

gate the effects of abbreviating the bypass network that 

connects the integer pipelines.  As in the real Itanium, our 

baseline model has a full bypass network that connects 

the output from the integer/memory execute stages to the 

operand inputs of both the read and execute stages.  One 

could consider reducing the complexity of this network by 

allowing forwarding among a subset of the pipelines.  

Reducing the bypass network negatively affects the 

processor’s IPC, but when moving to a wider microarchi-

tecture a partially bypassed network is an important 

strategy to reduce implementation area and impact on 

cycle time. 

Starting from our baseline prototype model, we can 

modify the high-level Bluespec description to derive 

alternative microarchitectures to investigate the impact of 

a partial bypass network.  In a “1-way” configuration, 

each pipeline forwards results only to itself.  The “2-way” 

and “3-way” configurations forward results to additional 

adjacent pipelines.  To support a partial bypass network, 

we also have to modify the register scoreboard logic 

accordingly to account for the limited data forwarding.  

Figure 4 plots the changes in IPC when the integer 

instruction microbenchmark is executed on prototype 

models with different bypass configurations.  As ex-

pected, IPC performance decreases as the degree of 

bypass in network is reduced.  An interesting behavior in 

the partial bypass networks is that group sizes beyond a 

threshold can actually come to negatively impact IPC.  

This behavior is caused by the increased probability of 

dependencies between consecutive groups in the micro-

benchmark.  Notice that this evaluation is based on 

microbenchmarks of controlled instruction group sizes.  A 

comprehensive study on the impact of partial bypass 

networks must also expose this microarchitecture feature 

to the compiler and consider the compiler interactions. 

Besides IPC performance trends, the implementation 

impact of the design can be studied by synthesizing the 

prototype model.  Table 1 reports the reduction in area 

and critical delay path (in the bypass network) when the 

different prototype models are synthesized for a 0.18µm 

standard cell library. 

Table 1. Bypass network impact study 
 

Bypass Area reduction (mm2) Critical path (ns) Dhrystone IPC 

Full — 4.29 1.27 

3-way 0.35 3.99 1.21 

2-way 0.53 3.76 1.15 

1-way 0.68 3.57 1.09 
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Figure 4. ALU microbenchmark performance 



6. Conclusions 

Simulation-based microarchitecture studies are pow-

erful tools, but they can fail to uncover critical issues 

related to the final physical implementation.  Prototyping 

helps to expose these issues and provides implementation 

estimates such as relative circuit area and cycle time 

metrics.  In this paper, we described the FPGA prototyp-

ing of an Itanium processor.  The processor model 

accurately recreates the primary components of the 

Itanium microarchitecture to provide an effective 

performance model.  This prototype is also capable of 

providing supporting implementation metrics through 

synthesis.  We intend to develop this platform further as a 

flexible prototyping system for application specific 

processor design. 
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