
In-System FPGA Prototyping of an Itanium Microarchitecture

Roland E. Wunderlich and James C. Hoe

Computer Architecture Laboratory at Carnegie Mellon

{rolandw, jhoe}@ece.cmu.edu

Abstract

We describe an effort to prototype an Itanium mi-

croarchitecture using an FPGA. The microarchitecture

model is written in the Bluespec hardware description

language (HDL) and supports a subset of the Itanium

instruction set architecture. The microarchitecture model

includes details such as multi-bundle instruction fetch,

decode and issue; parallel pipelined execution units with

scoreboarding and predicated bypassing; and multiple

levels of cache hierarchies. The microarchitecture model

is synthesized and prototyped on a special FPGA card

that allows the processor model to interface directly to

the memory bus of a host PC. This is an effort toward

developing a flexible microprocessor prototyping

framework for rapid design exploration.

1. Introduction

Until recently, only relatively simple microprocessor

designs have been prototyped using FPGAs [5, 6, 7, 11,

12, 14]. This can be attributed to the limited capacity of

older FPGAs and the high level of effort associated with

conventional hardware design flows. In this paper, we

describe an FPGA processor prototyping effort that

leverages both high-level hardware design technologies

and the growing capacity of new FPGAs. In this effort,

we used the Bluespec HDL [2] to prototype a subset of

the Merced Itanium microarchitecture. The prototyped

microarchitecture is mapped onto a special FPGA

hardware that permits the processor model to execute in a

real PC system environment.

Our case study illustrates the costs and capabilities of

hardware prototyping as compliments to existing

microarchitecture design techniques. While simulation-

based studies are effective tools, they are not capable of

predicting all microarchitectural issues related to final

physical design. We were able to evaluate relative circuit

area and cycle time metrics for design alternatives using

our implementation of a functioning Itanium processor.

The processor model was developed with tractable design

effort, and its primary components were calibrated for

effective performance modeling.

We present the details of this work in the following

sections. Section 2 describes the Bluespec HDL used for

microarchitecture modeling. Section 3 presents the

Itanium microarchitecture model in detail. Section 4

describes our FPGA prototyping platform and its

operation. Finally, Section 5 presents an assessment of

the prototyped processor model and the results from a

microarchitecture design study. We offer our conclusions

in Section 6.

2. Bluespec HDL

Bluespec is a synthesizable high-level HDL for rapid

ASIC development [2]. A key advantage of Bluespec is

the ability to describe hardware designs clearly and

concisely, leading to fewer errors and faster design

capture. Despite the language’s use of high-level

synthesis, Bluespec produces high quality output

comparable with hand coded RTL [1]. Two important

features of Bluespec are its operation-centric semantics

and functional programming constructs.

2.1. Operation-centric semantics

In a Bluespec hardware description, state elements

such as registers, arrays, and FIFOs, are declared

explicitly. Unlike standard synchronous RTL languages,

however, operation-centric state transitions are abstractly

represented as a collection of atomic predicated actions

known as “rules.” Each Bluespec rule is comprised of a

guarding predicate condition and a set of actions that

update affected state elements. When a rule’s predicate is

satisfied, all of the rule’s actions are carried out simulta-

neously and instantaneously; if multiple rules’ predicates

are simultaneously satisfied only one (nondeterministic-

cally chosen) rule’s actions are carried out. Thus, an

execution of a Bluespec description corresponds to

discrete steps of atomic rule applications, where each rule

produces a state that satisfies the next rule’s predicate

condition.

A simple example below shows how the operation-

centric semantics can be helpful in our description of the

Itanium pipeline. A rule can specify far-reaching actions

that logically pertain to the same event but are physically

distributed over the datapath. In a pipelined processor

design, actions associated with a branch misprediction

recovery entail state modifications to numerous portions

of the pipeline. In Bluespec, all such actions can be

gathered and stated in a single rule guarded to take place

only when encountering a branch misprediction. Given

the atomic semantics of rule execution, the consequences

of this rule are easy to understand, even in the context of

other rules with conflicting actions.

2.2. Language features

Bluespec’s original syntax
1
 was derived from the

Haskell functional programming language [10]. Bluespec

applies object-oriented programming concepts to support

clean and composible modular design partitioning.

Functional programming constructs in Bluespec further

allow concise specifications of combinational logic in a

rule’s predicate condition and state update expressions.

For example, the use of list structures and lambda

expressions allow more flexible and powerful combina-

tional logic descriptions than the simple loops provided

by standard HDLs. Moreover, Bluespec offers an

extensive type system that is significantly more compre-

hensive than conventional HDLs. This type system

enables the declaration of elaborate state-storage ele-

ments. Static type checking during compilation helps to

eliminate a large class of errors at compile time.

2.3. Bluespec compiler

The Bluespec Compiler (BSC) produces the RTL-

level Verilog description of an optimized synchronous

implementation. Bluespec’s atomic and sequential

abstract semantics do not preclude a correct implementa-

tion from executing multiple rules per cycle. During

compilation, the Bluespec compiler identifies “conflict-

free” rule pairs (i.e. rules that can be safely executed in

the same clock cycle to produce a combined state

transition that is correct with respect to Bluespec’s atomic

and sequential semantics) [9]. The Bluespec compiler

then synthesizes a synchronous implementation that

executes as many conflict-free rules as possible each

cycle. BSC Verilog output can be integrated with other

components described by conventional HDLs for

simulation and synthesis. BSC can also generate a cycle-

accurate C simulator of the design.

1 The current Bluespec revision [3] extends support to SystemVerilog.

3. Itanium model development

The goal of this project is to model a realistic proces-

sor microarchitecture for FPGA prototyping and design

explorations. One of the key challenges is maintaining a

balance between the level of modeling detail and the

implementation effort. Below, we first give an overview

of the Itanium microarchitecture and then describe the

details of our Bluespec model.

3.1. Overview of the Intel Itanium architecture

The Intel Itanium Architecture is a 64-bit “EPIC”

(explicitly parallel instruction-set computing) architecture

[8]. Reminiscent of Very Long Instruction Word (VLIW)

architectures, Itanium instructions are formatted as 128-

bit bundles of three RISC-like instructions. The Itanium

instruction set architecture (ISA) supports explicit

demarcation of data-independent groups (ranging from

one instruction to several bundles in length) in the

instruction sequence. This explicit data-dependence

encoding allows the Itanium ISA to be efficiently

supported by straightforward VLIW-like microarchitec-

tures. The Itanium ISA also incorporates other distinc-

tively VLIW-like features such as a large rotating register

file and predicated instructions. The first generation Intel

Itanium processors (code named Merced) ran at 733 and

800 MHz and use an 8-stage core pipeline [16]. This

first-generation microarchitecture are based on a “2-

bundle” wide datapath; that is, the datapath can decode

and issue up to two bundles, or six instructions, per cycle.

3.2. Modeled ISA subset

Presently, we support only a subset of the Itanium

ISA in our Bluespec microarchitecture model. The

chosen subset constitutes approximately one-third of the

instruction encodings in the Itanium ISA (not including

IA-32 compatibility modes). This subset concentrates on

user-level integer, memory, and control flow instructions,

which constitute the vast majority of integer instructions

generated by the Intel Itanium C++ compiler. For

example, the subset is sufficient to execute the Dhrystone

integer benchmark [17]. Examples of omitted user-level

integer instructions include vector operations, multiproc-

essor related operations, speculative and advanced loads,

etc. Floating-point instructions, multimedia instructions,

and privileged instructions are also not currently sup-

ported. The model obeys the true bit-encodings defined

by the Itanium ISA. This requirement introduces some

complexity in the decoding stages of the microarchitec-

ture model, but we deem this necessary for a faithful

prototype. This also allows us to use stock Itanium

assemblers to produce executable binaries.

3.3. Modeled microarchitecture details

The Itanium microarchitecture captured in our

Bluespec model is primarily based on published descrip-

tions of the first-generation Itanium microarchitecture

[16]. A block diagram of the modeled microarchitecture

is shown in Figure 1. Certain stages in the front of the

pipeline differ from the published details to permit a more

straightforward description under the Bluespec frame-

work. For example, our model utilizes a single decoding

stage, rather than distributing the decoding functionality

across expand and rename stages. Below, we briefly

describe the microarchitectural details included in our

Bluespec model.

The fetch stage uses a two-level adaptive branch pre-

dictor to generate instruction fetch addresses to the

instruction cache. This predictor has a 512-entry, 4-way

associative per address BHT of 4-bit entries, 128 16-entry

per address PHTs of 2-bit saturating counters, and a 64-

entry branch target buffer. An instruction cache hit

returns up to two bundles (depending on alignment) to the

decoding stage. The decoding stage passes partially

decoded instructions in the same instruction group to the

dispersal stage. The dispersal stage attempts to issue as

many instructions from the same instruction group as

possible. The decode and dispersal stages can process up

to 2 bundles per cycle, but only 1 instruction group per

cycle. Like in a real Itanium, there is no out-of-order

instruction issue.

The stack stage renames the effective register name

to a real register name according to a simple offset in the

circularly indexed rotating register file. We implement a

simple register stack engine that blocks the pipeline to

service compulsory stack spills and fills. Next, the

register read stage fetches operand values from the

register files. Instructions are stalled in the register fetch

stage if non-bypassable read-after-write hazards are

detected between instructions in different instruction

groups.

The execution stages comprise of three types of exe-

cution pipelines: branch, integer, and memory/integer.

The branch units determine the outcome of a branch

instruction based on a predicate register value, possibly

forwarded from the integer execution units. The branch

outcome is compared to the predicted outcome, and

mispredictions cause the pipeline control module to be

notified. The resulting control module action flushes the

wrong-path instructions, and corrects branch predictor

entries and the current instruction pointer. The integer

execution units (including the memory/integer units) are

fully bypassed and support 64-bit arithmetic and logical

operations as well as fixed-point multiply. The bypass

control is predicated allowing speculative execution and

forwarding of predicated results. The memory units

perform reads and writes against the L1 data cache.

Finally, the write-back stage commits register updates to

the appropriate register file.

The cache hierarchy consists of three levels, separate

16 KB L1 instruction and data caches, a 96 KB L2 unified

cache, and a 4 MB L3 cache. The L1 caches are both

4-way set associative with 32-byte lines and 2 cycle load

latencies. The L2 is 6-way set associative, has 64-byte

lines, and a 6-cycle load latency. The L3 is 4-way set

associative with 64-byte lines and a 21-cycle load latency.

Main memory latency is implemented to be 100 cycles.

3.4. Model development

The behavior of the microarchitecture model is de-

scribed as 90 rules in about 9,500 lines of Bluespec code.

Approximately one-third of the description is devoted to

the decode and execution stages. Both stages are

conceptually simple, but require extensive descriptions

due to the elaborateness of the Itanium ISA encodings.

The operation-centric semantics and functional lan-

guage syntax of Bluespec are very effective in reducing

the development time of the Itanium microarchitecture

model. Language features such as static type checking

and terse functional language descriptions of combina-

tional logic lead to fewer bugs. The atomic descriptions

of control operations, as well as the ability to compose

operations easily, made the Bluespec description simpler

and clearer for corner case behaviors.

In return for the convenience of Bluespec’s high-

level design abstraction, we give up some control over the

exact implementation details. This presents a number of

problems in prototype development. First, a hidden

Figure 1. Bluespec Itanium microarchitecture model

danger in (all) high-level synthesis is the ability to imply

huge combinational logic blocks unintentionally from

seemingly short and simple expressions. This is particu-

larly problematic when several valid coding options lead

to drastically different circuit sizes (revealed only after

synthesis). Similarly, since the description’s high-level

constructs are further removed from the final synthesized

physical designs, it is more difficult to trace timing and

space problems from the synthesized circuit back to a

particular site in the Bluespec source code. Finally,

Bluespec’s abstract timing model improves operation

composibility within the language environment but

demands special care when attempting to interface with

synchronously-timed external systems.

4. FPGA prototyping

Our FPGA prototyping platform enabled rapid devel-

opment of a functional Itanium model with low latency

and high bandwidth access to large memory resources.

Figure 2 gives an overview of the key components and

workflow of our FPGA prototyping system.

4.1. FPGA prototyping hardware

Our Itanium model is prototyped on a custom FPGA

board provided by Intel for research use. The FPGA

board connects a Xilinx Virtex-II XC2V6000-5 to the

front-side bus (FSB) of a Pentium III motherboard via a

Slot 1 edge connector [13]. Through the FSB, the FPGA

can directly reference the main memory of a host PC.

Operating at 100 MHz, the FSB interface provides the

FPGA with a peak memory bandwidth of 800 MB/sec and

a typical round-trip time of less than 150 ns.

The FPGA board has two banks of 256K 4 byte syn-

chronous SRAM modules. The two-cycle pipelined

SRAM modules operate at up to 166 MHz, for a sustained

bandwidth of 667 MB/sec.

In our current setup, the FPGA board replaces one of

the Pentium III processors in a dual-processor PC host.

The remaining Pentium III processor runs a uniprocessor

Linux operating system out of the lower half of the

physical memory (1 GB). The upper 512 MB of physical

memory is used by the FPGA-prototyped processor. The

host Pentium III can read and write the upper 512 MB

region through a special /dev/mem file handle. Thus, the

Pentium III can communicate with the FPGA-prototyped

processor via uncached shared-memory operations. The

Pentium III can also issue low-level control messages to

the FPGA by writing to special physical addresses

snooped by the FPGA’s FSB interface logic.

4.2. FPGA design instantiation

To instantiate a Bluespec microarchitecture model on

the FPGA, the BSC-generated Verilog source code is

combined with a VHDL wrapper code that implements

the FSB interface. The FSB interface code enables the

FPGA to participate as a master in uncached read and

write bus transactions and as a passive snoop agent.

The combined Verilog and VHDL source files are

compiled using Synplify Pro 7.3 to produce EDIF files

required by Xilinx’s Integrated Software Environment

(ISE) 5.2. Xilinx ISE is used to map, place-and-route,

and generate the FPGA configuration bit stream. We

configure the FPGA using the ACE CompactFlash

interface. By providing standalone power and configura-

tion clocking to the FPGA board, we are able to program

the FPGA prior to powering up the PC-host; this greatly

simplifies the host boot-up processes.

In addition to the raw read-write FSB interface de-

scribed in VHDL, we implement a three-level cache

hierarchy model in Bluespec. The L1 caches are imple-

mented using the Xilinx Virtex’s internal block select

RAMs. To achieve a dual-ported 4-way set associative

L1 data cache we implemented the cache logic in a

separate clock domain that ran at double the speed of the

rest of the processor model. The 100 MHz FSB clock

drove the cache clock domain directly, and a clock divider

fed the remainder of the processor model with a 50 MHz

clock signal.

The two lower levels of the cache hierarchy were too

large to be implemented onboard the FPGA. Thus, we

used the external SRAM to provide tag and data storage

for the L2 cache, and tag storage for the L3 cache. The

L3 cache model consults this SRAM tag storage to

determine hit or miss status, but always fetches cache

lines directly out of main memory. On a L3 hit, the cache

line is be available to the core within 8 processor cycles

Figure 2. FPGA prototype system and workflow

(at 50 MHz), thus the request is artificially delayed to

mimic the desired 21 cycle load latency. Main memory

requests are also delayed before being placed on the FSB

to allow modeling of the correct relative speed between

the processor core and main memory.

Our current Itanium microarchitecture model utilizes

approximately 40% of the resources available on the

Xilinx XC2V6000, while the FSB interface wrapper

consumes an addition 4% of available resources. The

current Itanium microarchitecture model and FSB

interface synthesizes to 50 MHz.

4.3. Prototyped processor execution

The FPGA prototyped processor executes Itanium

binary executables out of the reserved upper 512 MB

region of the host-PC’s main memory. We use the Intel

Itanium C++ Compiler 7.0 to generate object files from

C++, C, and Itanium assembly programs. The object files

are decoded using the objdump utility software and

reformatted by a Python script to produce executables for

the FPGA prototyped processor.

Prior to execution, the memory space for the FPGA

prototyped processor is initialized by the Pentium III host

processor. The host processor uses uncached writes to

load the executable binary and program data to a known

location in the FPGA processor’s address space. The host

processor initiates the FPGA prototyped processor’s

execution by writing to a memory-mapped address

snooped by the FPGA’s FSB controller. The FPGA

prototyped processor terminates execution by writing out

relevant processor state (register file contents, program

counter, and performance counters) to physical memory

where they can be examined by monitoring software

running on the host processor.

5. Model calibration & experimental results

Our FPGA prototype is designed to realistically

model the details of an Itanium processor and to support

microarchitectural design explorations. We evaluate

these two goals by first calibrating our model’s IPC

performance to a real Itanium processor. Next, we apply

the calibrated model to investigate the performance and

implementation tradeoffs from reducing the data bypass

network.

5.1. Performance calibration

We used two types of software benchmarks to com-

pare and tune the performance of our FPGA model to an

Itanium processor. First, we specifically designed

microbenchmarks to exercise various features of the

processor pipeline (as in [3]). We also measured overall

performance using the Dhrystone benchmark as an

inclusive integer workload.

Execution pipeline. We first focused on the execution

portion of the pipeline, verifying that the dispersal

through write-back stages performed correctly for general

ALU instructions. We generated Itanium assembly

comprised of ALU instructions with random register

operands. We varied the average size of the generated

instruction groups (dependence free instructions) to

exercise the different behaviors of the dispersal stage.

Specifically, we tested how the dispersal stage handles

split-issues when an insufficient number of execution

pipelines are available. The results of executing this

microbenchmark on our model and an Itanium processor

are shown in Figure 3 as a plot of IPC vs. mean group

size. Since this portion of the prototype model was based

on detailed documentation of the Itanium processor, our

model performed almost identically to the actual proces-

sor.

It is clear from Figure 3 that neither the Itanium nor

our prototype model ever exceeds three instructions per

cycle, regardless the of mean group size. This is a real

phenomenon caused by Itanium’s issue policy, which

does not permit instructions decoded in different cycles to

be issued in the same cycle. When presented with the

first two decoded bundles of an infinitely long instruction

group, a 2-bundle wide microarchitecture with four

integer execution units can issue four independent integer

instructions in one cycle. In the next cycle, however, only

the remaining two instructions from the two decoded

bundles are issued because the issue policy does not

further consider subsequent bundles. This caps the peak

IPC at 3.0 for program segments of purely integer

instructions (unless carefully padded with NOP instruc-

tions). Our prototype model reflects this performance

characteristic accurately.

Memory system. The second portion of our model that

we calibrated was the memory system. We tested the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Mean Group Size

IP
C

FPGA Itanium 50MHz

Itanium 733 MHz

Figure 3. ALU microbenchmark performance

prototype model using a microbenchmark that performs

loads and stores to memory regions of varying size for a

spectrum of strides [15]. This benchmark produces a

characteristic graph that reveals the details of the cache

hierarchy when access latency is plotted as a function of

stride and region size. Using this microbenchmark, we

were able to verify that the basic caching behavior of our

prototype model closely matches the Itanium processor.

System performance. To establish overall performance

we compared the IPC of the Dhrystone benchmark on the

Itanium processor with our prototype model. Initially, we

had only implemented a single-ported L1 data cache to

avoided introducing a second clock domain (see Section

3.3). For the Dhrystone benchmark, even with the

calibrated execution pipeline, our prototype model with

only a single-ported L1 data cache had a 34% error in

IPC, relative to the real Itanium processor (0.94 vs. 1.43).

Introducing the dual-ported L1 data cache reduces the IPC

error to 11%.

There remain several aspects of the Itanium microar-

chitecture that we do not implement fully, which contrib-

utes to the remaining IPC error. For example, our

prototype model currently only implements the primary

branch predictors, but not other supporting mechanisms

such as the target address registers, the multi-way branch

prediction table, branch correction for modulo-scheduled

loops and static prediction hints. To reduce the absolute

IPC error further would require increasingly more details

to be modeled precisely in the prototype, at which point

the prototyping effort approaches that of a production

development effort. Given the desire to reduce develop-

ment effort, it is unrealistic to expect a prototype model to

agree absolutely with a production design. What the

prototype enables us to do is to quickly explore different

design options and measure the effects in not only

performance but also implementation metrics.

5.2. Microarchitecture exploration

In this study, we use the prototype model to investi-

gate the effects of abbreviating the bypass network that

connects the integer pipelines. As in the real Itanium, our

baseline model has a full bypass network that connects

the output from the integer/memory execute stages to the

operand inputs of both the read and execute stages. One

could consider reducing the complexity of this network by

allowing forwarding among a subset of the pipelines.

Reducing the bypass network negatively affects the

processor’s IPC, but when moving to a wider microarchi-

tecture a partially bypassed network is an important

strategy to reduce implementation area and impact on

cycle time.

Starting from our baseline prototype model, we can

modify the high-level Bluespec description to derive

alternative microarchitectures to investigate the impact of

a partial bypass network. In a “1-way” configuration,

each pipeline forwards results only to itself. The “2-way”

and “3-way” configurations forward results to additional

adjacent pipelines. To support a partial bypass network,

we also have to modify the register scoreboard logic

accordingly to account for the limited data forwarding.

Figure 4 plots the changes in IPC when the integer

instruction microbenchmark is executed on prototype

models with different bypass configurations. As ex-

pected, IPC performance decreases as the degree of

bypass in network is reduced. An interesting behavior in

the partial bypass networks is that group sizes beyond a

threshold can actually come to negatively impact IPC.

This behavior is caused by the increased probability of

dependencies between consecutive groups in the micro-

benchmark. Notice that this evaluation is based on

microbenchmarks of controlled instruction group sizes. A

comprehensive study on the impact of partial bypass

networks must also expose this microarchitecture feature

to the compiler and consider the compiler interactions.

Besides IPC performance trends, the implementation

impact of the design can be studied by synthesizing the

prototype model. Table 1 reports the reduction in area

and critical delay path (in the bypass network) when the

different prototype models are synthesized for a 0.18µm

standard cell library.

Table 1. Bypass network impact study

Bypass Area reduction (mm2) Critical path (ns) Dhrystone IPC

Full — 4.29 1.27

3-way 0.35 3.99 1.21

2-way 0.53 3.76 1.15

1-way 0.68 3.57 1.09

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Mean Group Size

IP
C Full bypass

3-w ay

2-w ay

1-w ay

Figure 4. ALU microbenchmark performance

6. Conclusions

Simulation-based microarchitecture studies are pow-

erful tools, but they can fail to uncover critical issues

related to the final physical implementation. Prototyping

helps to expose these issues and provides implementation

estimates such as relative circuit area and cycle time

metrics. In this paper, we described the FPGA prototyp-

ing of an Itanium processor. The processor model

accurately recreates the primary components of the

Itanium microarchitecture to provide an effective

performance model. This prototype is also capable of

providing supporting implementation metrics through

synthesis. We intend to develop this platform further as a

flexible prototyping system for application specific

processor design.

Acknowledgment

We would like to thank Steve Haynal, Shih-Lien Lu,

Konrad Lai, and Kevin Rudd for their feedback and

assistance in this study. Funding for this work is provided

by the Integrated Circuits and Systems Research program

of the Semiconductor Research Corporation. We thank

Bluespec Inc. for providing the Bluespec compiler and

Intel Corporation for providing the FPGA platform.

References

[1] Arvind, R.S. Nikhil, D.L. Rosenband, and N. Dave, High-

level synthesis: An Essential Ingredient for Designing

Complex ASICs, Memo 473, Computation Structures
Group, Massachusetts Inst. of Technology, 2004.

[2] L. Augustsson, J. Schwartz, and R.S. Nikhil, Bluespec
Language Definition, Sandburst Corp., 2001.

[3] B. Black and J.P. Shen, “Calibration of Microprocessor
Performance Models,” Computer, vol. 31, iss. 5, May 1998.

[4] Bluespec™ SystemVerilog Version 3.8 Reference Guide,
Bluespec Inc., 2004.

[5] R. Brown, J. Hayes, and T. Mudge, “Rapid Prototyping and

Evaluation of High-Performance Computers,” Proc. Conf.

on Experimental Research in Computer Systems, NSF Ex-
perimental Systems, June 1996.

[6] J. Gaisler, LEON/AMBA VHDL model description,
European Space Agency, 2000.

[7] M. Gschwind, V. Salapura, and D. Maurer, “FPGA

Prototyping of A RISC Processor Core for Embedded Ap-

plications,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 2, Apr. 2001.

[8] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder and

R. Zahir, “Introducing the IA-64 Architecture,” IEEE Mi-
cro, vol. 20, iss. 5, Sept./Oct. 2000.

[9] J.C. Hoe and Arvind, “Synthesis of Operation-Centric

Hardware Descriptions,” Proc. Int’l Conf. on Computer

Aided Design (ICCAD-2000), Nov. 2000.

[10] S.P. Jones and J. Hughes, Haskell 98: A Non-strict, Purely

Functional Language, tech. report YALEU/DCS/RR-1106,
Yale Univ., 1999.

[11] Y.G. Kim and T.G. Kim, “A Design and Tool Reuse

Methodology for Rapid Prototyping of Application Specific

Instruction Set Processors,” Proc. IEEE Int’l Workshop on
Rapid System Prototyping (RSP1999), June 1999.

[12] K. Oh, S. Yoon, and S. Chae, “Emulator Environment

Based on an FPGA Prototyping Board,” Proc. IEEE Int’l

Workshop on Rapid System Prototyping (RSP2000),
June 2000.

[13] P6 Family of Processors – Hardware Developer’s Manual;
http://www.intel.com/design/PentiumII/manuals/244001.htm.

[14] W.B. Puah, B.S. Suparjo, R. Wagiran, and R. Sidek,

“Rapid Prototyping Asynchronous Processor,” Proc. IEEE

Int’l Conf. on Semiconductor Electronics (ICSE2000),
Nov. 2000.

[15] R.H. Saavedra-Barrera, CPU Performance Evaluation and

Execution Time Prediction Using Narrow Spectrum

Benchmarking, PhD Dissertation, Univ. of California,
Berkley, May 1992.

[16] H. Sharangpani and H. Arora, “Itanium Processor

Microarchitecture,” IEEE Micro, vol. 20, iss. 5,

Sept./Oct. 2000.

[17] R.P. Weicker, “Dhrystone: A Synthetic Systems Program-

ming Benchmark,” Comm. of the ACM, vol. 27, no. 10,
Oct. 1984.

